1
|
Cross KP, DeMarini DM. Analysis of chemical structures and mutations detected by Salmonella TA98 and TA100. Mutat Res 2023; 827:111838. [PMID: 37804576 PMCID: PMC10841823 DOI: 10.1016/j.mrfmmm.2023.111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
As part of an analysis performed under the auspices of the International Workshop on Genotoxicity Testing (IWGT) in 2017, we and others showed that Salmonella frameshift strain TA98 and base-substitution strain TA100 together + /- S9 detected 93% of the mutagens detected by all the bacterial strains recommended by OECD TG471 (Williams et al., Mutation Res. 848:503081, 2019). We have extended this analysis by identifying the numbers and chemical classes of chemicals detected by these two strains either alone or in combination, including the role of S9. Using the Leadscope 2021 SAR Genetox database containing > 21,900 compounds, our dataset containing 7170 compounds tested in both TA98 and TA100. Together, TA98 and TA100 detected 94% (3733/3981) of the mutagens detected using all the TG471-recommended bacterial strains; 39% were mutagenic in one or both strains. TA100 detected 77% of all of these mutagens and TA98 70%. Considering the overlap of detection by both strains, 12% of these mutagens were detected only by TA98 and 19% only by TA100. In the absence of S9, sensitivity dropped by 31% for TA98 and 29% for TA100. Overall, 32% of the mutagens required S9 for detection by either strain; 9% were detected only without S9. Using the 2021 Leadscope Genetox Expert Alerts, TA100 detected 18 mutagenic alerting chemical classes with better sensitivity than TA98, whereas TA98 detected 10 classes better than TA100. TA100 detected more chemical classes than did TA98, especially hydrazines, azides, various di- and tri-halides, various nitrosamines, epoxides, aziridines, difurans, and half-mustards; TA98 especially detected polycyclic primary amines, various aromatic amines, polycyclic aromatic hydrocarbons, triazines, and dibenzo-furans. Model compounds with these structures induce primarily G to T mutations in TA100 and/or a hotspot GC deletion in TA98. Both TA98 and TA100 + /- S9 are needed for adequate mutagenicity screening with the Salmonella (Ames) assay.
Collapse
Affiliation(s)
| | - David M DeMarini
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
2
|
Adaptive divergence in experimental populations of Pseudomonas fluorescens. V. Insight into the niche specialist fuzzy spreader compels revision of the model Pseudomonas radiation. Genetics 2013; 195:1319-35. [PMID: 24077305 DOI: 10.1534/genetics.113.154948] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas fluorescens is a model for the study of adaptive radiation. When propagated in a spatially structured environment, the bacterium rapidly diversifies into a range of niche specialist genotypes. Here we present a genetic dissection and phenotypic characterization of the fuzzy spreader (FS) morphotype-a type that arises repeatedly during the course of the P. fluorescens radiation and appears to colonize the bottom of static broth microcosms. The causal mutation is located within gene fuzY (pflu0478)-the fourth gene of the five-gene fuzVWXYZ operon. fuzY encodes a β-glycosyltransferase that is predicted to modify lipopolysaccharide (LPS) O antigens. The effect of the mutation is to cause cell flocculation. Analysis of 92 independent FS genotypes showed each to have arisen as the result of a loss-of-function mutation in fuzY, although different mutations have subtly different phenotypic and fitness effects. Mutations within fuzY were previously shown to suppress the phenotype of mat-forming wrinkly spreader (WS) types. This prompted a reinvestigation of FS niche preference. Time-lapse photography showed that FS colonizes the meniscus of broth microcosms, forming cellular rafts that, being too flimsy to form a mat, collapse to the vial bottom and then repeatably reform only to collapse. This led to a reassessment of the ecology of the P. fluorescens radiation. Finally, we show that ecological interactions between the three dominant emergent types (smooth, WS, and FS), combined with the interdependence of FS and WS on fuzY, can, at least in part, underpin an evolutionary arms race with bacteriophage SBW25Φ2, to which mutation in fuzY confers resistance.
Collapse
|
3
|
Di Giorgio C, Benchabane Y, Boyer G, Piccerelle P, De Méo M. Evaluation of the mutagenic/clastogenic potential of 3,6-di-substituted acridines targeted for anticancer chemotherapy. Food Chem Toxicol 2011; 49:2773-9. [DOI: 10.1016/j.fct.2011.07.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/13/2011] [Accepted: 07/16/2011] [Indexed: 10/18/2022]
|
4
|
DeMarini DM, Hanley NM, Warren SH, Adams LD, King LC. Association between mutation spectra and stable and unstable DNA adduct profiles in Salmonella for benzo[a]pyrene and dibenzo[a,l]pyrene. Mutat Res 2011; 714:17-25. [PMID: 21689667 DOI: 10.1016/j.mrfmmm.2011.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 05/30/2023]
Abstract
Benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) are two polycyclic aromatic hydrocarbons (PAHs) that exhibit distinctly different mutagenicity and carcinogenicity profiles. Although some studies show that these PAHs produce unstable DNA adducts, conflicting data and arguments have been presented regarding the relative roles of these unstable adducts versus stable adducts, as well as oxidative damage, in the mutagenesis and tumor-mutation spectra of these PAHs. However, no study has determined the mutation spectra along with the stable and unstable DNA adducts in the same system with both PAHs. Thus, we determined the mutagenic potencies and mutation spectra of BP and DBP in strains TA98, TA100 and TA104 of Salmonella, and we also measured the levels of abasic sites (aldehydic-site assay) and characterized the stable DNA adducts ((32)P-postlabeling/HPLC) induced by these PAHs in TA104. Our results for the mutation spectra and site specificity of stable adducts were consistent with those from other systems, showing that DBP was more mutagenic than BP in TA98 and TA100. The mutation spectra of DBP and BP were significantly different in TA98 and TA104, with 24% of the mutations induced by BP in TA98 being complex frameshifts, whereas DBP produced hardly any of these mutations. In TA104, BP produced primarily GC to TA transversions, whereas DBP produced primarily AT to TA transversions. The majority (96%) of stable adducts induced by BP were at guanine, whereas the majority (80%) induced by DBP were at adenine. Although BP induced abasic sites, DBP did not. Most importantly, the proportion of mutations induced by DBP at adenine and guanine paralleled the proportion of stable DNA adducts induced by DBP at adenine and guanine; however, this was not the case for BP. Our results leave open a possible role for unstable DNA adducts in the mutational specificity of BP but not for DBP.
Collapse
Affiliation(s)
- David M DeMarini
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | |
Collapse
|
5
|
Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 2010; 11:196-207. [PMID: 20177395 DOI: 10.1038/nrm2851] [Citation(s) in RCA: 701] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitotic homologous recombination promotes genome stability through the precise repair of DNA double-strand breaks and other lesions that are encountered during normal cellular metabolism and from exogenous insults. As a result, homologous recombination repair is essential during proliferative stages in development and during somatic cell renewal in adults to protect against cell death and mutagenic outcomes from DNA damage. Mutations in mammalian genes encoding homologous recombination proteins, including BRCA1, BRCA2 and PALB2, are associated with developmental abnormalities and tumorigenesis. Recent advances have provided a clearer understanding of the connections between these proteins and of the key steps of homologous recombination and DNA strand exchange.
Collapse
|
6
|
DNA-damaging activity and mutagenicity of 16 newly synthesized thiazolo[5,4-a]acridine derivatives with high photo-inducible cytotoxicity. Mutat Res 2007; 650:104-14. [PMID: 18160333 DOI: 10.1016/j.mrgentox.2007.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 05/22/2007] [Accepted: 10/07/2007] [Indexed: 11/22/2022]
Abstract
The discovery of the potent anticancer properties of natural alkaloids in the pyrido-thiazolo-acridine series has suggested that thiazolo-acridine derivatives could be of great interest. In a continuous attempt to develop DNA-binding molecules and DNA photo-cleavers, 16 new thiazolo[5,4-a]acridines were synthesized and studied for their photo-inducible DNA-intercalative, cytotoxic and mutagenic activities, by use of the DNA methyl-green bioassay, the Alamar Blue viability assay and the Salmonella mutagenicity test using strains TA97a and TA98 with and without metabolic activation and photo-activation. Without photo-activation, one compound showed a DNA-intercalative activity in the DNA major groove while three compounds displayed intercalating properties after photo-activation. In the dark, four molecules possessed cytotoxic activities against a THP1 acute monocytic leukemia cell line while 15 derivatives displayed photo-inducible cytotoxic activity against this cell line. All compounds were mutagenic in strain TA97a with metabolic activation (+S9mix) and 15 molecules were mutagenic in strain TA98 without activation (-S9mix). Study of the quantitative structure-activity relationships (QSAR) from the Salmonella mutagenicity data revealed that several descriptors could describe cytotoxic and mutagenic activities after photo-activation. From the results of the mutagenicity test, four compounds with elevated mutagenic activities were selected for additional experiments. Their capacities to induce single-strand breaks (SSB) and chromosome-damaging effects were monitored by the comet and the micronucleus assays in normal human keratinocytes. Comparison of the minimal genotoxic concentrations showed that two compounds possessed higher capacities to induce SSB after photo-activation. In the micronucleus assay, three molecules were able to induce high numbers of micronuclei following photo-activation. Overall, the results of this study confirm that acridines are predominantly genotoxic via a DNA-intercalating mechanism in the dark, while DNA-adducts were probably induced following photo-activation.
Collapse
|
7
|
Hardin A, Villalta CF, Doan M, Jabri M, Chockalingham V, White SJ, Fowler RG. A molecular characterization of spontaneous frameshift mutagenesis within the trpA gene of Escherichia coli. DNA Repair (Amst) 2007; 6:177-89. [PMID: 17084112 PMCID: PMC1804121 DOI: 10.1016/j.dnarep.2006.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 09/05/2006] [Accepted: 09/25/2006] [Indexed: 10/24/2022]
Abstract
Spontaneous frameshift mutations are an important source of genetic variation in all species and cause a large number of genetic disorders in humans. To enhance our understanding of the molecular mechanisms of frameshift mutagenesis, 583 spontaneous Trp+ revertants of two trpA frameshift alleles in Escherichia coli were isolated and DNA sequenced. In order to measure the contribution of methyl-directed mismatch repair to frameshift production, mutational spectra were constructed for both mismatch repair-proficient and repair-defective strains. The molecular origins of practically all of the frameshifts analyzed could be explained by one of six simple models based upon misalignment of the template or nascent DNA strands with or without misincorporation of primer nucleotides during DNA replication. Most frameshifts occurred within mononucleotide runs as has been shown often in previous studies but the location of the 76 frameshift sites was usually outside of runs. Mismatch repair generally was most effective in preventing the occurrence of frameshifts within runs but there was much variation from site to site. Most frameshift sites outside of runs appear to be refractory to mismatch repair although the small number of occurrences at most of these sites make firm conclusions impossible. There was a dense pattern of reversion sites within the trpA DNA region where reversion events could occur, suggesting that, in general, most DNA sequences are capable of undergoing spontaneous mutational events during replication that can lead to small deletions and insertions. Many of these errors are likely to occur at low frequencies and be tolerated as events too costly to prevent or repair. These studies also revealed an unpredicted flexibility in the primary amino acid sequence of the trpA product, the alpha subunit of tryptophan synthase.
Collapse
Affiliation(s)
- Aaron Hardin
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | | | - Michael Doan
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Mouna Jabri
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | | | - Steven J. White
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Robert G. Fowler
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| |
Collapse
|
8
|
Kim J, Suh H, Kim S, Kim K, Ahn C, Yim J. Identification and characteristics of the structural gene for the Drosophila eye colour mutant sepia, encoding PDA synthase, a member of the omega class glutathione S-transferases. Biochem J 2006; 398:451-60. [PMID: 16712527 PMCID: PMC1559464 DOI: 10.1042/bj20060424] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The eye colour mutant sepia (se1) is defective in PDA {6-acetyl-2-amino-3,7,8,9-tetrahydro-4H-pyrimido[4,5-b]-[1,4]diazepin-4-one or pyrimidodiazepine} synthase involved in the conversion of 6-PTP (2-amino-4-oxo-6-pyruvoyl-5,6,7,8-tetrahydropteridine; also known as 6-pyruvoyltetrahydropterin) into PDA, a key intermediate in drosopterin biosynthesis. However, the identity of the gene encoding this enzyme, as well as its molecular properties, have not yet been established. Here, we identify and characterize the gene encoding PDA synthase and show that it is the structural gene for sepia. Based on previously reported information [Wiederrecht, Paton and Brown (1984) J. Biol. Chem. 259, 2195-2200; Wiederrecht and Brown (1984) J. Biol. Chem. 259, 14121-14127; Andres (1945) Drosoph. Inf. Serv. 19, 45; Ingham, Pinchin, Howard and Ish-Horowicz (1985) Genetics 111, 463-486; Howard, Ingham and Rushlow (1988) Genes Dev. 2, 1037-1046], we isolated five candidate genes predicted to encode GSTs (glutathione S-transferases) from the presumed sepia locus (region 66D5 on chromosome 3L). All cloned and expressed candidates exhibited relatively high thiol transferase and dehydroascorbate reductase activities and low activity towards 1-chloro-2,4-dinitrobenzene, characteristic of Omega class GSTs, whereas only CG6781 catalysed the synthesis of PDA in vitro. The molecular mass of recombinant CG6781 was estimated to be 28 kDa by SDS/PAGE and 56 kDa by gel filtration, indicating that it is a homodimer under native conditions. Sequencing of the genomic region spanning CG6781 revealed that the se1 allele has a frameshift mutation from 'AAGAA' to 'GTG' at nt 190-194, and that this generates a premature stop codon. Expression of the CG6781 open reading frame in an se1 background rescued the eye colour defect as well as PDA synthase activity and drosopterins content. The extent of rescue was dependent on the dosage of transgenic CG6781. In conclusion, we have discovered a new catalytic activity for an Omega class GST and that CG6781 is the structural gene for sepia which encodes PDA synthase.
Collapse
Affiliation(s)
- Jaekwang Kim
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hyunsuk Suh
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Songhee Kim
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Kiyoung Kim
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Chiyoung Ahn
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jeongbin Yim
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
- To whom correspondence should be addressed (email )
| |
Collapse
|
9
|
Chen CC, Motegi A, Hasegawa Y, Myung K, Kolodner R, D'Andrea A. Genetic analysis of ionizing radiation-induced mutagenesis in Saccharomyces cerevisiae reveals TransLesion Synthesis (TLS) independent of PCNA K164 SUMOylation and ubiquitination. DNA Repair (Amst) 2006; 5:1475-88. [PMID: 16990054 DOI: 10.1016/j.dnarep.2006.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Revised: 07/24/2006] [Accepted: 07/27/2006] [Indexed: 11/18/2022]
Abstract
Ionizing radiation-induced mutagenesis (IR-IM) underlies a basis for radiation associated carcinogenesis as well as resistance to radiation therapy. This process was examined in Saccharomyces cerevisiae using an array of isogenic DNA repair deficient mutants. Mutations inactivating homologous recombination (rad51, 52, 54) or nucleotide excision repair (rad1, rad10, rad4) caused elevated IR-IM whereas inactivation of TransLesion Synthesis (TLS: rad6) caused severely defective IR-IM. Of the mutations inactivating TLS polymerases, rev3 and rev1 caused equally severe defects in IR-IM whereas rad30 did not significantly affect the process. The effects of the rev3, rev1, and rad6 mutations on IR-IM were epistatic, suggesting the requirement of both polymerase zeta and Rev1p in IR-IM related TLS. Although PCNA K164 SUMOylation/ubiquitination is a proposed prerequisite for TLS, the IR-IM defect of a rev3 or a rad6 mutant was worse than and epistatic to the pol30K164R mutant, a mutant in which the PCNA had been mutated to abolish such modifications. These results suggested that IR-IM related TLS occurs in the absence of PCNA K164 modification. Further analysis of a mutant simultaneously defective in SUMOylation and mono-ubiquitination (rad18 siz1) revealed that these modifications redundantly affected TLS as well as NHEJ. A genetic model based on these observations is proposed.
Collapse
Affiliation(s)
- Clark C Chen
- Department of Neurosurgery, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
10
|
Mortelmans K. Isolation of plasmid pKM101 in the Stocker laboratory. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2006; 612:151-164. [PMID: 16716644 DOI: 10.1016/j.mrrev.2006.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
pKM101 is a mutagenesis-enhancing resistance transfer plasmid (R plasmid) that was introduced into several tester strains used in the Salmonella/microsome mutation assay (Ames test). Plasmid pKM101 has contributed substantially to the effectiveness of the Ames assay, which is used on a world-wide basis to detect mutagens and is required by many government regulatory agencies for approval to market new drugs and other chemical agents. Widely used since 1975, the Ames test is still regarded as one of the most sensitive genetic toxicity assays and a useful short-term test for predicting carcinogenicity in animals. Plasmid pKM101, which is a deletion derivative of plasmid R46 (also referred to as R-Brighton after its origin of isolation in Brighton, England), has also been used to elucidate molecular mechanisms of mutagenesis. It was isolated in the laboratory of Professor Bruce A.D. Stocker at Stanford University as part of my doctoral research with 20 R plasmids. Professor Stocker's phenomenal insight into the genetics of Salmonella typhimurium and plasmid behavior was a major factor that led to the isolation of pKM101. This paper includes a tribute to Bruce Stocker, together with a summary of my research with mutagenesis-enhancing R plasmids and a brief discussion of the molecular mechanisms involved in pKM101 plasmid-mediated bacterial mutagenesis.
Collapse
Affiliation(s)
- Kristien Mortelmans
- SRI International, Biosciences Division, Microbiology Program, 333 Ravenswood Avenue, Menlo Park, CA 94025-3493, United States.
| |
Collapse
|
11
|
Hoffmann GR, Yin CC, Terry CE, Ferguson LR, Denny WA. Frameshift mutations induced by four isomeric nitroacridines and their des-nitro counterpart in the lacZ reversion assay in Escherichia coli. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2006; 47:82-94. [PMID: 16180206 DOI: 10.1002/em.20171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Acridines are well-known as compounds that intercalate noncovalently between DNA base pairs and induce +/-1 frameshift mutations at sites of monotonous repeats of a single base. Reactive derivatives of acridines, including acridine mustards and nitroacridines, form covalent adducts in DNA and exhibit mutagenic properties different from the simple intercalators. We compared the frameshift mutagenicity of the cancer chemotherapy drug nitracrine (1-nitro-9-(3'-dimethylaminopropylamino)-acridine), its des-nitro counterpart 9-(3'-dimethylaminopropylamino)-acridine (DAPA), and its 2-, 3-, and 4-nitro isomers (2-, 3-, and 4-nitro-DAPA) in the lacZ reversion assay in Escherichia coli. DAPA is a simple intercalator, much like the widely studied 9-aminoacridine. It most strongly induced +/-1 frameshift mutations in runs of guanine residues and more weakly induced -1 frameshifts in a run of adenine residues. A nitro group in the 1, 3, or 4 position of DAPA reduced the yield of +/-1 frameshift mutations. DAPA weakly induced -2 frameshifts in an alternating CG sequence. In contrast, nitracrine and its 3-nitro isomer resembled the 3-nitroacridine Entozon in effectively inducing -2 frameshift mutations. The 2- and 4-nitro isomers were less effective than the 1- and 3-nitro compounds in -2 frameshift mutagenesis. The results are interpreted with respect to intercalation, steric interactions, effects of base strength on DNA binding, enzymatic processing, and a slipped mispairing model of frameshift mutagenesis.
Collapse
Affiliation(s)
- George R Hoffmann
- Department of Biology, College of the Holy Cross, Worcester, Massachusetts 01610-2395, USA.
| | | | | | | | | |
Collapse
|
12
|
Dutra BE, Lovett ST. Cis and trans-acting effects on a mutational hotspot involving a replication template switch. J Mol Biol 2005; 356:300-11. [PMID: 16376936 DOI: 10.1016/j.jmb.2005.11.071] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 11/14/2005] [Accepted: 11/22/2005] [Indexed: 11/18/2022]
Abstract
A natural mutational hotspot in the thyA gene of Escherichia coli accounts for over half of the mutations that inactivate this gene, which can be selected by resistance to the antibiotic trimethoprim. This T to A transversion, at base 131 of the coding sequence, occurs within a 17 bp quasi-palindromic sequence. To clarify the mechanism of mutagenesis, we examine here cis and trans-acting factors affecting thyA131 mutational hotspot activity at its natural location on the E.coli chromosome. Confirming a template-switch mechanism for mutagenesis, an alteration that strengthens base-pairing between the inverted repeat DNA sequences surrounding the hotspot stimulated mutagenesis and, conversely, mutations that weakened pairing reduced hotspot activity. In addition, consistent with the idea that the hotspot mutation is templated from DNA synthesis from mispaired strands of the inverted repeats, co-mutation of multiple sites within the quasipalindrome was observed as predicted from the DNA sequence of the corresponding repeat. Surprisingly, inversion of the thyA operon on the chromosome did not abolish thyA131 hotspot mutagenesis, indicating that mutagenesis at this site occurs during both leading and lagging-strand synthesis. Loss of the SOS-induced DNA polymerases PolII, PolIV, and PolV, caused a marked increase in the hotspot mutation rate, indicating a heretofore unknown and redundant antimutagenic effect of these repair polymerases. Hotspot mutagenesis did not require the PriA replication restart factor and hence must not require fork reassembly after the template-switch reaction. Deficiency in the two major 3' single-strand DNA exonucleases, ExoI and ExoVII, stimulated hotspot mutagenesis 30-fold and extended the mutagenic tract, indicating that these exonucleases normally abort a large fraction of premutagenic events. The high frequency of quasipalindrome-associated mutations suggests that template-switching occurs readily during chromosomal replication.
Collapse
Affiliation(s)
- Bethany E Dutra
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | | |
Collapse
|
13
|
Hashem VI, Sinden RR. Duplications between direct repeats stabilized by DNA secondary structure occur preferentially in the leading strand during DNA replication. Mutat Res 2005; 570:215-26. [PMID: 15708580 DOI: 10.1016/j.mrfmmm.2004.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 11/01/2004] [Accepted: 11/19/2004] [Indexed: 01/01/2023]
Abstract
To ascertain a leading or lagging strand preference for duplication mutations, several short DNA sequences, i.e. mutation inserts, were designed that should demonstrate an asymmetric propensity for duplication mutations in the two complementary DNA strands during replication. The design of the mutation insert involved a 7-bp quasi inverted repeat that forms a remarkably stable hairpin in one DNA strand, but not the other. The inverted repeat is asymmetrically placed between flanking direct repeats. This sequence was cloned into a modified chloramphenicol acetyltransferase (CAT) gene containing a -1 frameshift mutation. Duplication of the mutation insert restores the reading frame of the CAT gene resulting in a chloramphenicol resistant phenotype. The mutation insert showed greater than a 200-fold preference for duplication mutations during leading strand, compared with lagging strand, replication. This result suggests that misalignment stabilized by DNA secondary structure, leading to duplication between direct repeats, occurred preferentially during leading strand synthesis.
Collapse
Affiliation(s)
- Vera I Hashem
- Laboratory of DNA Structure and Mutagenesis, Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Sciences Center, 2121 West Holcombe Blvd., Houston, TX 77030-3303, USA
| | | |
Collapse
|
14
|
Rogozin IB, Pavlov YI. Theoretical analysis of mutation hotspots and their DNA sequence context specificity. Mutat Res 2003; 544:65-85. [PMID: 12888108 DOI: 10.1016/s1383-5742(03)00032-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mutation frequencies vary significantly along nucleotide sequences such that mutations often concentrate at certain positions called hotspots. Mutation hotspots in DNA reflect intrinsic properties of the mutation process, such as sequence specificity, that manifests itself at the level of interaction between mutagens, DNA, and the action of the repair and replication machineries. The hotspots might also reflect structural and functional features of the respective DNA sequences. When mutations in a gene are identified using a particular experimental system, resulting hotspots could reflect the properties of the gene product and the mutant selection scheme. Analysis of the nucleotide sequence context of hotspots can provide information on the molecular mechanisms of mutagenesis. However, the determinants of mutation frequency and specificity are complex, and there are many analytical methods for their study. Here we review computational approaches for analyzing mutation spectra (distribution of mutations along the target genes) that include many mutable (detectable) positions. The following methods are reviewed: derivation of a consensus sequence, application of regression approaches to correlate nucleotide sequence features with mutation frequency, mutation hotspot prediction, analysis of oligonucleotide composition of regions containing mutations, pairwise comparison of mutation spectra, analysis of multiple spectra, and analysis of "context-free" characteristics. The advantages and pitfalls of these methods are discussed and illustrated by examples from the literature. The most reliable analyses were obtained when several methods were combined and information from theoretical analysis and experimental observations was considered simultaneously. Simple, robust approaches should be used with small samples of mutations, whereas combinations of simple and complex approaches may be required for large samples. We discuss several well-documented studies where analysis of mutation spectra has substantially contributed to the current understanding of molecular mechanisms of mutagenesis. The nucleotide sequence context of mutational hotspots is a fingerprint of interactions between DNA and DNA repair, replication, and modification enzymes, and the analysis of hotspot context provides evidence of such interactions.
Collapse
Affiliation(s)
- Igor B Rogozin
- Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|
15
|
Granville CA, Hanley NM, Mumford JL, DeMarini DM. Mutation spectra of smoky coal combustion emissions in Salmonella reflect the TP53 and KRAS mutations in lung tumors from smoky coal-exposed individuals. Mutat Res 2003; 525:77-83. [PMID: 12650907 DOI: 10.1016/s0027-5107(02)00314-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nonsmoking women in Xuan Wei County, Yunnan Province, China who use smoky coal for cooking and heating in poorly ventilated homes have the highest lung cancer mortality rate in China, and their lung cancer is linked epidemiologically to their use of smoky coal. The emissions contain 81% organic matter, of which 43% is polycyclic aromatic hydrocarbons (PAHs). Exposure assessment and molecular analysis of the lung tumors from nonsmoking women who use smoky coal strongly indicate that PAHs in the emissions are a primary cause of the elevated lung cancer in this population. Here we have determined the mutation spectra of an extract of smoky coal emissions in Salmonella TA98 and TA100; the extract was not mutagenic in TA104. The extract was 8.7 x more mutagenic in TA100 with S9 than without (8.7 rev/microg versus 1.0 rev/microg) and was >3 x more mutagenic in TA100 than in TA98--consistent with a prominent role for PAHs in the mutagenicity of the extract because PAHs are generally more mutagenic in the base-substitution strain TA100 than in the frameshift strain TA98. The extract induced only a hotspot mutation in TA98; another combustion emission, cigarette smoke condensate (CSC), also induces this single class of mutation. In TA100, the mutation spectra of the extract were not significantly different in the presence or absence of S9 and were primarily (78-86%) GC --> TA transversions. This mutation is induced to a similar extent by CSC (78%) and the PAH benzo[a]pyrene (B[a]P) (77%). The frequency of GC --> TA transversions induced in Salmonella by the extract (78-86%) is similar to the frequency of this mutation in the TP53 (76%) and KRAS (86%) genes of lung tumors from nonsmoking women exposed to smoky coal emissions. The mutation spectra of the extract reflect the presence of PAHs in the mixture and support a role for PAHs in the induction of the mutations and tumors due to exposure to smoky coal emissions.
Collapse
Affiliation(s)
- Courtney A Granville
- Department of Environmental Science and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
16
|
Hoffmann GR, Calciano MA, Lawless BM, Mahoney KM. Frameshift mutations induced by three classes of acridines in the lacZ reversion assay in Escherichia coli: potency of responses and relationship to slipped mispairing models. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2003; 42:111-121. [PMID: 12929124 DOI: 10.1002/em.10182] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The frameshift mutagenicity of 9-aminoacridine (9AA) was compared with that of quinacrine, the acridine mustards ICR-191 and quinacrine mustard (QM), and the nitroacridine Entozon in the lacZ reversion assay in Escherichia coli. As intercalating agents, 9AA and quinacrine cause mutations through noncovalent associations with DNA. Mustards and nitroacridines form covalent adducts in DNA and give rise to different spectra of mutations. Quinacrine and 9AA most effectively induced -1 frameshifts in a run of guanine residues, with 9AA being the more potent mutagen. They also induced +G frameshifts. The acridine mustard ICR-191 was a stronger mutagen than 9AA, owing largely to its potent induction of +G frameshifts. QM induced +G frameshifts more strongly than did its nonreactive counterpart quinacrine. The nitroacridine Entozon differed from the other acridines in being a potent inducer of -2 frameshifts, but it was less effective in inducing +/-1 frameshifts. Quinacrine, although a simple intercalator, induced all five kinds of frameshift mutations detected in the assay, as did the acridine mustards. Although +A and -A frameshifts were induced, adenine runs were less susceptible to acridine mutagenesis than guanine runs. The patterns of frameshift mutagenicity in the lacZ assay are similar to those in an assay based on the reversion of mutations in the tetracycline-resistance gene of the plasmid pBR322. The similarity suggests that the responses reflect the inherent bacterial mutagenicity of the compounds in the local sequence context and are not highly dependent on the broader sequence context. The results are interpreted with respect to slipped mispairing models of frameshift mutagenesis.
Collapse
Affiliation(s)
- George R Hoffmann
- Department of Biology, College of the Holy Cross, Worcester, Massachusetts 01610, USA
| | | | | | | |
Collapse
|
17
|
Harfe BD, Jinks-Robertson S. DNA polymerase zeta introduces multiple mutations when bypassing spontaneous DNA damage in Saccharomyces cerevisiae. Mol Cell 2000; 6:1491-9. [PMID: 11163221 DOI: 10.1016/s1097-2765(00)00145-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Spontaneous DNA damage can be dealt with by multiple repair/bypass pathways that have overlapping specificities. We have used a frameshift reversion assay to examine spontaneous mutations that accumulate in yeast strains defective for the high-fidelity nucleotide excision repair or recombination pathways. In contrast to the simple frameshift mutations that occur in wild-type strains, the reversion events in mutant strains are often complex in nature, with the selected frameshift mutation being accompanied by one or more base substitutions. Genetic analyses demonstrate that the complex events are dependent on the Pol zeta translesion polymerase, thus implicating the DNA damage bypass activity of low-fidelity translesion polymerases in hypermutation phenomena.
Collapse
Affiliation(s)
- B D Harfe
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
18
|
Viswanathan M, Lacirignola JJ, Hurley RL, Lovett ST. A novel mutational hotspot in a natural quasipalindrome in Escherichia coli. J Mol Biol 2000; 302:553-64. [PMID: 10986118 DOI: 10.1006/jmbi.2000.4088] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have found that most spontaneous mutations in the thyA gene of Escherichia coli selected for resistance to trimethoprim result from a TA to AT transversion at a single site within an imperfect inverted repeat or quasipalindrome sequence. This natural quasipalindrome within the coding region of thyA contains an extraordinarily potent hotspot for mutation. Our analysis provides evidence that these mutations are templated by nearby sequences by replication within a hairpin structure. Although quasipalindrome-associated mutations have been observed in many organisms, including humans, the cellular avoidance mechanisms for these unusual mutational events have remained unexplored. We find that the mutational hotspot in thyA is dramatically stimulated by inactivation of exonucleases I and VII, which degrade single-strand DNA with a common 3'-5' polarity. We propose that these exonucleases abort the replicative misalignment events that initiate hairpin-templated mutagenesis by degrading displaced nascent DNA strands. Mismatch repair-defective strains also showed increased mutability at the hotspot, consistent with the notion that these mutations arise during chromosomal lagging-strand replication and are often subsequently removed by methyl-directed mismatch repair. The absence of the thyA quasipalindrome sequence from other related bacterial genera suggests that this sequence represents a "selfish" DNA element whose existence itself is driven by this unusual hairpin-templating mechanism.
Collapse
MESH Headings
- Anti-Infective Agents, Urinary/pharmacology
- Base Pair Mismatch/genetics
- Base Sequence
- DNA Mutational Analysis
- DNA Repair/genetics
- DNA Replication/genetics
- DNA, Bacterial/biosynthesis
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Single-Stranded/biosynthesis
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- Escherichia coli/drug effects
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Exodeoxyribonucleases/genetics
- Exodeoxyribonucleases/metabolism
- Genes, Bacterial/genetics
- Kinetics
- Molecular Sequence Data
- Mutagenesis/genetics
- Mutation/genetics
- Nucleic Acid Conformation
- Polymerase Chain Reaction
- Polymorphism, Restriction Fragment Length
- Repetitive Sequences, Nucleic Acid/genetics
- Templates, Genetic
- Trimethoprim/pharmacology
- Trimethoprim Resistance/genetics
Collapse
Affiliation(s)
- M Viswanathan
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA, 02454-9110, USA
| | | | | | | |
Collapse
|
19
|
DeMarini DM, Landi S, Ohe T, Shaughnessy DT, Franzén R, Richard AM. Mutation spectra in Salmonella of analogues of MX: implications of chemical structure for mutational mechanisms. Mutat Res 2000; 453:51-65. [PMID: 11006412 DOI: 10.1016/s0027-5107(00)00084-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We determined the mutation spectra in Salmonella of four chlorinated butenoic acid analogues (BA-1 through BA-4) of the drinking water mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) and compared the results with those generated previously by us for MX and a related compound, MCF. We then considered relationships between the properties of mutagenic potency and mutational specificity for these six chlorinated butenoic acid analogues. In TA98, the three most potent mutagens, BA-3, BA-4, MX, and the organic extract, all induced large percentages of complex frameshifts (33-67%), which distinguish these agents from any other class of compound studied previously. In TA100, which has only GC sites for mutation recovery, >71% of the mutations induced by all of the agents were GC-->TA transversions. The availability of both GC and TA sites for mutation in TA104 resulted in greater distinctions in mutational specificity than in TA100. MX targeted GC sites almost exclusively (98%); the structurally similar BA-4 and BA-2 produced mutations at similar frequencies at both GC and AT sites; and the structurally similar BA-3 and BA-1 induced most mutations at AT sites (69%). Thus, large variations in structural properties influencing relative mutagenic potency appeared to be distinct from the more localized similar structural features influencing mutagenic specificity in TA104. Among a set of physicochemical properties examined for the six butenoic acids, a significant correlation was found between pK(a) and mutagenic potency in TA100, even when the unionized fraction of the activity dose was considered. In addition, a correlation in CLOGP for BA-1 to BA-4 suggested a role for bioavailability in determining mutagenic potency. These results illustrate the potential value of structural analyses for exploring the relationship between chemical structure and mutational mechanisms. To our knowledge, this is the first study in which such analyses have been applied to structural analogues for which both mutagenic potency and mutation spectra date were available.
Collapse
Affiliation(s)
- D M DeMarini
- Environmental Carcinogenesis Division (MD-68), US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
This paper reviews the influence of DNA repair on spontaneous and mutagen-induced mutation spectra at the base-substitution (hisG46) and -1 frameshift (hisD3052) alleles present in strains of the Salmonella (Ames) mutagenicity assay. At the frameshift allele (mostly a CGCGCGCG target), DeltauvrB influences the frequency of spontaneous hotspot mutations (-CG), duplications, and deletions, and it also shifts the sites of deletions and duplications. Cells with pKM101+DeltauvrB spontaneously produce complex frameshifts (frameshifts with an adjacent base substitution). The spontaneous frequency of 1-base insertions or concerted (templated) mutations is unaffected by DNA repair, and neither mutation is inducible by mutagens. Glu-P-1, 1-nitropyrene (1NP), and 2-acetylaminofluorene (2AAF) induce only hotspot mutations and are unaffected by pKM101, whereas benzo(a)pyrene and 4-aminobiphenyl induce only hotspot in pKM101(-), and hotspot plus complex in pKM101(+). At the base-substitution allele (mostly a CC/GG target), the DeltauvrB allele increases spontaneous transitions in the absence of pKM101 and increases transversions in its presence. The frequency of suppressor mutations is decreased 4x by DeltauvrB, but increased 7. 5x by pKM101. Both repair factors cause a shift in the proportion of mutations to the second position of the CC/GG target. With UV light and gamma-rays, the DeltauvrB allele increases the proportion of transitions relative to transversions. pKM101 is required for mutagenesis by Glu-P-1 and 4-AB, and the types and positions of the substitutions are not altered by the addition of the DeltauvrB allele. Changes in DNA repair appear to cause more changes in spontaneous than in mutagen-induced mutation spectra at both alleles. There is a high correlation (r(2)=0.8) between a mutagen's ability to induce complex frameshifts and its relative base-substitution/frameshift mutagenic potency. A mutagen induces the same primary class of base substitution in TA100 (DeltauvrB, pKM101) as it does in Escherichia coli, mammalian cells, or rodents as well as in the p53 gene of human tumors associated with exposure to that mutagen. Thus, a mutagen induces the same primary class of base substitution in most organisms, reflecting the conserved nature of DNA replication and repair processes.
Collapse
Affiliation(s)
- D M DeMarini
- Environmental Carcinogenesis Division, US Environmental Protection Agency, MD-68, 86 Alexander Drive, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
21
|
Ohe T, Shaughnessy DT, Landi S, Terao Y, Sawanishi H, Nukaya H, Wakabayashi K, DeMarini DM. Mutation spectra in Salmonella TA98, TA100, and TA104 of two phenylbenzotriazole mutagens (PBTA-1 and PBTA-2) detected in the Nishitakase River in Kyoto, Japan. Mutat Res 1999; 429:189-98. [PMID: 10526204 DOI: 10.1016/s0027-5107(99)00121-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previous studies have identified two potent aromatic amine mutagens in the Nishitakase River, a tributary of the Yodo River, which serves as the main drinking water supply for the Osaka area in Japan. The two potent mutagens are 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]-5-am ino-7-bromo-4-chloro-2H-benzotriazole (PBTA-1) and 2-[2-(acetylamino)-4-[N-(2-cyanoethyl)ethylamino]-5-methoxyphenyl]-5- amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-2). PBTA-1 and PBTA-2 are presumed to be formed from azo dyes discharged in a reduced form from dye factories to sewage treatment plants where they become chlorinated and are then discharged into the river. PBTA-1 and PBTA-2 account for 21% and 17% of the mutagenic activity of the Nishitakase River, respectively. Here we determined the mutation spectra induced by these two mutagens in TA98, TA100, and TA104 at 30-35, 8-10, and 2x, respectively, above the background. In TA98, the PBTA compounds produced identical mutation spectra, with 100% of the revertants containing the hotspot 2-base deletion of CG within the (CG)(4) sequence. In TA100, 73% of the revertants were GC-->TA transversions, with most of the remaining being GC-->AT transitions; the spectra produced by the two compounds in TA100 were not significantly different (p=0.8). In TA104, as in TA100, the majority (83%-87%) of the revertants were GC-->TA transversions, with most of the remaining revertants (11%-13%) being AT-->TA transversions. Thus, 83%-87% of the mutations induced by the PBTA compounds in TA104 were at G/C sites. The mutation spectra produced by the two compounds in TA104 were not significantly different (p0.08). PBTA-1 and PBTA-2 are structurally similar and have similar mutagenic potencies and mutation spectra in the respective strains. The mutation spectra produced by the PBTA compounds (100% hotspot deletion in TA98 and primarily GC-->TA transversions in TA100 and TA104) are similar to those produced by other potent aromatic amines, which is the class of compounds from which the PBTA mutagens derive.
Collapse
Affiliation(s)
- T Ohe
- Department of Food and Nutrition Science, Kyoto Women's University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Waisfisz Q, Morgan NV, Savino M, de Winter JP, van Berkel CG, Hoatlin ME, Ianzano L, Gibson RA, Arwert F, Savoia A, Mathew CG, Pronk JC, Joenje H. Spontaneous functional correction of homozygous fanconi anaemia alleles reveals novel mechanistic basis for reverse mosaicism. Nat Genet 1999; 22:379-83. [PMID: 10431244 DOI: 10.1038/11956] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Somatic mosaicism due to reversion of a pathogenic allele to wild type has been described in several autosomal recessive disorders. The best known mechanism involves intragenic mitotic recombination or gene conversion in compound heterozygous patients, whereby one allele serves to restore the wild-type sequence in the other. Here we document for the first time functional correction of a pathogenic microdeletion, microinsertion and missense mutation in homozygous Fanconi anaemia (FA) patients resulting from compensatory secondary sequence alterations in cis. The frameshift mutation 1615delG in FANCA was compensated by two additional single base-pair deletions (1637delA and 1641delT); another FANCA frameshift mutation, 3559insG, was compensated by 3580insCGCTG; and a missense mutation in FANCC(1749T-->G, Leu496Arg) was altered by 1748C-->T, creating a cysteine codon. Although in all three cases the predicted proteins were different from wild type, their cDNAs complemented the characteristic hypersensitivity of FA cells to crosslinking agents, thus establishing a functional correction to wild type.
Collapse
Affiliation(s)
- Q Waisfisz
- Department of Clinical Genetics and Human Genetics, Free University, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ripley LS. Predictability of mutant sequences. Relationships between mutational mechanisms and mutant specificity. Ann N Y Acad Sci 1999; 870:159-72. [PMID: 10415481 DOI: 10.1111/j.1749-6632.1999.tb08877.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Spontaneous mutations are rare and are produced by multiple biochemical mechanisms. Nonetheless, studies of these mechanisms have revealed striking examples in which mutational specificity can be regularly related to a characteristic of the surrounding DNA sequence and/or the enzymes participating in mutagenesis. Thus, to an increasing degree the DNA sequences of mutants are "predictable." This report considers some examples of predictable sequence changes, evidence for their contribution to mutagenesis in populations, and how the predictability of mutant sequences may be useful to improve our interpretation of the molecular course of evolution from DNA sequence comparisons.
Collapse
Affiliation(s)
- L S Ripley
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark 07103, USA.
| |
Collapse
|