1
|
Fedorowicz M, Halas A, Macias M, Sledziewska-Gojska E, Woodgate R, McIntyre J. E3 ubiquitin ligase RNF2 protects polymerase ι from destabilization. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119743. [PMID: 38705361 PMCID: PMC11382163 DOI: 10.1016/j.bbamcr.2024.119743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Human DNA polymerase ι (Polι) belongs to the Y-family of specialized DNA polymerases engaged in the DNA damage tolerance pathway of translesion DNA synthesis that is crucial to the maintenance of genome integrity. The extreme infidelity of Polι and the fact that both its up- and down-regulation correlate with various cancers indicate that Polι expression and access to the replication fork should be strictly controlled. Here, we identify RNF2, an E3 ubiquitin ligase, as a new interacting partner of Polι that is responsible for Polι stabilization in vivo. Interestingly, while we report that RNF2 does not directly ubiquitinate Polι, inhibition of the E3 ubiquitin ligase activity of RNF2 affects the cellular level of Polι thereby protecting it from destabilization. Additionally, we indicate that this mechanism is more general, as DNA polymerase η, another Y-family polymerase and the closest paralogue of Polι, share similar features.
Collapse
Affiliation(s)
- Mikolaj Fedorowicz
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Halas
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Matylda Macias
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Ewa Sledziewska-Gojska
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Justyna McIntyre
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Krawczyk M, Halas A, Sledziewska-Gojska E. A novel role for Mms2 in the control of spontaneous mutagenesis and Pol3 abundance. DNA Repair (Amst) 2023; 125:103484. [PMID: 36934633 DOI: 10.1016/j.dnarep.2023.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Mms2 is a ubiquitin E2-variant protein with a very well-documented function in the tolerance pathway that protects both human and yeast cells from the lethal and mutagenic effects of DNA damage. Interestingly, a high expression level of human MMS2 is associated with poor survival prognosis in different cancer diseases. Here we have analyzed the physiological effects of Mms2 overproduction in yeast cells. We show that an increased level of this protein causes a spontaneous mutator effect independent of Ubc13, a cognate partner of Mms2 in the PCNA-polyubiquitinating complex responsible for the template switch. Instead, this new promutagenic role of Mms2 requires Ubc4 (E2) and two ubiquitin ligases of HECT and RING families, Rsp5 and Not4, respectively. We have established that the promutagenic activity of Mms2 is dependent on the activities of error-prone DNA polymerase ζ and Rev1. Additionally, it requires the ubiquitination of K164 in PCNA which facilitates recruitment of these translesion polymerases to the replication complex. Importantly, we have established also that the cellular abundance of Mms2 influences the cellular level of Pol3, the catalytic subunit of replicative DNA polymerase δ. Lack of Mms2 increases the Pol3 abundance, whereas in response to Mms2 overproduction the Pol3 level decreases. We hypothesize that increased levels of spontaneous mutagenesis may result from the Mms2-induced reduction in Pol3 accumulation leading to increased participation of error-prone polymerase ζ in the replication complex.
Collapse
Affiliation(s)
- Michal Krawczyk
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Agnieszka Halas
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Ewa Sledziewska-Gojska
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
3
|
Siebler HM, Cui J, Hill SE, Pavlov YI. DNA Polymerase ζ without the C-Terminus of Catalytic Subunit Rev3 Retains Characteristic Activity, but Alters Mutation Specificity of Ultraviolet Radiation in Yeast. Genes (Basel) 2022; 13:1576. [PMID: 36140745 PMCID: PMC9498848 DOI: 10.3390/genes13091576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/16/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
DNA polymerase ζ (pol ζ) plays a central role in replicating damaged genomic DNA. When DNA synthesis stalls at a lesion, it participates in translesion DNA synthesis (TLS), which helps replication proceed. TLS prevents cell death at the expense of new mutations. The current model indicates that pol ζ-dependent TLS events are mediated by Pol31/Pol32 pol ζ subunits, which are shared with replicative polymerase pol δ. Surprisingly, we found that the mutant rev3-ΔC in yeast, which lacks the C-terminal domain (CTD) of the catalytic subunit of pol ζ and, thus, the platform for interaction with Pol31/Pol32, retains most pol ζ functions. To understand the underlying mechanisms, we studied TLS in normal templates or templates with abasic sites in vitro in primer extension reactions with purified four-subunit pol ζ versus pol ζ with Rev3-ΔC. We also examined the specificity of ultraviolet radiation (UVR)-induced mutagenesis in the rev3-ΔC strains. We found that the absence of Rev3 CTD reduces activity levels, but does not alter the basic biochemical properties of pol ζ, and alters the mutation spectrum only at high doses of UVR, alluding to the existence of mechanisms of recruitment of pol ζ to UVR-damaged sites independent of the interaction of Pol31/Pol32 with the CTD of Rev3.
Collapse
Affiliation(s)
- Hollie M. Siebler
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biology, Creighton University, Omaha, NE 68178, USA
| | - Jian Cui
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sarah E. Hill
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Youri I. Pavlov
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Departments of Pathology and Microbiology, Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
Toth R, Halmai M, Gyorfy Z, Balint E, Unk I. The inner side of yeast PCNA contributes to genome stability by mediating interactions with Rad18 and the replicative DNA polymerase δ. Sci Rep 2022; 12:5163. [PMID: 35338218 PMCID: PMC8956578 DOI: 10.1038/s41598-022-09208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
PCNA is a central orchestrator of cellular processes linked to DNA metabolism. It is a binding platform for a plethora of proteins and coordinates and regulates the activity of several pathways. The outer side of PCNA comprises most of the known interacting and regulatory surfaces, whereas the residues at the inner side constitute the sliding surface facing the DNA double helix. Here, by investigating the L154A mutation found at the inner side, we show that the inner surface mediates protein interactions essential for genome stability. It forms part of the binding site of Rad18, a key regulator of DNA damage tolerance, and is required for PCNA sumoylation which prevents unscheduled recombination during replication. In addition, the L154 residue is necessary for stable complex formation between PCNA and the replicative DNA polymerase δ. Hence, its absence increases the mutation burden of yeast cells due to faulty replication. In summary, the essential role of the L154 of PCNA in guarding and maintaining stable replication and promoting DNA damage tolerance reveals a new connection between these processes and assigns a new coordinating function to the central channel of PCNA.
Collapse
Affiliation(s)
- Robert Toth
- The Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged, 6726, Hungary
| | - Miklos Halmai
- The Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged, 6726, Hungary
| | - Zsuzsanna Gyorfy
- The Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged, 6726, Hungary
| | - Eva Balint
- The Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged, 6726, Hungary
| | - Ildiko Unk
- The Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged, 6726, Hungary.
| |
Collapse
|
5
|
Berrino E, Filippi R, Visintin C, Peirone S, Fenocchio E, Farinea G, Veglio F, Aglietta M, Sapino A, Cereda M, Visintin R, Pasini B, Marchiò C. Collision of germline POLE and PMS2 variants in a young patient treated with immune checkpoint inhibitors. NPJ Precis Oncol 2022; 6:15. [PMID: 35260767 PMCID: PMC8904527 DOI: 10.1038/s41698-022-00258-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 02/11/2022] [Indexed: 12/30/2022] Open
Abstract
The onset of multiple and metachronous tumors in young patients induces to suspect the presence of genetic variants in genes associated with tumorigenesis. We describe here the unusual case of a 16-year-old patient who developed a synchronous bifocal colorectal adenocarcinoma with distant metastases. We provide high throughput molecular characterization with whole-exome sequencing (WES) and DNA targeted sequencing of different tumoral lesions and normal tissue samples that led to unveil a germline POLE mutation (p.Ser297Cys) coexisting with the PMS2 c.2174 + 1 G > A splicing mutation. This clinical scenario defines a “POLE-LYNCH” collision syndrome, which explains the ultra-mutator phenotype observed in the tumor lesions, and the presence of MMR deficiency-associated unusual signatures. The patient was successfully treated with immune checkpoint inhibitors but subsequently developed a high-grade urothelial carcinoma cured by surgery. We complement this analysis with a transcriptomic characterization of tumoral lesions with a panel targeting 770 genes related to the tumor microenvironment and immune evasion thus getting insight on cancer progression and response to immunotherapy.
Collapse
Affiliation(s)
- Enrico Berrino
- Candiolo Cancer Institute, FPO IRCCS, Candiolo, Italy.,Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberto Filippi
- Department of Oncology, University of Turin, Turin, Italy.,Medical Oncology Unit, University Hospital AOU Città della Salute e della Scienza, Turin, Italy
| | - Clara Visintin
- Department of Experimental Oncology, European Institute of Oncology, IEO IRCCS, Milano, Italy
| | - Serena Peirone
- Candiolo Cancer Institute, FPO IRCCS, Candiolo, Italy.,Cancer Genomics and Bioinformatics Unit, IIGM-Italian Institute for Genomic Medicine, c/o IRCCS Candiolo, 10060, Turin, Italy
| | | | | | - Franco Veglio
- Department of Medical Sciences, University of Turin, Turin, Italy.,Internal Medicine Unit, University Hospital AOU Città della Salute e della Scienza, Turin, Italy
| | - Massimo Aglietta
- Candiolo Cancer Institute, FPO IRCCS, Candiolo, Italy.,Department of Oncology, University of Turin, Turin, Italy
| | - Anna Sapino
- Candiolo Cancer Institute, FPO IRCCS, Candiolo, Italy.,Department of Medical Sciences, University of Turin, Turin, Italy
| | - Matteo Cereda
- Candiolo Cancer Institute, FPO IRCCS, Candiolo, Italy.,Cancer Genomics and Bioinformatics Unit, IIGM-Italian Institute for Genomic Medicine, c/o IRCCS Candiolo, 10060, Turin, Italy
| | - Rosella Visintin
- Department of Experimental Oncology, European Institute of Oncology, IEO IRCCS, Milano, Italy
| | - Barbara Pasini
- Department of Medical Sciences, University of Turin, Turin, Italy. .,Medical Genetics Unit, University Hospital AOU Città della Salute e della Scienza, Turin, Italy.
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO IRCCS, Candiolo, Italy. .,Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
6
|
Toth R, Balogh D, Pinter L, Jaksa G, Szeplaki B, Graf A, Gyorfy Z, Enyedi MZ, Kiss E, Haracska L, Unk I. The Rad5 Helicase and RING Domains Contribute to Genome Stability through their Independent Catalytic Activities. J Mol Biol 2022; 434:167437. [PMID: 34990655 DOI: 10.1016/j.jmb.2021.167437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/08/2021] [Accepted: 12/28/2021] [Indexed: 11/27/2022]
Abstract
Genomic stability is compromised by DNA damage that obstructs replication. Rad5 plays a prominent role in DNA damage bypass processes that evolved to ensure the continuation of stalled replication. Like its human orthologs, the HLTF and SHPRH tumor suppressors, yeast Rad5 has a RING domain that supports ubiquitin ligase activity promoting PCNA polyubiquitylation and a helicase domain that in the case of HLTF and Rad5 was shown to exhibit an ATPase-linked replication fork reversal activity. The RING domain is embedded in the helicase domain, confusing their separate investigation and the understanding of the exact role of Rad5 in DNA damage bypass. Particularly, it is still debated whether the helicase domain plays a catalytic or a non-enzymatic role during error-free damage bypass and whether it facilitates a function separately from the RING domain. In this study, through in vivo and in vitro characterization of domain-specific mutants, we delineate the contributions of the two domains to Rad5 function. Yeast genetic experiments and whole-genome sequencing complemented with biochemical assays demonstrate that the ubiquitin ligase and the ATPase-linked activities of Rad5 exhibit independent catalytic activities in facilitating separate pathways during error-free lesion bypass. Our results also provide important insights into the mutagenic role of Rad5 and indicate its tripartite contribution to DNA damage tolerance.
Collapse
Affiliation(s)
- Robert Toth
- DNA Repair Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary; University of Szeged, Doctoral School of Biology, Hungary
| | - David Balogh
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary
| | | | | | | | - Alexandra Graf
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary
| | - Zsuzsanna Gyorfy
- DNA Repair Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary
| | - Marton Zs Enyedi
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary; Delta Bio 2000 Ltd., Szeged H-6726, Hungary
| | - Erno Kiss
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary
| | - Lajos Haracska
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary
| | - Ildiko Unk
- DNA Repair Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary.
| |
Collapse
|
7
|
Che J, Hong X, Rao H. PCNA Ubiquitylation: Instructive or Permissive to DNA Damage Tolerance Pathways? Biomolecules 2021; 11:biom11101543. [PMID: 34680175 PMCID: PMC8533919 DOI: 10.3390/biom11101543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
DNA lesions escaping from repair often block the DNA replicative polymerases required for DNA replication and are handled during the S/G2 phases by the DNA damage tolerance (DDT) mechanisms, which include the error-prone translesion synthesis (TLS) and the error-free template switching (TS) pathways. Where the mono-ubiquitylation of PCNA K164 is critical for TLS, the poly-ubiquitylation of the same residue is obligatory for TS. However, it is not known how cells divide the labor between TLS and TS. Due to the fact that the type of DNA lesion significantly influences the TLS and TS choice, we propose that, instead of altering the ratio between the mono- and poly-Ub forms of PCNA, the competition between TLS and TS would automatically determine the selection between the two pathways. Future studies, especially the single integrated lesion “i-Damage” system, would elucidate detailed mechanisms governing the choices of specific DDT pathways.
Collapse
Affiliation(s)
- Jun Che
- Correspondence: (J.C.); (H.R.)
| | | | - Hai Rao
- Correspondence: (J.C.); (H.R.)
| |
Collapse
|
8
|
Codon optimization of the synthetic 3-ketosphinganine reductase (3KSR) protein for enhancing sphingolipid biosynthetic enzyme expression. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Barbitoff YA, Matveenko AG, Matiiv AB, Maksiutenko EM, Moskalenko SE, Drozdova PB, Polev DE, Beliavskaia AY, Danilov LG, Predeus AV, Zhouravleva GA. Chromosome-level genome assembly and structural variant analysis of two laboratory yeast strains from the Peterhof Genetic Collection lineage. G3-GENES GENOMES GENETICS 2021; 11:6129118. [PMID: 33677552 PMCID: PMC8759820 DOI: 10.1093/g3journal/jkab029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/22/2021] [Indexed: 01/23/2023]
Abstract
Thousands of yeast genomes have been sequenced with both traditional and long-read technologies, and multiple observations about modes of genome evolution for both wild and laboratory strains have been drawn from these sequences. In our study, we applied Oxford Nanopore and Illumina technologies to assemble complete genomes of two widely used members of a distinct laboratory yeast lineage, the Peterhof Genetic Collection (PGC), and investigate the structural features of these genomes including transposable element content, copy number alterations, and structural rearrangements. We identified numerous notable structural differences between genomes of PGC strains and the reference S288C strain. We discovered a substantial enrichment of mid-length insertions and deletions within repetitive coding sequences, such as in the SCH9 gene or the NUP100 gene, with possible impact of these variants on protein amyloidogenicity. High contiguity of the final assemblies allowed us to trace back the history of reciprocal unbalanced translocations between chromosomes I, VIII, IX, XI, and XVI of the PGC strains. We show that formation of hybrid alleles of the FLO genes during such chromosomal rearrangements is likely responsible for the lack of invasive growth of yeast strains. Taken together, our results highlight important features of laboratory yeast strain evolution using the power of long-read sequencing.
Collapse
Affiliation(s)
- Yury A Barbitoff
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia.,Bioinformatics Institute, St. Petersburg 197342, Russia
| | - Andrew G Matveenko
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia.,Bioinformatics Institute, St. Petersburg 197342, Russia
| | - Anton B Matiiv
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia.,Bioinformatics Institute, St. Petersburg 197342, Russia
| | - Evgeniia M Maksiutenko
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia.,St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Svetlana E Moskalenko
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia.,St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg 199034, Russia
| | | | | | - Alexandra Y Beliavskaia
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Lavrentii G Danilov
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Alexander V Predeus
- Bioinformatics Institute, St. Petersburg 197342, Russia.,University of Liverpool, Liverpool, UK, L7 3EA
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
10
|
Frittmann O, Gali VK, Halmai M, Toth R, Gyorfy Z, Balint E, Unk I. The Zn-finger of Saccharomyces cerevisiae Rad18 and its adjacent region mediate interaction with Rad5. G3-GENES GENOMES GENETICS 2021; 11:6133228. [PMID: 33570581 PMCID: PMC8759821 DOI: 10.1093/g3journal/jkab041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 11/13/2022]
Abstract
DNA damages that hinder the movement of the replication complex can ultimately lead to cell death. To avoid that, cells possess several DNA damage bypass mechanisms. The Rad18 ubiquitin ligase controls error-free and mutagenic pathways that help the replication complex to bypass DNA lesions by monoubiquitylating PCNA at stalled replication forks. In Saccharomyces cerevisiae, two of the Rad18 governed pathways are activated by monoubiquitylated PCNA and they involve translesion synthesis polymerases, whereas a third pathway needs subsequent polyubiquitylation of the same PCNA residue by another ubiquitin ligase the Rad5 protein, and it employs template switching. The goal of this study was to dissect the regulatory role of the multidomain Rad18 in DNA damage bypass using a structure-function based approach. Investigating deletion and point mutant RAD18 variants in yeast genetic and yeast two-hybrid assays we show that the Zn-finger of Rad18 mediates its interaction with Rad5, and the N-terminal adjacent region is also necessary for Rad5 binding. Moreover, results of the yeast two-hybrid and in vivo ubiquitylation experiments raise the possibility that direct interaction between Rad18 and Rad5 might not be necessary for the function of the Rad5 dependent pathway. The presented data also reveal that yeast Rad18 uses different domains to mediate its association with itself and with Rad5. Our results contribute to better understanding of the complex machinery of DNA damage bypass pathways.
Collapse
Affiliation(s)
- Orsolya Frittmann
- Biological Research Centre, Szeged, Eotvos Loránd Research Network, The Institute of Genetics, Szeged, H-6726, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, H-6720, Hungary
| | - Vamsi K Gali
- Biological Research Centre, Szeged, Eotvos Loránd Research Network, The Institute of Genetics, Szeged, H-6726, Hungary
| | - Miklos Halmai
- Biological Research Centre, Szeged, Eotvos Loránd Research Network, The Institute of Genetics, Szeged, H-6726, Hungary
| | - Robert Toth
- Biological Research Centre, Szeged, Eotvos Loránd Research Network, The Institute of Genetics, Szeged, H-6726, Hungary
| | - Zsuzsanna Gyorfy
- Biological Research Centre, Szeged, Eotvos Loránd Research Network, The Institute of Genetics, Szeged, H-6726, Hungary
| | - Eva Balint
- Biological Research Centre, Szeged, Eotvos Loránd Research Network, The Institute of Genetics, Szeged, H-6726, Hungary
| | - Ildiko Unk
- Biological Research Centre, Szeged, Eotvos Loránd Research Network, The Institute of Genetics, Szeged, H-6726, Hungary
| |
Collapse
|
11
|
Alekseeva EA, Korolev VG. DNA Damage Tolerance in the Yeast Saccharomyces cerevisiae. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
DNA-damage tolerance through PCNA ubiquitination and sumoylation. Biochem J 2021; 477:2655-2677. [PMID: 32726436 DOI: 10.1042/bcj20190579] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
DNA-damage tolerance (DDT) is employed by eukaryotic cells to bypass replication-blocking lesions induced by DNA-damaging agents. In budding yeast Saccharomyces cerevisiae, DDT is mediated by RAD6 epistatic group genes and the central event for DDT is sequential ubiquitination of proliferating cell nuclear antigen (PCNA), a DNA clamp required for replication and DNA repair. DDT consists of two parallel pathways: error-prone DDT is mediated by PCNA monoubiquitination, which recruits translesion synthesis DNA polymerases to bypass lesions with decreased fidelity; and error-free DDT is mediated by K63-linked polyubiquitination of PCNA at the same residue of monoubiquitination, which facilitates homologous recombination-mediated template switch. Interestingly, the same PCNA residue is also subjected to sumoylation, which leads to inhibition of unwanted recombination at replication forks. All three types of PCNA posttranslational modifications require dedicated conjugating and ligation enzymes, and these enzymes are highly conserved in eukaryotes, from yeast to human.
Collapse
|
13
|
Tannous EA, Yates LA, Zhang X, Burgers PM. Mechanism of auto-inhibition and activation of Mec1 ATR checkpoint kinase. Nat Struct Mol Biol 2020; 28:50-61. [PMID: 33169019 PMCID: PMC7855233 DOI: 10.1038/s41594-020-00522-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023]
Abstract
In response to DNA damage or replication fork stalling, the basal activity of Mec1ATR is stimulated in a cell-cycle-dependent manner, leading to cell-cycle arrest and the promotion of DNA repair. Mec1ATR dysfunction leads to cell death in yeast and causes chromosome instability and embryonic lethality in mammals. Thus, ATR is a major target for cancer therapies in homologous recombination-deficient cancers. Here we identify a single mutation in Mec1, conserved in ATR, that results in constitutive activity. Using cryo-electron microscopy, we determine the structures of this constitutively active form (Mec1(F2244L)-Ddc2) at 2.8 Å and the wild type at 3.8 Å, both in complex with Mg2+-AMP-PNP. These structures yield a near-complete atomic model for Mec1-Ddc2 and uncover the molecular basis for low basal activity and the conformational changes required for activation. Combined with biochemical and genetic data, we discover key regulatory regions and propose a Mec1 activation mechanism.
Collapse
Affiliation(s)
- Elias A Tannous
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Luke A Yates
- Section of Structural Biology, Department of Infectious Disease, Imperial College London, South Kensington, London, UK
| | - Xiaodong Zhang
- Section of Structural Biology, Department of Infectious Disease, Imperial College London, South Kensington, London, UK.
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
14
|
Vaisman A, Woodgate R. Mysterious and fascinating: DNA polymerase ɩ remains enigmatic 20 years after its discovery. DNA Repair (Amst) 2020; 93:102914. [PMID: 33087280 DOI: 10.1016/j.dnarep.2020.102914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
With the publication of the first paper describing the biochemical properties of DNA polymerase iota (polɩ), the question immediately arose as to why cells harbor such a low-fidelity enzyme which often violates the Watson-Crick base pairing rules? Yet 20 years after its discovery, the cellular function of polɩ remains unknown. Here, we provide a graphical review of the unique biochemical properties of polɩ and speculate about the cellular pathways in which enigmatic polɩ may participate.
Collapse
Affiliation(s)
- Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| |
Collapse
|
15
|
Ripley BM, Reusch DT, Washington MT. Yeast DNA polymerase η possesses two PIP-like motifs that bind PCNA and Rad6-Rad18 with different specificities. DNA Repair (Amst) 2020; 95:102968. [PMID: 32932109 DOI: 10.1016/j.dnarep.2020.102968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022]
Abstract
In translesion synthesis (TLS), specialized DNA polymerases, such as polymerase (pol) η and Rev1, are recruited to stalled replication forks. These polymerases form a multi-protein complex with PCNA, Rad6-Rad18, and other specialized polymerases. Pol η interacts with PCNA and Rev1 via a PCNA-interacting protein (PIP) motif in its C-terminal unstructured region. Here we report the discovery of a second PIP-like motif in the C-terminal region of pol η, which we have designated as PIP2. We have designated the original PIP motif as PIP1. We show that the pol η PIP1 and PIP2 motifs bind PCNA with different affinities and kinetics. PIP1 binds with higher affinity than does PIP2, and PIP1 dissociates more slowly than does PIP2. In addition, we show that the interaction between pol η and Rad6-Rad18 is also mediated by the pol η PIP1 and PIP2 motifs. Again, we show that the affinity and kinetics by which these motifs bind Rad6-Rad18 is different. These findings are significant, because the multiple PIP-like motifs on pol η likely play quite different roles within the multi-protein complex formed at stalled replication forks. PIP1 likely plays a critical role in the recruiting pol η to this multi-protein complex. PIP2, by contrast, likely plays a critical role in maintaining the architecture and the dynamics of this multi-protein complex needed to maximize the efficiency and accuracy of TLS.
Collapse
Affiliation(s)
- Brittany M Ripley
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States
| | - Devin T Reusch
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States
| | - M Todd Washington
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States.
| |
Collapse
|
16
|
Selvam K, Rahman SA, Forrester D, Bao A, Lieu M, Li S. Histone H4 LRS mutations can attenuate UV mutagenesis without affecting PCNA ubiquitination or sumoylation. DNA Repair (Amst) 2020; 95:102959. [PMID: 32927239 DOI: 10.1016/j.dnarep.2020.102959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/18/2022]
Abstract
UV is a significant environmental agent that damages DNA. Translesion synthesis (TLS) is a DNA damage tolerance pathway that utilizes specialized DNA polymerases to replicate through the damaged DNA, often leading to mutagenesis. In eukaryotic cells, genomic DNA is organized into chromatin that is composed of nucleosomes. To date, if and/or how TLS is regulated by a specific nucleosome feature has been undocumented. We found that mutations of multiple histone H4 residues mostly or entirely embedded in the nucleosomal LRS (loss of ribosomal DNA-silencing) domain attenuate UV mutagenesis in Saccharomyces cerevisiae. The attenuation is not caused by an alteration of ubiquitination or sumoylation of PCNA (proliferating cell nuclear antigen), the modifications well-known to regulate TLS. Also, the attenuation is not caused by decreased chromatin accessibility, or by alterations of methylation of histone H3 K79, which is at the center of the LRS surface. The attenuation may result from compromised TLS by both DNA polymerases ζ and η, in which Rad6 and Rad5 are but Rad18 is not implicated. We propose that a feature of the LRS is recognized or accessed by the TLS machineries either during/after a nucleosome is disassembled in front of a lesion-stalled replication fork, or during/before a nucleosome is reassembled behind a lesion-stalled replication fork.
Collapse
Affiliation(s)
- Kathiresan Selvam
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Sheikh Arafatur Rahman
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Derek Forrester
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Adam Bao
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Michael Lieu
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States.
| |
Collapse
|
17
|
Feng X, Liu X, Xu R, Zhao R, Feng W, Liao J, Han W, She Q. A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota. Front Microbiol 2020; 11:1585. [PMID: 32793138 PMCID: PMC7390963 DOI: 10.3389/fmicb.2020.01585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Sulfolobus islandicus codes for four DNA polymerases: three are of the B-family (Dpo1, Dpo2, and Dpo3), and one is of the Y-family (Dpo4). Western analysis revealed that among the four polymerases, only Dpo2 exhibited DNA damage-inducible expression. To investigate how these DNA polymerases could contribute to DNA damage tolerance in S. islandicus, we conducted genetic analysis of their encoding genes in this archaeon. Plasmid-borne gene expression revealed that Dpo2 increases cell survival upon DNA damage at the expense of mutagenesis. Gene deletion studies showed although dpo1 is essential, the remaining three genes are dispensable. Furthermore, although Dpo4 functions in housekeeping translesion DNA synthesis (TLS), Dpo2, a B-family DNA polymerase once predicted to be inactive, functions as a damage-inducible TLS enzyme solely responsible for targeted mutagenesis, facilitating GC to AT/TA conversions in the process. Together, our data indicate that Dpo2 is the main DNA polymerase responsible for DNA damage tolerance and is the primary source of targeted mutagenesis. Given that crenarchaea encoding a Dpo2 also have a low-GC composition genome, the Dpo2-dependent DNA repair pathway may be conserved in this archaeal lineage.
Collapse
Affiliation(s)
- Xu Feng
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaotong Liu
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ruyi Xu
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ruiliang Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenqian Feng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianglan Liao
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
18
|
MutSα deficiency increases tolerance to DNA damage in yeast lacking postreplication repair. DNA Repair (Amst) 2020; 91-92:102870. [PMID: 32470850 DOI: 10.1016/j.dnarep.2020.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 11/22/2022]
Abstract
By combining mutations in DNA repair genes, important and unexpected interactions between different repair pathways can be discovered. In this study, we identified a novel link between mismatch repair (MMR) genes and postreplication repair (PRR) in Saccharomyces cerevisiae. Strains lacking Rad5 (HLTF in mammals), a protein important for restarting stalled replication forks in the error-free PRR pathway, were supersensitive to the DNA methylating agent methyl methanesulfonate (MMS). Deletion of the mismatch repair genes, MSH2 or MSH6, which together constitutes the MutSα complex, partially suppressed the MMS super-sensitivity of the rad5Δ strain. Deletion of MSH2 also suppressed the MMS sensitivity of mms2Δ, which acts together with Rad5 in error-free PRR. However, inactivating the mismatch repair genes MSH3 and MLH1 did not suppress rad5Δ, showing that the suppression was specific for disabling MutSα. The partial suppression did not require translesion DNA synthesis (REV1, REV3 or RAD30), base excision repair (MAG1) or homologous recombination (RAD51). Instead, the underlying mechanism was dependent on RAD52 while independent of established pathways involving RAD52, like single-strand annealing and break-induced replication. We propose a Rad5- and Rad51-independent template switch pathway, capable of compensating for the loss of the error-free template-switch subpathway of postreplication repair, triggered by the loss of MutSα.
Collapse
|
19
|
Saini N, Sterling JF, Sakofsky CJ, Giacobone CK, Klimczak LJ, Burkholder AB, Malc EP, Mieczkowski PA, Gordenin DA. Mutation signatures specific to DNA alkylating agents in yeast and cancers. Nucleic Acids Res 2020; 48:3692-3707. [PMID: 32133535 PMCID: PMC7144945 DOI: 10.1093/nar/gkaa150] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 01/28/2023] Open
Abstract
Alkylation is one of the most ubiquitous forms of DNA lesions. However, the motif preferences and substrates for the activity of the major types of alkylating agents defined by their nucleophilic substitution reactions (SN1 and SN2) are still unclear. Utilizing yeast strains engineered for large-scale production of single-stranded DNA (ssDNA), we probed the substrate specificity, mutation spectra and signatures associated with DNA alkylating agents. We determined that SN1-type agents preferably mutagenize double-stranded DNA (dsDNA), and the mutation signature characteristic of the activity of SN1-type agents was conserved across yeast, mice and human cancers. Conversely, SN2-type agents preferably mutagenize ssDNA in yeast. Moreover, the spectra and signatures derived from yeast were detectable in lung cancers, head and neck cancers and tumors from patients exposed to SN2-type alkylating chemicals. The estimates of mutation loads associated with the SN2-type alkylation signature were higher in lung tumors from smokers than never-smokers, pointing toward the mutagenic activity of the SN2-type alkylating carcinogens in cigarettes. In summary, our analysis of mutations in yeast strains treated with alkylating agents, as well as in whole-exome and whole-genome-sequenced tumors identified signatures highly specific to alkylation mutagenesis and indicate the pervasive nature of alkylation-induced mutagenesis in cancers.
Collapse
Affiliation(s)
- Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Joan F Sterling
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Cynthia J Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Camille K Giacobone
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Adam B Burkholder
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ewa P Malc
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Piotr A Mieczkowski
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
20
|
Duong PTM, Bui ATN, Kim S, Park H, Seo Y, Choi B. The interaction between ubiquitin and yeast polymerase η C terminus does not require the UBZ domain. FEBS Lett 2020; 594:1726-1737. [DOI: 10.1002/1873-3468.13783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/28/2022]
Affiliation(s)
| | | | - Seong‐Ok Kim
- Department of Chemistry KAIST Daejeon Korea
- Department of Chemistry Center for Nanomaterials and Chemical Reactions Institute of Basic Science KAIST Daejeon Korea
| | | | - Yeon‐Soo Seo
- Department of Biological Sciences KAIST Daejeon Korea
| | | |
Collapse
|
21
|
Sobolewska A, Halas A, Plachta M, McIntyre J, Sledziewska-Gojska E. Regulation of the abundance of Y-family polymerases in the cell cycle of budding yeast in response to DNA damage. Curr Genet 2020; 66:749-763. [PMID: 32076806 PMCID: PMC7363672 DOI: 10.1007/s00294-020-01061-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/21/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
Y-family DNA polymerases mediate DNA damage tolerance via translesion synthesis (TLS). Because of the intrinsically error-prone nature of these enzymes, their activities are regulated at several levels. Here, we demonstrate the common regulation of the cellular abundance of Y-family polymerases, polymerase eta (Pol eta), and Rev1, in response to DNA damage at various stages of the cell cycle. UV radiation influenced polymerase abundance more when cells were exposed in S-phase than in G1- or G2-phases. We noticed two opposing effects of UV radiation in S-phase. On one hand, exposure to increasing doses of UV radiation at the beginning of this phase increasingly delayed S-phase progression. As a result, the accumulation of Pol eta and Rev1, which in nonirradiated yeast is initiated at the S/G2-phase boundary, was gradually shifted into the prolonged S-phase. On the other hand, the extent of polymerase accumulation was inversely proportional to the dose of irradiation, such that the accumulation was significantly lower after exposure to 80 J/m2 in S-phase than after exposure to 50 J/m2 or 10 J/m2. The limitation of polymerase accumulation in S-phase-arrested cells in response to high UV dose was suppressed upon RAD9 (but not MRC1) deletion. Additionally, hydroxyurea, which activates mainly the Mrc1-dependent checkpoint, did not limit Pol eta or Rev1 accumulation in S-phase-arrested cells. The results show that the accumulation of Y-family TLS polymerases is limited in S-phase-arrested cells due to high levels of DNA damage and suggest a role of the Rad9 checkpoint protein in this process.
Collapse
Affiliation(s)
- Aleksandra Sobolewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Agnieszka Halas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Michal Plachta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Ewa Sledziewska-Gojska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
22
|
Hoitsma NM, Whitaker AM, Schaich MA, Smith MR, Fairlamb MS, Freudenthal BD. Structure and function relationships in mammalian DNA polymerases. Cell Mol Life Sci 2020; 77:35-59. [PMID: 31722068 PMCID: PMC7050493 DOI: 10.1007/s00018-019-03368-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
DNA polymerases are vital for the synthesis of new DNA strands. Since the discovery of DNA polymerase I in Escherichia coli, a diverse library of mammalian DNA polymerases involved in DNA replication, DNA repair, antibody generation, and cell checkpoint signaling has emerged. While the unique functions of these DNA polymerases are differentiated by their association with accessory factors and/or the presence of distinctive catalytic domains, atomic resolution structures of DNA polymerases in complex with their DNA substrates have revealed mechanistic subtleties that contribute to their specialization. In this review, the structure and function of all 15 mammalian DNA polymerases from families B, Y, X, and A will be reviewed and discussed with special emphasis on the insights gleaned from recently published atomic resolution structures.
Collapse
Affiliation(s)
- Nicole M Hoitsma
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Matthew A Schaich
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mallory R Smith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Max S Fairlamb
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
23
|
Singh M, Singh N. DNA Barcoding for Species Identification in Genetically Engineered Fungi. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Powers KT, Washington MT. Eukaryotic translesion synthesis: Choosing the right tool for the job. DNA Repair (Amst) 2018; 71:127-134. [PMID: 30174299 DOI: 10.1016/j.dnarep.2018.08.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Normal DNA replication is blocked by DNA damage in the template strand. Translesion synthesis is a major pathway for overcoming these replication blocks. In this process, multiple non-classical DNA polymerases are thought to form a complex at the stalled replication fork that we refer to as the mutasome. This hypothetical multi-protein complex is structurally organized by the replication accessory factor PCNA and the non-classical polymerase Rev1. One of the non-classical polymerases within this complex then catalyzes replication through the damage. Each non-classical polymerase has one or more cognate lesions, which the enzyme bypasses with high accuracy and efficiency. Thus, the accuracy and efficiency of translesion synthesis depends on which non-classical polymerase is chosen to bypass the damage. In this review article, we discuss how the most appropriate polymerase is chosen. In so doing, we examine the structural motifs that mediate the protein interactions in the mutasome; the multiple architectures that the mutasome can adopt, such as PCNA tool belts and Rev1 bridges; the intrinsically disordered regions that tether the polymerases to PCNA and to one another; and the kinetic selection model in which the most appropriate polymerase is chosen via a competition among the multiple polymerases within the mutasome.
Collapse
Affiliation(s)
- Kyle T Powers
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States
| | - M Todd Washington
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States.
| |
Collapse
|
25
|
Powers KT, Elcock AH, Washington MT. The C-terminal region of translesion synthesis DNA polymerase η is partially unstructured and has high conformational flexibility. Nucleic Acids Res 2018; 46:2107-2120. [PMID: 29385534 PMCID: PMC5829636 DOI: 10.1093/nar/gky031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic DNA polymerase η catalyzes translesion synthesis of thymine dimers and 8-oxoguanines. It is comprised of a polymerase domain and a C-terminal region, both of which are required for its biological function. The C-terminal region mediates interactions with proliferating cell nuclear antigen (PCNA) and other translesion synthesis proteins such as Rev1. This region contains a ubiquitin-binding/zinc-binding (UBZ) motif and a PCNA-interacting protein (PIP) motif. Currently little structural information is available for this region of polymerase η. Using a combination of approaches-including genetic complementation assays, X-ray crystallography, Langevin dynamics simulations, and small-angle X-ray scattering-we show that the C-terminal region is partially unstructured and has high conformational flexibility. This implies that the C-terminal region acts as a flexible tether linking the polymerase domain to PCNA thereby increasing its local concentration. Such tethering would facilitate the sampling of translesion synthesis polymerases to ensure that the most appropriate one is selected to bypass the lesion.
Collapse
Affiliation(s)
- Kyle T Powers
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, USA
| | - Adrian H Elcock
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, USA
| | - M Todd Washington
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, USA
| |
Collapse
|
26
|
Rad5 coordinates translesion DNA synthesis pathway by recognizing specific DNA structures in saccharomyces cerevisiae. Curr Genet 2018; 64:889-899. [PMID: 29396601 DOI: 10.1007/s00294-018-0807-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/11/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
DNA repair is essential to maintain genome integrity. In addition to various DNA repair pathways dealing with specific types of DNA lesions, DNA damage tolerance (DDT) promotes the bypass of DNA replication blocks encountered by the replication fork to prevent cell death. Budding yeast Rad5 plays an essential role in the DDT pathway and its structure indicates that Rad5 recognizes damaged DNA or stalled replication forks, suggesting that Rad5 plays an important role in the DDT pathway choice. It has been reported that Rad5 forms subnuclear foci in the presence of methyl methanesulfonate (MMS) during the S phase. By analyzing the formation of Rad5 foci after MMS treatment, we showed that some specific DNA structures rather than mono-ubiquitination of proliferating cell nuclear antigen are required for the recruitment of Rad5 to the damaged site. Moreover, inactivation of the base excision repair (BER) pathway greatly decreased the Rad5 focus formation, suggesting that Rad5 recognizes specific DNA structures generated by BER. We also identified a negative role of overexpressed translesion synthesis polymerase Polη in the formation of Rad5 foci. Based on these data, we propose a modified DDT pathway model in which Rad5 plays a role in activating the DDT pathway.
Collapse
|
27
|
Gali VK, Balint E, Serbyn N, Frittmann O, Stutz F, Unk I. Translesion synthesis DNA polymerase η exhibits a specific RNA extension activity and a transcription-associated function. Sci Rep 2017; 7:13055. [PMID: 29026143 PMCID: PMC5638924 DOI: 10.1038/s41598-017-12915-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/01/2017] [Indexed: 11/09/2022] Open
Abstract
Polymerase eta (Polη) is a low fidelity translesion synthesis DNA polymerase that rescues damage-stalled replication by inserting deoxy-ribonucleotides opposite DNA damage sites resulting in error-free or mutagenic damage bypass. In this study we identify a new specific RNA extension activity of Polη of Saccharomyces cerevisiae. We show that Polη is able to extend RNA primers in the presence of ribonucleotides (rNTPs), and that these reactions are an order of magnitude more efficient than the misinsertion of rNTPs into DNA. Moreover, during RNA extension Polη performs error-free bypass of the 8-oxoguanine and thymine dimer DNA lesions, though with a 103 and 102-fold lower efficiency, respectively, than it synthesizes opposite undamaged nucleotides. Furthermore, in vivo experiments demonstrate that the transcription of several genes is affected by the lack of Polη, and that Polη is enriched over actively transcribed regions. Moreover, inactivation of its polymerase activity causes similar transcription inhibition as the absence of Polη. In summary, these results suggest that the new RNA synthetic activity of Polη can have in vivo relevance.
Collapse
Affiliation(s)
- Vamsi K Gali
- The Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Hungary.,Institute of Medical Sciences Foresterhill, University of Aberdeen, Aberdeen, United Kingdom
| | - Eva Balint
- The Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Nataliia Serbyn
- Department of Cell Biology, iGE3, University of Geneva, 1211, Geneva, Switzerland
| | - Orsolya Frittmann
- The Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Francoise Stutz
- Department of Cell Biology, iGE3, University of Geneva, 1211, Geneva, Switzerland
| | - Ildiko Unk
- The Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Hungary.
| |
Collapse
|
28
|
Chen Y, Sugiyama T. NGS-based analysis of base-substitution signatures created by yeast DNA polymerase eta and zeta on undamaged and abasic DNA templates in vitro. DNA Repair (Amst) 2017; 59:34-43. [PMID: 28946034 DOI: 10.1016/j.dnarep.2017.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/31/2017] [Indexed: 12/21/2022]
Abstract
Translesion synthesis (TLS) is the mechanism in which DNA polymerases (TLS polymerases) bypass unrepaired template damage with high error rates. DNA polymerase η and ζ (Polη and Polζ) are major TLS polymerases that are conserved from yeast to humans. In this study, we quantified frequencies of base-substitutions by yeast Polη and Polζ on undamaged and abasic templates in vitro. For accurate quantification, we used a next generation sequencing (NGS)-based method where DNA products were directly analyzed by parallel sequencing. On undamaged templates, Polη and Polζ showed distinct base-substitution profiles, and the substitution frequencies were differently influenced by the template sequence. The base-substitution frequencies were influenced mainly by the adjacent bases both upstream and downstream of the substitution sites. Thus we present the base-substitution signatures of these polymerases in a three-base format. On templates containing abasic sites, Polη created deletions at the lesion in more than 50% of the TLS products, but the formation of the deletions was suppressed by the presence of Polζ. Polζ and Polη cooperatively facilitated the TLS reaction over an abasic site in vitro, suggesting that these two polymerases can cooperate in efficient and high fidelity TLS.
Collapse
Affiliation(s)
- Yizhang Chen
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA
| | - Tomohiko Sugiyama
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
29
|
Abstract
Life as we know it, simply would not exist without DNA replication. All living organisms utilize a complex machinery to duplicate their genomes and the central role in this machinery belongs to replicative DNA polymerases, enzymes that are specifically designed to copy DNA. "Hassle-free" DNA duplication exists only in an ideal world, while in real life, it is constantly threatened by a myriad of diverse challenges. Among the most pressing obstacles that replicative polymerases often cannot overcome by themselves are lesions that distort the structure of DNA. Despite elaborate systems that cells utilize to cleanse their genomes of damaged DNA, repair is often incomplete. The persistence of DNA lesions obstructing the cellular replicases can have deleterious consequences. One of the mechanisms allowing cells to complete replication is "Translesion DNA Synthesis (TLS)". TLS is intrinsically error-prone, but apparently, the potential downside of increased mutagenesis is a healthier outcome for the cell than incomplete replication. Although most of the currently identified eukaryotic DNA polymerases have been implicated in TLS, the best characterized are those belonging to the "Y-family" of DNA polymerases (pols η, ι, κ and Rev1), which are thought to play major roles in the TLS of persisting DNA lesions in coordination with the B-family polymerase, pol ζ. In this review, we summarize the unique features of these DNA polymerases by mainly focusing on their biochemical and structural characteristics, as well as potential protein-protein interactions with other critical factors affecting TLS regulation.
Collapse
Affiliation(s)
- Alexandra Vaisman
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Roger Woodgate
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
30
|
van Bostelen I, Tijsterman M. Combined loss of three DNA damage response pathways renders C. elegans intolerant to light. DNA Repair (Amst) 2017; 54:55-62. [PMID: 28472716 DOI: 10.1016/j.dnarep.2017.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/17/2017] [Accepted: 04/10/2017] [Indexed: 12/20/2022]
Abstract
Infliction of DNA damage initiates a complex cellular reaction - the DNA damage response - that involves both signaling and DNA repair networks with many redundancies and parallel pathways. Here, we reveal the three strategies that the simple multicellular eukaryote, C. elegans, uses to deal with DNA damage induced by light. Separately inactivating repair or replicative bypass of photo-lesions results in cellular hypersensitivity towards UV-light, but impeding repair of replication associated DNA breaks does not. Yet, we observe an unprecedented synergistic relationship when these pathways are inactivated in combination. C. elegans mutants that lack nucleotide excision repair (NER), translesion synthesis (TLS) and alternative end joining (altEJ) grow undisturbed in the dark, but become sterile when grown in light. Even exposure to very low levels of normal daylight impedes animal growth. We show that NER and TLS operate to suppress the formation of lethal DNA breaks that require polymerase theta-mediated end joining (TMEJ) for their repair. Our data testifies to the enormous genotoxicity of light and to the demand of multiple layers of protection against an environmental threat that is so common.
Collapse
Affiliation(s)
- Ivo van Bostelen
- Department of Human Genetics, Leiden University Medical Centre, 2300 RC, Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Centre, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
31
|
Repair of Oxidative DNA Damage in Saccharomyces cerevisiae. DNA Repair (Amst) 2017; 51:2-13. [PMID: 28189416 DOI: 10.1016/j.dnarep.2016.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/22/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022]
Abstract
Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae.
Collapse
|
32
|
Zhao L, Washington MT. Translesion Synthesis: Insights into the Selection and Switching of DNA Polymerases. Genes (Basel) 2017; 8:genes8010024. [PMID: 28075396 PMCID: PMC5295019 DOI: 10.3390/genes8010024] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 01/05/2023] Open
Abstract
DNA replication is constantly challenged by DNA lesions, noncanonical DNA structures and difficult-to-replicate DNA sequences. Two major strategies to rescue a stalled replication fork and to ensure continuous DNA synthesis are: (1) template switching and recombination-dependent DNA synthesis; and (2) translesion synthesis (TLS) using specialized DNA polymerases to perform nucleotide incorporation opposite DNA lesions. The former pathway is mainly error-free, and the latter is error-prone and a major source of mutagenesis. An accepted model of translesion synthesis involves DNA polymerase switching steps between a replicative DNA polymerase and one or more TLS DNA polymerases. The mechanisms that govern the selection and exchange of specialized DNA polymerases for a given DNA lesion are not well understood. In this review, recent studies concerning the mechanisms of selection and switching of DNA polymerases in eukaryotic systems are summarized.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - M Todd Washington
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
33
|
Kinetic analysis of bypass of O(6)- methylguanine by the catalytic core of yeast DNA polymerase eta. Arch Biochem Biophys 2016; 596:99-107. [PMID: 26976707 DOI: 10.1016/j.abb.2016.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/18/2022]
Abstract
Alkylating agents can form O(6)-methylguansine (O(6)-MeG). To study the intrinsic kinetic behaviors of bypassing O(6)-MeG, we used the catalytic core of yeast DNA polymerase η (Pol ηcore, residues 1-513), instead of the full-length Pol η, to study their elementary steps, eliminating the effects of the C-terminal C2H2 motif on dNTP incorporation. The misincorporation frequencies were 10(-4) for G and 0.055-0.446 for O(6)-MeG. O(6)-MeG does not affect the extension efficiency. Pol ηcore showed no fast burst phase for any incorporation opposite G or O(6)-MeG. Primer extension was greatly blocked by O(6)-MeG and about 67% dTTP, 31% dCTP and 2% dATP were incorporated opposite O(6)-MeG. This study provides further understanding of the mutation mechanism of alkylated lesion for yeast DNA polymerase η.
Collapse
|
34
|
Donigan KA, Cerritelli SM, McDonald JP, Vaisman A, Crouch RJ, Woodgate R. Unlocking the steric gate of DNA polymerase η leads to increased genomic instability in Saccharomyces cerevisiae. DNA Repair (Amst) 2015; 35:1-12. [PMID: 26340535 PMCID: PMC4651834 DOI: 10.1016/j.dnarep.2015.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/18/2015] [Accepted: 07/21/2015] [Indexed: 11/26/2022]
Abstract
DNA polymerase η (pol η) is best characterized for its ability to perform accurate and efficient translesion DNA synthesis (TLS) through cyclobutane pyrimidine dimers (CPDs). To ensure accurate bypass the polymerase is not only required to select the correct base, but also discriminate between NTPs and dNTPs. Most DNA polymerases have a conserved "steric gate" residue which functions to prevent incorporation of NMPs during DNA synthesis. Here, we demonstrate that the Phe35 residue of Saccharomyces cerevisiae pol η functions as a steric gate to limit the use of ribonucleotides during polymerization both in vitro and in vivo. Unlike the related pol ι enzyme, wild-type pol η does not readily incorporate NMPs in vitro. In contrast, a pol η F35A mutant incorporates NMPs on both damaged and undamaged DNA in vitro with a high degree of base selectivity. An S.cerevisiae strain expressing pol η F35A (rad30-F35A) that is also deficient for nucleotide excision repair (rad1Δ) and the TLS polymerase, pol ζ (rev3Δ), is extremely sensitive to UV-light. The sensitivity is due, in part, to RNase H2 activity, as an isogenic rnh201Δ strain is roughly 50-fold more UV-resistant than its RNH201(+) counterpart. Interestingly the rad1Δ rev3Δ rad30-F35A rnh201Δ strain exhibits a significant increase in the extent of spontaneous mutagenesis with a spectrum dominated by 1bp deletions at runs of template Ts. We hypothesize that the increased mutagenesis is due to rA incorporation at these sites and that the short poly rA tract is subsequently repaired in an error-prone manner by a novel repair pathway that is specifically targeted to polyribonucleotide tracks. These data indicate that under certain conditions, pol η can compete with the cell's replicases and gain access to undamaged genomic DNA. Such observations are consistent with a role for pol η in replicating common fragile sites (CFS) in human cells.
Collapse
Affiliation(s)
- Katherine A Donigan
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Susana M Cerritelli
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Robert J Crouch
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| |
Collapse
|
35
|
Plachta M, Halas A, McIntyre J, Sledziewska-Gojska E. The steady-state level and stability of TLS polymerase eta are cell cycle dependent in the yeast S. cerevisiae. DNA Repair (Amst) 2015; 29:147-53. [PMID: 25766643 DOI: 10.1016/j.dnarep.2015.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 11/29/2022]
Abstract
Polymerase eta (Pol eta) is a ubiquitous translesion DNA polymerase that is capable of bypassing UV-induced pyrimidine dimers in an error-free manner. However, this specialized polymerase is error prone when synthesizing through an undamaged DNA template. In Saccharomyces cerevisiae, both depletion and overproduction of Pol eta result in mutator phenotypes. Therefore, regulation of the cellular abundance of this enzyme is of particular interest. However, based on the investigation of variously tagged forms of Pol eta, mutually contradictory conclusions have been reached regarding the stability of this polymerase in yeast. Here, we optimized a protocol for the detection of untagged yeast Pol eta and established that the half-life of the native enzyme is 80 ± 14 min in asynchronously growing cultures. Experiments with synchronized cells indicated that the cellular abundance of this translesion polymerase changes throughout the cell cycle. Accordingly, we show that the stability of Pol eta, but not its mRNA level, is cell cycle stage dependent. The half-life of the polymerase is more than fourfold shorter in G1-arrested cells than in those at G2/M. Our results, in concert with previous data for Rev1, indicate that cell cycle regulation is a general property of Y family TLS polymerases in S. cerevisiae.
Collapse
Affiliation(s)
- Michal Plachta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Agnieszka Halas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Ewa Sledziewska-Gojska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
36
|
Makarova AV, Burgers PM. Eukaryotic DNA polymerase ζ. DNA Repair (Amst) 2015; 29:47-55. [PMID: 25737057 DOI: 10.1016/j.dnarep.2015.02.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/16/2022]
Abstract
This review focuses on eukaryotic DNA polymerase ζ (Pol ζ), the enzyme responsible for the bulk of mutagenesis in eukaryotic cells in response to DNA damage. Pol ζ is also responsible for a large portion of mutagenesis during normal cell growth, in response to spontaneous damage or to certain DNA structures and other blocks that stall DNA replication forks. Novel insights in mutagenesis have been derived from recent advances in the elucidation of the subunit structure of Pol ζ. The lagging strand DNA polymerase δ shares the small Pol31 and Pol32 subunits with the Rev3-Rev7 core assembly giving a four subunit Pol ζ complex that is the active form in mutagenesis. Furthermore, Pol ζ forms essential interactions with the mutasome assembly factor Rev1 and with proliferating cell nuclear antigen (PCNA). These interactions are modulated by posttranslational modifications such as ubiquitination and phosphorylation that enhance translesion synthesis (TLS) and mutagenesis.
Collapse
Affiliation(s)
- Alena V Makarova
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Institute of Molecular Genetics, Russian Academy of Sciences (IMG RAS), Kurchatov Sq. 2, Moscow 123182, Russia
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
37
|
Shared genetic pathways contribute to the tolerance of endogenous and low-dose exogenous DNA damage in yeast. Genetics 2014; 198:519-30. [PMID: 25060101 DOI: 10.1534/genetics.114.168617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA damage that escapes repair and blocks replicative DNA polymerases is tolerated by bypass mechanisms that fall into two general categories: error-free template switching and error-prone translesion synthesis. Prior studies of DNA damage responses in Saccharomyces cerevisiae have demonstrated that repair mechanisms are critical for survival when a single, high dose of DNA damage is delivered, while bypass/tolerance mechanisms are more important for survival when the damage level is low and continuous (acute and chronic damage, respectively). In the current study, epistatic interactions between DNA-damage tolerance genes were examined and compared when haploid yeast cells were exposed to either chronic ultraviolet light or chronic methyl methanesulfonate. Results demonstrate that genes assigned to error-free and error-prone bypass pathways similarly promote survival in the presence of each type of chronic damage. In addition to using defined sources of chronic damage, rates of spontaneous mutations generated by the Pol ζ translesion synthesis DNA polymerase (complex insertions in a frameshift-reversion assay) were used to infer epistatic interactions between the same genes. Similar epistatic interactions were observed in analyses of spontaneous mutation rates, suggesting that chronic DNA-damage responses accurately reflect those used to tolerate spontaneous lesions. These results have important implications when considering what constitutes a safe and acceptable level of exogenous DNA damage.
Collapse
|
38
|
Wallace HA, Merkle JA, Yu MC, Berg TG, Lee E, Bosco G, Lee LA. TRIP/NOPO E3 ubiquitin ligase promotes ubiquitylation of DNA polymerase η. Development 2014; 141:1332-41. [PMID: 24553286 DOI: 10.1242/dev.101196] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously identified a Drosophila maternal effect-lethal mutant named 'no poles' (nopo). Embryos from nopo females undergo mitotic arrest with barrel-shaped, acentrosomal spindles during the rapid cycles of syncytial embryogenesis because of activation of a Chk2-mediated DNA checkpoint. NOPO is the Drosophila homolog of human TNF receptor associated factor (TRAF)-interacting protein (TRIP), which has been implicated in TNF signaling. NOPO and TRIP contain RING domains closely resembling those of known E3 ubiquitin ligases. We herein sought to elucidate the mechanism by which TRIP/NOPO promotes genomic stability by performing a yeast two-hybrid screen to identify potential substrates/interactors. We identified members of the Y-family of DNA polymerases that facilitate replicative bypass of damaged DNA (translesion synthesis) as TRIP interactors. We show that TRIP and NOPO co-immunoprecipitate with human and Drosophila Polη, respectively, from cultured cells. We generated a null mutation in Drosophila Polη (dPolη) and found that dPolη-derived embryos have increased sensitivity to ultraviolet irradiation and exhibit nopo-like mitotic spindle defects. dPolη and nopo interact genetically in that overexpression of dPolη in hypomorphic nopo-derived embryos suppresses nopo phenotypes. We observed enhanced ubiquitylation of Polη by TRIP and NOPO E3 ligases in human cells and Drosophila embryos, respectively, and show that TRIP promotes hPolη localization to nuclear foci in human cells. We present a model in which TRIP/NOPO ubiquitylates Polη to positively regulate its activity in translesion synthesis.
Collapse
Affiliation(s)
- Heather A Wallace
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, U-4225 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8240, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Pryor JM, Dieckman LM, Boehm EM, Washington MT. Eukaryotic Y-Family Polymerases: A Biochemical and Structural Perspective. NUCLEIC ACID POLYMERASES 2014. [DOI: 10.1007/978-3-642-39796-7_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Abstract
DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage.
Collapse
|
41
|
Chan K, Resnick MA, Gordenin DA. The choice of nucleotide inserted opposite abasic sites formed within chromosomal DNA reveals the polymerase activities participating in translesion DNA synthesis. DNA Repair (Amst) 2013; 12:878-89. [PMID: 23988736 DOI: 10.1016/j.dnarep.2013.07.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/19/2013] [Accepted: 07/20/2013] [Indexed: 10/26/2022]
Abstract
Abasic sites in genomic DNA can be a significant source of mutagenesis in biological systems, including human cancers. Such mutagenesis requires translesion DNA synthesis (TLS) bypass of the abasic site by specialized DNA polymerases. The abasic site bypass specificity of TLS proteins had been studied by multiple means in vivo and in vitro, although the generality of the conclusions reached have been uncertain. Here, we introduce a set of yeast reporter strains for investigating the in vivo specificity of abasic site bypass at numerous random positions within chromosomal DNA. When shifted to 37°C, these strains underwent telomere uncapping and resection that exposed reporter genes within a long 3' ssDNA overhang. Human APOBEC3G cytosine deaminase was expressed to create uracils in ssDNA, which were excised by uracil-DNA N-glycosylase. During repair synthesis, error-prone TLS bypassed the resulting abasic sites. Because of APOBEC3G's strict motif specificity and the restriction of abasic site formation to only one DNA strand, this system provides complete information about the location of abasic sites that led to mutations. We recapitulated previous findings on the roles of REV1 and REV3. Further, we found that sequence context can strongly influence the relative frequency of A or C insertion. We also found that deletion of Pol32, a non-essential common subunit of Pols δ and ζ, resulted in residual low-frequency C insertion dependent on Rev1 catalysis. We summarize our results in a detailed model of the interplay between TLS components leading to error-prone bypass of abasic sites. Our results underscore the utility of this system for studying TLS bypass of many types of lesions within genomic DNA.
Collapse
Affiliation(s)
- Kin Chan
- Chromosome Stability Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
42
|
Homologous recombination rescues ssDNA gaps generated by nucleotide excision repair and reduced translesion DNA synthesis in yeast G2 cells. Proc Natl Acad Sci U S A 2013; 110:E2895-904. [PMID: 23858457 DOI: 10.1073/pnas.1301676110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Repair of DNA bulky lesions often involves multiple repair pathways such as nucleotide-excision repair, translesion DNA synthesis (TLS), and homologous recombination (HR). Although there is considerable information about individual pathways, little is known about the complex interactions or extent to which damage in single strands, such as the damage generated by UV, can result in double-strand breaks (DSBs) and/or generate HR. We investigated the consequences of UV-induced lesions in nonreplicating G2 cells of budding yeast. In contrast to WT cells, there was a dramatic increase in ssDNA gaps for cells deficient in the TLS polymerases η (Rad30) and ζ (Rev3). Surprisingly, repair in TLS-deficient G2 cells required HR repair genes RAD51 and RAD52, directly revealing a redundancy of TLS and HR functions in repair of ssDNAs. Using a physical assay that detects recombination between circular sister chromatids within a few hours after UV, we show an approximate three-fold increase in recombinants in the TLS mutants over that in WT cells. The recombination, which required RAD51 and RAD52, does not appear to be caused by DSBs, because a dose of ionizing radiation producing 20 times more DSBs was much less efficient than UV in producing recombinants. Thus, in addition to revealing TLS and HR functional redundancy, we establish that UV-induced recombination in TLS mutants is not attributable to DSBs. These findings suggest that ssDNA that might originate during the repair of closely opposed lesions or of ssDNA-containing lesions or from uncoupled replication may drive recombination directly in various species, including humans.
Collapse
|
43
|
Qin Z, Lu M, Xu X, Hanna M, Shiomi N, Xiao W. DNA-damage tolerance mediated by PCNA*Ub fusions in human cells is dependent on Rev1 but not Polη. Nucleic Acids Res 2013; 41:7356-69. [PMID: 23761444 PMCID: PMC3753651 DOI: 10.1093/nar/gkt542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In response to replication-blocking lesions, proliferating cell nuclear antigen (PCNA) can be sequentially ubiquitinated at the K164 residue, leading to two modes of DNA-damage tolerance, namely, translesion DNA synthesis (TLS) and error-free lesion bypass. Although the majority of reported data support a model whereby monoubiquitinated PCNA enhances its affinity for TLS polymerases and hence recruits them to the damage sites, this model has also been challenged by several observations. In this study, we expressed the PCNA-164R and ubiquitin (UB) fusion genes in an inducible manner in an attempt to mimic PCNA monoubiquitination in cultured human cells. It was found that expression of both N- and C-terminal PCNA•Ub fusions conferred significant tolerance to ultraviolet (UV)-induced DNA damage. Surprisingly, depletion of Polη, a TLS polymerase dedicated to bypassing UV-induced pyrimidine dimers, did not alter tolerance conferred by PCNA•Ub. In contrast, depletion of Rev1, another TLS polymerase serving as a scaffold for the assembly of the TLS complex, completely abolished PCNA•Ub-mediated damage tolerance. Similar genetic interactions were confirmed when UV-induced monoubiquitination of endogenous PCNA is abolished by RAD18 deletion. Hence, PCNA•Ub fusions bypass the requirement for PCNA monoubiquitination, and UV damage tolerance conferred by these fusions is dependent on Rev1 but independent of Polη.
Collapse
Affiliation(s)
- Zhoushuai Qin
- College of Life Sciences, Capital Normal University, Beijing 100048, China, Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon S7N 5E5, Canada and Project for Environmental Dynamics and Radiation Effects, Fukushima Project Headquarters, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Ulrich HD, Takahashi DT. Readers of PCNA modifications. Chromosoma 2013; 122:259-74. [PMID: 23580141 PMCID: PMC3714560 DOI: 10.1007/s00412-013-0410-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 01/29/2023]
Abstract
The eukaryotic sliding clamp, proliferating cell nuclear antigen (PCNA), acts as a central coordinator of DNA transactions by providing a multivalent interaction surface for factors involved in DNA replication, repair, chromatin dynamics and cell cycle regulation. Posttranslational modifications (PTMs), such as mono- and polyubiquitylation, sumoylation, phosphorylation and acetylation, further expand the repertoire of PCNA’s binding partners. These modifications affect PCNA’s activity in the bypass of lesions during DNA replication, the regulation of alternative damage processing pathways such as homologous recombination and DNA interstrand cross-link repair, or impact on the stability of PCNA itself. In this review, we summarise our current knowledge about how the PTMs are “read” by downstream effector proteins that mediate the appropriate action. Given the variety of interaction partners responding to PCNA’s modified forms, the ensemble of PCNA modifications serves as an instructive model for the study of biological signalling through PTMs in general.
Collapse
Affiliation(s)
- Helle D Ulrich
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms EN6 3LD, UK.
| | | |
Collapse
|
45
|
Makarova AV, Kulbachinskiy AV. Structure of human DNA polymerase iota and the mechanism of DNA synthesis. BIOCHEMISTRY (MOSCOW) 2012; 77:547-61. [PMID: 22817454 DOI: 10.1134/s0006297912060016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cellular DNA polymerases belong to several families and carry out different functions. Highly accurate replicative DNA polymerases play the major role in cell genome replication. A number of new specialized DNA polymerases were discovered at the turn of XX-XXI centuries and have been intensively studied during the last decade. Due to the special structure of the active site, these enzymes efficiently perform synthesis on damaged DNA but are characterized by low fidelity. Human DNA polymerase iota (Pol ι) belongs to the Y-family of specialized DNA polymerases and is one of the most error-prone enzymes involved in DNA synthesis. In contrast to other DNA polymerases, Pol ι is able to use noncanonical Hoogsteen interactions for nucleotide base pairing. This allows it to incorporate nucleotides opposite various lesions in the DNA template that impair Watson-Crick interactions. Based on the data of X-ray structural analysis of Pol ι in complexes with various DNA templates and dNTP substrates, we consider the structural peculiarities of the Pol ι active site and discuss possible mechanisms that ensure the unique behavior of the enzyme on damaged and undamaged DNA.
Collapse
Affiliation(s)
- A V Makarova
- Institute of Molecular Genetics, Russian Academy of Sciences, pl. Kurchatova 2, 123182 Moscow, Russia.
| | | |
Collapse
|
46
|
Sharma S, Helchowski CM, Canman CE. The roles of DNA polymerase ζ and the Y family DNA polymerases in promoting or preventing genome instability. Mutat Res 2012. [PMID: 23195997 DOI: 10.1016/j.mrfmmm.2012.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer cells display numerous abnormal characteristics which are initiated and maintained by elevated mutation rates and genome instability. Chromosomal DNA is continuously surveyed for the presence of damage or blocked replication forks by the DNA Damage Response (DDR) network. The DDR is complex and includes activation of cell cycle checkpoints, DNA repair, gene transcription, and induction of apoptosis. Duplicating a damaged genome is associated with elevated risks to fork collapse and genome instability. Therefore, the DNA damage tolerance (DDT) pathway is also employed to enhance survival and involves the recruitment of translesion DNA synthesis (TLS) polymerases to sites of replication fork blockade or single stranded DNA gaps left after the completion of replication in order to restore DNA to its double stranded form before mitosis. TLS polymerases are specialized for inserting nucleotides opposite DNA adducts, abasic sites, or DNA crosslinks. By definition, the DDT pathway is not involved in the actual repair of damaged DNA, but provides a mechanism to tolerate DNA lesions during replication thereby increasing survival and lessening the chance for genome instability. However this may be associated with increased mutagenesis. In this review, we will describe the specialized functions of Y family polymerases (Rev1, Polη, Polι and Polκ) and DNA polymerase ζ in lesion bypass, mutagenesis, and prevention of genome instability, the latter due to newly appreciated roles in DNA repair. The recently described role of the Fanconi anemia pathway in regulating Rev1 and Polζ-dependent TLS is also discussed in terms of their involvement in TLS, interstrand crosslink repair, and homologous recombination.
Collapse
Affiliation(s)
- Shilpy Sharma
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Corey M Helchowski
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Christine E Canman
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
47
|
Adaptation of the black yeast Wangiella dermatitidis to ionizing radiation: molecular and cellular mechanisms. PLoS One 2012; 7:e48674. [PMID: 23139812 PMCID: PMC3490873 DOI: 10.1371/journal.pone.0048674] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/27/2012] [Indexed: 11/25/2022] Open
Abstract
Observations of enhanced growth of melanized fungi under low-dose ionizing radiation in the laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing radiation. However, the cellular and molecular mechanism of fungal responses to such radiation remains poorly understood. Using the black yeast Wangiella dermatitidis as a model, we confirmed that ionizing radiation enhanced cell growth by increasing cell division and cell size. Using RNA-seq technology, we compared the transcriptomic profiles of the wild type and the melanin-deficient wdpks1 mutant under irradiation and non-irradiation conditions. It was found that more than 3000 genes were differentially expressed when these two strains were constantly exposed to a low dose of ionizing radiation and that half were regulated at least two fold in either direction. Functional analysis indicated that many genes for amino acid and carbohydrate metabolism and cell cycle progression were down-regulated and that a number of antioxidant genes and genes affecting membrane fluidity were up-regulated in both irradiated strains. However, the expression of ribosomal biogenesis genes was significantly up-regulated in the irradiated wild-type strain but not in the irradiated wdpks1 mutant, implying that melanin might help to contribute radiation energy for protein translation. Furthermore, we demonstrated that long-term exposure to low doses of radiation significantly increased survivability of both the wild-type and the wdpks1 mutant, which was correlated with reduced levels of reactive oxygen species (ROS), increased production of carotenoid and induced expression of genes encoding translesion DNA synthesis. Our results represent the first functional genomic study of how melanized fungal cells respond to low dose ionizing radiation and provide clues for the identification of biological processes, molecular pathways and individual genes regulated by radiation.
Collapse
|
48
|
A broad requirement for TLS polymerases η and κ, and interacting sumoylation and nuclear pore proteins, in lesion bypass during C. elegans embryogenesis. PLoS Genet 2012; 8:e1002800. [PMID: 22761594 PMCID: PMC3386174 DOI: 10.1371/journal.pgen.1002800] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/16/2012] [Indexed: 12/04/2022] Open
Abstract
Translesion synthesis (TLS) polymerases are specialized DNA polymerases capable of inserting nucleotides opposite DNA lesions that escape removal by dedicated DNA repair pathways. TLS polymerases allow cells to complete DNA replication in the presence of damage, thereby preventing checkpoint activation, genome instability, and cell death. Here, we characterize functional knockouts for polh-1 and polk-1, encoding the Caenorhabditis elegans homologs of the Y-family TLS polymerases η and κ. POLH-1 acts at many different DNA lesions as it protects cells against a wide range of DNA damaging agents, including UV, γ-irradiation, cisplatin, and methyl methane sulphonate (MMS). POLK-1 acts specifically but redundantly with POLH-1 in protection against methylation damage. Importantly, both polymerases play a prominent role early in embryonic development to allow fast replication of damaged genomes. Contrary to observations in mammalian cells, we show that neither POLH-1 nor POLK-1 is required for homologous recombination (HR) repair of DNA double-strand breaks. A genome-wide RNAi screen for genes that protect the C. elegans genome against MMS–induced DNA damage identified novel components in DNA damage bypass in the early embryo. Our data suggest SUMO-mediated regulation of both POLH-1 and POLK-1, and point towards a previously unrecognized role of the nuclear pore in regulating TLS. Unrepaired DNA damage on the template strand poses a problem for the progression of the replication fork. Specialized translesion synthesis (TLS) polymerases are capable of bypassing DNA lesions without repairing them. Here, we use the nematode C. elegans, to show that there is modulation of the choice between repair and bypass during development. We show that during gametogenesis and later development repair dominates, while there is a short phase during embryonic development where resistance to damage depends heavily on TLS polymerases. The rapid divisions at this stage do not allow for delay in which repair processes can occur. Furthermore, we identify new factors that may play a role in the regulation of TLS during early embryogenesis.
Collapse
|
49
|
Haruta N, Kubota Y, Hishida T. Chronic low-dose ultraviolet-induced mutagenesis in nucleotide excision repair-deficient cells. Nucleic Acids Res 2012; 40:8406-15. [PMID: 22743272 PMCID: PMC3458537 DOI: 10.1093/nar/gks580] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
UV radiation induces two major types of DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine–pyrimidine photoproducts, which are both primarily repaired by nucleotide excision repair (NER). Here, we investigated how chronic low-dose UV (CLUV)-induced mutagenesis occurs in rad14Δ NER-deficient yeast cells, which lack the yeast orthologue of human xeroderma pigmentosum A (XPA). The results show that rad14Δ cells have a marked increase in CLUV-induced mutations, most of which are C→T transitions in the template strand for transcription. Unexpectedly, many of the CLUV-induced C→T mutations in rad14Δ cells are dependent on translesion synthesis (TLS) DNA polymerase η, encoded by RAD30, despite its previously established role in error-free TLS. Furthermore, we demonstrate that deamination of cytosine-containing CPDs contributes to CLUV-induced mutagenesis. Taken together, these results uncover a novel role for Polη in the induction of C→T transitions through deamination of cytosine-containing CPDs in CLUV-exposed NER deficient cells. More generally, our data suggest that Polη can act as both an error-free and a mutagenic DNA polymerase, depending on whether the NER pathway is available to efficiently repair damaged templates.
Collapse
Affiliation(s)
- Nami Haruta
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | |
Collapse
|
50
|
Requirement of Rad18 protein for replication through DNA lesions in mouse and human cells. Proc Natl Acad Sci U S A 2012; 109:7799-804. [PMID: 22547805 DOI: 10.1073/pnas.1204105109] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In yeast, the Rad6-Rad18 ubiquitin conjugating enzyme plays a critical role in promoting replication although DNA lesions by translesion synthesis (TLS). In striking contrast, a number of studies have indicated that TLS can occur in the absence of Rad18 in human and other mammalian cells, and also in chicken cells. In this study, we determine the role of Rad18 in TLS that occurs during replication in human and mouse cells, and show that in the absence of Rad18, replication of duplex plasmids containing a cis-syn TT dimer or a (6-4) TT photoproduct is severely inhibited in human cells and that mutagenesis resulting from TLS opposite cyclobutane pyrimidine dimers and (6-4) photoproducts formed at the TT, TC, and CC dipyrimidine sites in the chromosomal cII gene in UV-irradiated mouse cells is abolished. From these and other observations with Rad18, we conclude that the Rad6-Rad18 enzyme plays an essential role in promoting replication through DNA lesions by TLS in mammalian cells. In contrast, the dispensability of Rad18 for TLS in chicken DT40 cells would suggest that the role of the Rad6-Rad18 enzyme complex has diverged considerably between chicken and mammals, raising the possibility that TLS mechanisms differ among them.
Collapse
|