1
|
Haran R, Sathyaseelan C, Sumathi E, Sathiya Priya S, Gayathri M, Prathiksha R, Shandeep G, Jayakanthan M. Unveiling the molecular basis of hygienic behavior in Apis cerana indica through antennal proteomics. Biochimie 2025; 234:110-119. [PMID: 40339734 DOI: 10.1016/j.biochi.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/17/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Hygienic behavior in honey bees, particularly Apis cerana indica, is essential for the health of the colony as it helps reduce the impact of diseases and parasites. Despite its importance, the underlying molecular mechanisms remain inadequately characterized. Using a label-free quantitative proteomics method, this study investigates the antennal proteome associated with hygienic behavior. We employed Principal Component Analysis, Partial Least Squares Discriminant Analysis, and RT-qPCR to identify significant proteins that are involved in this behavior. Our analysis identified 408 proteins in colonies demonstrating high hygienic behavior and 419 proteins in those with low hygienic behavior, with 219 proteins showing significant differences in abundance. Notably, several odorant-binding proteins were upregulated in high-hygiene colonies. Furthermore, pathway enrichment analysis revealed that RNA transport and various signaling pathways are involved in this behavioral trait. The protein-protein interaction analysis illustrated substantial clustering among the odorant-binding proteins, underscoring their critical role in the mechanisms underlying hygienic behavior. This research enhances our understanding of the molecular basis of hygienic behavior in Apis cerana indica, positioning odorant-binding proteins as potential biomarkers for further studies that aim at improving colony health and resilience against pests and diseases.
Collapse
Affiliation(s)
- Ramkumar Haran
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India.
| | - Chakkarai Sathyaseelan
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Ettiappan Sumathi
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India.
| | - Sundaravadivel Sathiya Priya
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Muthusamy Gayathri
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Ravichandran Prathiksha
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Ganeshan Shandeep
- Department of Nematology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Mannu Jayakanthan
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| |
Collapse
|
2
|
Sun Y, Zhang X, Wu Z, Li W, Kim WJ. Genetic screening reveals cone cell-specific factors as common genetic targets modulating rival-induced prolonged mating in male Drosophila melanogaster. G3 (BETHESDA, MD.) 2025; 15:jkae255. [PMID: 39489492 PMCID: PMC11708226 DOI: 10.1093/g3journal/jkae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Male-male social interactions exert a substantial impact on the transcriptional regulation of genes associated with aggression and mating behavior in male Drosophila melanogaster. Throughout our comprehensive genetic screening of aggression-related genes, we identified that the majority of mutants for these genes are associated with rival-induced and visually oriented mating behavior, longer-mating duration (LMD). The majority of mutants with upregulated genes in single-housed males significantly altered LMD behavior but not copulation latency, suggesting a primary regulation of mating duration. Single-cell RNA-sequencing revealed that LMD-related genes are predominantly co-expressed with male-specific genes like dsx and Cyp6a20 in specific cell populations, especially in cone cells. Functional validation confirmed the roles of these genes in mediating LMD. Expression of LMD genes like Cyp6a20, Cyp4d21, and CrzR was enriched in cone cells, with disruptions in cone cell-specific expression of CrzR and Cyp4d21 leading to disrupted LMD. We also identified a novel gene, CG10026/Macewindu, that reversed LMD when overexpressed in cone cells. These findings underscore the critical role of cone cells as a pivotal site for the expression of genes involved in the regulation of LMD behavior. This study provides valuable insights into the intricate mechanisms underlying complex sexual behaviors in Drosophila.
Collapse
Affiliation(s)
- Yanying Sun
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Xiaoli Zhang
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Zekun Wu
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Wenjing Li
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Woo Jae Kim
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
- Medical and Health Research Institute, Zhengzhou Research Institute of HIT, Zhengzhou, Henan 450000, China
| |
Collapse
|
3
|
Pal Mahadevan V, Stieber-Rödiger R, Knaden M, Hansson BS. Phenolics as ecologically relevant cues for slime flux breeding Drosophila virilis. iScience 2024; 27:111180. [PMID: 39555411 PMCID: PMC11567934 DOI: 10.1016/j.isci.2024.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/18/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Drosophila species belonging to the virilis group offer a unique opportunity for studying olfactory adaptations necessary for survival within forest ecosystems as many of these species breed within decaying plant vascular tissues. However, the knowledge regarding olfactory preferences within their ecological niche is extremely limited. Here, we focus on Drosophila virilis and identify over 120 distinct odors from a natural slime flux source. We identify lignin as an attractant and a positive oviposition cue for D. virilis. Furthermore, lignin-derived guaiacol is highlighted as a robust attractant for D. virilis. We demonstrate that guaiacol is detected by the DvirOr49b receptor, which exhibits a narrow sensitivity to methylphenols, including o-cresol. D. virilis and D. ezoana, both belonging to the virilis group, exhibit strong attraction to o-cresol. In summary, our research offers a comprehensive analysis of the diverse array of odorants encountered by D. virilis within its natural habitat and their behavioral significance.
Collapse
Affiliation(s)
- Venkatesh Pal Mahadevan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Regina Stieber-Rödiger
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
4
|
Zhang R, Ng R, Wu ST, Su CY. Targeted deletion of olfactory receptors in D. melanogaster via CRISPR/Cas9-mediated LexA knock-in. J Neurogenet 2024; 38:122-133. [PMID: 39529229 PMCID: PMC11617259 DOI: 10.1080/01677063.2024.2426014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The study of olfaction in Drosophila melanogaster has greatly benefited from genetic reagents such as olfactory receptor mutant lines and GAL4 reporter lines. The CRISPR/Cas9 gene-editing system has been increasingly used to create null receptor mutants or replace coding regions with GAL4 reporters. To further expand this toolkit for manipulating fly olfactory receptor neurons (ORNs), we generated null alleles for 11 different olfactory receptors by using CRISPR/Cas9 to knock in LexA drivers, including multiple lines for receptors which have thus far lacked knock-in mutants. The targeted neuronal types represent a broad range of antennal ORNs from all four morphological sensillum classes. Additionally, we confirmed their loss-of-function phenotypes, assessed receptor haploinsufficiency, and evaluated the specificity of the LexA knock-in drivers. These receptor mutant lines have been deposited at the Bloomington Drosophila Stock Center for use by the broader scientific community.
Collapse
Affiliation(s)
- Runqi Zhang
- Department of Neurobiology, University of California San Diego, La Jolla, USA
| | - Renny Ng
- Department of Neurobiology, University of California San Diego, La Jolla, USA
| | - Shiuan-Tze Wu
- Department of Neurobiology, University of California San Diego, La Jolla, USA
| | - Chih-Ying Su
- Department of Neurobiology, University of California San Diego, La Jolla, USA
| |
Collapse
|
5
|
Park K, Choi H, Han IJ, Asefa WR, Jeong C, Yu S, Jeong H, Choi M, Yoon SE, Kim YJ, Choi MS, Kwon JY. Molecular and cellular organization of odorant binding protein genes in Drosophila. Heliyon 2024; 10:e29358. [PMID: 38694054 PMCID: PMC11058302 DOI: 10.1016/j.heliyon.2024.e29358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/03/2024] Open
Abstract
Chemosensation is important for the survival and reproduction of animals. The odorant binding proteins (OBPs) are thought to be involved in chemosensation together with chemosensory receptors. While OBPs were initially considered to deliver hydrophobic odorants to olfactory receptors in the aqueous lymph solution, recent studies suggest more complex roles in various organs. Here, we use GAL4 transgenes to systematically analyze the expression patterns of all 52 members of the Obp gene family and 3 related chemosensory protein genes in adult Drosophila, focusing on chemosensory organs such as the antenna, maxillary palp, pharynx, and labellum, and other organs such as the brain, ventral nerve cord, leg, wing, and intestine. The OBPs were observed to express in diverse organs and in multiple cell types, suggesting that these proteins can indeed carry out diverse functional roles. Also, we constructed 10 labellar-expressing Obp mutants, and obtained behavioral evidence that these OBPs may be involved in bitter sensing. The resources we constructed should be useful for future Drosophila OBP gene family research.
Collapse
Affiliation(s)
- Keehyun Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyungjun Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - I Joon Han
- Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Wayessa Rahel Asefa
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chaiyoung Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seungyun Yu
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hanhee Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Minkook Choi
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Sung-Eun Yoon
- Korea Drosophila Resource Center, Gwangju, 61005, Republic of Korea
| | - Young-Joon Kim
- Korea Drosophila Resource Center, Gwangju, 61005, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Min Sung Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
6
|
Fu H, Xiao G, Yang Z, Hu P. EsigPBP3 Was the Important Pheromone-Binding Protein to Recognize Male Pheromones and Key Eucalyptus Volatiles. Int J Mol Sci 2024; 25:2940. [PMID: 38474187 DOI: 10.3390/ijms25052940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Pheromone-binding proteins (PBPs) are specific odorant-binding proteins that can specifically recognize insect pheromones. Through transcriptional analysis of the antennae of adult Endoclita signifer, EsigPBP3 was discovered and identified, and EsigPBP3 was found to be highly expressed in the antennae of male moths. Based on the binding characteristics and ability of EsigPBP3, we can find the key ligands and binding site to consider as a target to control the key wood bore E. signifier. In this study, the fluorescence competitive binding assays (FCBA) showed that EsigPBP3 had a high binding affinity for seven key eucalyptus volatiles. Molecular docking analysis revealed that EsigPBP3 had the strongest binding affinity for the sexual pheromone component, (3E,7E)-4,7,11-trimethyl-1,3,7,10-dodecatetraene. Furthermore, same as the result of FCBA, the EsigPBP3 exhibited high binding affinities to key eucalyptus volatiles, eucalyptol, α-terpinene, (E)-beta-ocimene, (-)-β-pinene, and (-)-α-pinene, and PHE35, MET7, VAL10, PHE38, ILE52, and PHE118 are key sites. In summary, EsigPBP3 exhibits high binding affinity to male pheromones and key volatile compounds and the crucial binding sites PHE35, MET7, VAL10, PHE38, ILE52, and PHE118 can act as targets in the recognition of E. signifier pheromones.
Collapse
Affiliation(s)
- Hengfei Fu
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Guipeng Xiao
- Biotechnology, Faculty of Science, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Zhende Yang
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Ping Hu
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Qian Q, Guo X, Wu L, Cui J, Gao H, Yang Y, Xu H, Lu Z, Zhu P. Molecular Characterization of Plant Volatile Compound Interactions with Cnaphalocrocis medinalis Odorant-Binding Proteins. PLANTS (BASEL, SWITZERLAND) 2024; 13:479. [PMID: 38498446 PMCID: PMC10892019 DOI: 10.3390/plants13040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 03/20/2024]
Abstract
Odorant-binding proteins (OBPs) play important roles in the insect olfactory system since they bind external odor molecules to trigger insect olfactory responses. Previous studies have identified some plant-derived volatiles that attract the pervasive insect pest Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), such as phenylacetaldehyde, benzyl acetate, 1-heptanol, and hexanal. To characterize the roles of CmedOBPs in the recognition of these four volatiles, we analyzed the binding abilities of selected CmedOBPs to each of the four compounds, as well as the expression patterns of CmedOBPs in different developmental stages of C. medinalis adult. Antennaes of C. medinalis adults were sensitive to the studied plant volatile combinations. Expression levels of multiple CmedOBPs were significantly increased in the antennae of 2-day-old adults after exposure to volatiles. CmedOBP1, CmedOBP6, CmedPBP1, CmedPBP2, and CmedGOBP2 were significantly up-regulated in the antennae of volatile-stimulated female and male adults when compared to untreated controls. Fluorescence competition assays confirmed that CmedOBP1 could strongly bind 1-heptanol, hexanal, and phenylacetaldehyde; CmedOBP15 strongly bound benzyl acetate and phenylacetaldehyde; and CmedOBP26 could weakly bind 1-heptanol. This study lays a theoretical foundation for further analysis of the mechanisms by which plant volatiles can attract C. medinalis. It also provides a technical basis for the future development of efficient plant volatile attractants of C. medinalis.
Collapse
Affiliation(s)
- Qi Qian
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China;
| | - Xin Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
| | - Lingjie Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
| | - Jiarong Cui
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
| | - Huiying Gao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
| | - Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China;
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China;
| | - Zhongxian Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China;
| | - Pingyang Zhu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (X.G.); (L.W.); (J.C.); (H.G.); (Z.L.)
| |
Collapse
|
8
|
Brown NC, Gordon B, McDonough-Goldstein CE, Misra S, Findlay GD, Clark AG, Wolfner MF. The seminal odorant binding protein Obp56g is required for mating plug formation and male fertility in Drosophila melanogaster. eLife 2023; 12:e86409. [PMID: 38126735 PMCID: PMC10834028 DOI: 10.7554/elife.86409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
In Drosophila melanogaster and other insects, the seminal fluid proteins (SFPs) and male sex pheromones that enter the female with sperm during mating are essential for fertility and induce profound post-mating effects on female physiology. The SFPs in D. melanogaster and other taxa include several members of the large gene family known as odorant binding proteins (Obps). Work in Drosophila has shown that some Obp genes are highly expressed in the antennae and can mediate behavioral responses to odorants, potentially by binding and carrying these molecules to odorant receptors. These observations have led to the hypothesis that the seminal Obps might act as molecular carriers for pheromones or other compounds important for male fertility, though functional evidence in any species is lacking. Here, we used functional genetics to test the role of the seven seminal Obps in D. melanogaster fertility and the post-mating response (PMR). We found that Obp56g is required for male fertility and the induction of the PMR, whereas the other six genes are dispensable. We found males lacking Obp56g fail to form a mating plug in the mated female's reproductive tract, leading to ejaculate loss and reduced sperm storage, likely due to its expression in the male ejaculatory bulb. We also examined the evolutionary history of these seminal Obp genes, as several studies have documented rapid evolution and turnover of SFP genes across taxa. We found extensive lability in gene copy number and evidence of positive selection acting on two genes, Obp22a and Obp51a. Comparative RNAseq data from the male reproductive tract of multiple Drosophila species revealed that Obp56g shows high male reproductive tract expression in a subset of taxa, though conserved head expression across the phylogeny. Together, these functional and expression data suggest that Obp56g may have been co-opted for a reproductive function over evolutionary time.
Collapse
Affiliation(s)
- Nora C Brown
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Benjamin Gordon
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | | | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Geoffrey D Findlay
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
- Department of Biology, College of the Holy CrossWorcesterUnited States
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | | |
Collapse
|
9
|
Li WZ, Kang WJ, Zhou JJ, Shang SQ, Shi SL. The antennal transcriptome analysis and characterizations of odorant-binding proteins in Megachile saussurei (Hymenoptera, Megachilidae). BMC Genomics 2023; 24:781. [PMID: 38102559 PMCID: PMC10724985 DOI: 10.1186/s12864-023-09871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Odorant-binding proteins (OBPs) are essential in insect's daily behaviors mediated by olfactory perception. Megachile saussurei Radoszkowski (Hymenoptera, Megachilidae) is a principal insect pollinating alfalfa (Medicago sativa) in Northwestern China. The olfactory function have been less conducted, which provides a lot of possibilities for our research. RESULTS Our results showed that 20 OBPs were identified in total. Multiple sequence alignment analysis indicated MsauOBPs were highly conserved with a 6-cysteine motif pattern and all belonged to the classic subfamily, coding 113-196 amino acids and sharing 41.32%-99.12% amino acid identity with known OBPs of other bees. Phylogenetic analysis indicated there were certain homologies existed among MsauOBPs and most sequences were clustered with that of Osmia cornuta (Hymenoptera, Megachilidae). Expression analysis showed the identified OBPs were mostly enriched in antennae instead of other four body parts, especially the MsauOBP2, MsauOBP3, MsauOBP4, MsauOBP8, MsauOBP11 and MsauOBP17, in which the MsauOBP2, MsauOBP4 and MsauOBP8 presented obvious tissue-biased expression pattern. Molecular docking results indicated MsauOBP4 might be the most significant protein in recognizing alfalfa flower volatile 3-Octanone, while MsauOBP13 might be the most crucial protein identifying (Z)-3-hexenyl acetate. It was also found the lysine was a momentous hydrophilic amino acid in docking simulations. CONCLUSION In this study, we identified and analyzed 20 OBPs of M. saussurei. The certain homology existed among these OBPs, while some degree of divergence could also be noticed, indicating the complex functions that different MsauOBPs performed. Besides, the M. saussurei and Osmia cornuta were very likely to share similar physiological functions as most of their OBPs were clustered together. MsauOBP4 might be the key protein in recognizing 3-Octanone, while MsauOBP13 might be the key protein in binding (Z)-3-hexenyl acetate. These two proteins might contribute to the alfalfa-locating during the pollination process. The relevant results may help determine the highly specific and effective attractants for M. saussurei in alfalfa pollination and reveal the molecular mechanism of odor-evoked pollinating behavior between these two species.
Collapse
Affiliation(s)
- Wei-Zhen Li
- Key Laboratory of Grassland Ecosystem of Ministry of Education, and Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wen-Juan Kang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, and Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing-Jiang Zhou
- College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Su-Qin Shang
- College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Shang-Li Shi
- Key Laboratory of Grassland Ecosystem of Ministry of Education, and Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
10
|
Shim J, Sen A, Park K, Park H, Bala A, Choi H, Park M, Kwon JY, Kim S. Nanoporous MoS 2 Field-Effect Transistor Based Artificial Olfaction: Achieving Enhanced Volatile Organic Compound Detection Inspired by the Drosophila Olfactory System. ACS NANO 2023; 17:21719-21729. [PMID: 37902651 DOI: 10.1021/acsnano.3c07045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Olfaction, a primal and effective sense, profoundly impacts our emotions and instincts. This sensory system plays a crucial role in detecting volatile organic compounds (VOCs) and realizing the chemical environment. Animals possess superior olfactory systems compared to humans. Thus, taking inspiration from nature, artificial olfaction aims to achieve a similar level of excellence in VOC detection. In this study, we present the development of an artificial olfaction sensor utilizing a nanostructured bio-field-effect transistor (bio-FET) based on transition metal dichalcogenides and the Drosophila odor-binding protein LUSH. To create an effective sensing platform, we prepared a hexagonal nanoporous structure of molybdenum disulfide (MoS2) using block copolymer lithography and selective etching techniques. This structure provides plenty of active sites for the integration of the LUSH protein, enabling enhanced binding with ethanol (EtOH) for detection purposes. The coupling of the biomolecule with EtOH influences the bio-FETs potential, which generates indicative electrical signals. By mimicking the sniffing techniques observed in Drosophila, these bio-FETs exhibit an impressive limit of detection of 10-6% for EtOH, with high selectivity, sensitivity, and detection ability even in realistic environments. This bioelectric sensor demonstrates substantial potential in the field of artificial olfaction, offering advancements in VOC detection.
Collapse
Affiliation(s)
- Junoh Shim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Anamika Sen
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Keehyun Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Heekyeong Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Arindam Bala
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Hyungjun Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Mincheol Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Sunkook Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
11
|
Huang Y, Hu W, Hou YM. Host plant recognition by two odorant-binding proteins in Rhynchophorus ferrugineus (Coleoptera: Curculionidae). PEST MANAGEMENT SCIENCE 2023; 79:4521-4534. [PMID: 37421364 DOI: 10.1002/ps.7654] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Rhynchophorus ferrugineus, the red palm weevil (RPW), is a key pest that attacks many economically important palm species and that has evolved a sensitive and specific olfactory system to seek palm hosts. Odorant-binding proteins (OBPs) not only play crucial roles in its olfactory perception process but are also important molecular targets for the development of new approaches for pest management. RESULTS Analysis of the tissue expression profiles of RferOBP8 and RferOBP11 revealed that these two Rhynchophorus ferrugineus odorant binding proteins (RferOBPs) exhibited high expression in the antennae and showed sexual dimorphism. We analyzed the volatiles of seven host plants by gas chromatography-mass spectrometry and screened 13 potential ligands by molecular docking. The binding affinity of two recombinant OBPs to aggregation pheromones and 13 palm odorants was tested by fluorescence competitive binding assays. The results revealed that eight tested palm volatiles and ferrugineol have high binding affinities with RferOBP8 or RferOBP11. Behavioral trials showed that these eight odor compounds could elicit an attraction response in adult RPW. RNA interference analysis indicated that the reduction in the expression levels of the two RferOBPs led to a decrease in behavioral responses to these volatiles. CONCLUSION These results suggest that RferOBP8 and RferOBP11 are involved in mediating the responses of RPW to palm volatiles and to aggregation pheromones and may play important roles in RPW host-seeking. This study also provides a theoretical foundation for the promising application of novel molecular targets in the development of new behavioral interference strategies for RPW management in the future. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
Wu Y, Li Y, Chu W, Niu T, Feng X, Ma R, Liu H. Expression and functional characterization of odorant-binding protein 2 in the predatory mite Neoseiulus barkeri. INSECT SCIENCE 2023; 30:1493-1506. [PMID: 36458978 DOI: 10.1111/1744-7917.13156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Olfaction plays a crucial role for arthropods in foraging, mating, and oviposition. The odorant-binding protein (OBP) gene is considered one of the most important olfactory genes. However, little is known about its functions in predatory mites. Here, we used Neoseiulus barkeri, an important commercialized natural pest control, to explore the chemosensory characteristics of OBP. In this study, N. barkeri was attracted by methyl salicylate (MeSA) and showed higher crawling speeds under MeSA treatment. Then, we identified and cloned an OBP gene named Nbarobp2 and analyzed its expression profiles in the predatory mite. Nbarobp2 was 663 bp, was highly expressed in larval and nymphal stages, and was significantly upregulated in N. barkeri under MeSA treatment. Nbarobp2 encoded 202 amino acid residues with a molecular weight of 23 kDa (after removing the signal peptide). Sequence comparisons revealed that the OBPs in Arachnida shared 6 conserved cysteine sites, but were distinguishable from the OBPs of Insecta on the phylogenetic tree. RNA interference, Western blotting, and binding affinity assays further proved that Nbarobp2 was involved in volatile perception in predatory mites. This study shed light on the functional characteristics of OBPs in predatory mites, providing a new insight for better biological control.
Collapse
Affiliation(s)
- Yixia Wu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Yaying Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Wenqiang Chu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Tiandi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Xiaotian Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Rongjiang Ma
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Huai Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| |
Collapse
|
13
|
Ha TS, Sengupta S, Powell J, Smith DP. An angiotensin converting enzyme homolog is required for volatile pheromone detection, odorant binding protein secretion and normal courtship behavior in Drosophila melanogaster. Genetics 2023; 224:iyad109. [PMID: 37283550 PMCID: PMC10484059 DOI: 10.1093/genetics/iyad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
In many arthropods, including insects responsible for transmission of human diseases, behaviors that include mating, aggregation, and aggression are triggered by detection of pheromones. Extracellular odorant binding proteins are critical for pheromone detection in many insects and are secreted into the fluid bathing the olfactory neuron dendrites. In Drosophila melanogaster, the odorant binding protein LUSH is essential for normal sensitivity to the volatile sex pheromone, 11-cis vaccenyl acetate (cVA). Using a genetic screen for cVA pheromone insensitivity, we identified ANCE-3, a homolog of human angiotensin converting enzyme that is required for detection of cVA pheromone. The mutants have normal dose-response curves for food odors, although olfactory neuron amplitudes are reduced in all olfactory neurons examined. ance-3 mutants have profound delays in mating, and the courtship defects are primarily but not exclusively due to loss of ance-3 function in males. We demonstrate that ANCE-3 is required in the sensillae support cells for normal reproductive behavior, and that localization of odorant binding proteins to the sensillum lymph is blocked in the mutants. Expression of an ance-3 cDNA in sensillae support cells completely rescues the cVA responses, LUSH localization, and courtship defects. We show the courtship latency defects are not due to effects on olfactory neurons in the antenna nor mediated through ORCO receptors, but instead stem from ANCE-3-dependent effects on chemosensory sensillae in other body parts. These findings reveal an unexpected factor critical for pheromone detection with profound influence on reproductive behaviors.
Collapse
Affiliation(s)
- Tal Soo Ha
- Department of Biomedical Science, Daegu University, 201 Daegudae-ro, Gyeongsan-si, Gyeongbuk, 38453 Republic of Korea
| | - Samarpita Sengupta
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
- Department of Physician Assistant Studies, School of Health Professions, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | - Jordan Powell
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | - Dean P Smith
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
- O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| |
Collapse
|
14
|
Deanhardt B, Duan Q, Du C, Soeder C, Morlote A, Garg D, Saha A, Jones CD, Volkan PC. Social experience and pheromone receptor activity reprogram gene expression in sensory neurons. G3 (BETHESDA, MD.) 2023; 13:jkad072. [PMID: 36972331 PMCID: PMC10234412 DOI: 10.1093/g3journal/jkad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/11/2023] [Indexed: 06/29/2024]
Abstract
Social experience and pheromone signaling in olfactory neurons affect neuronal responses and male courtship behaviors in Drosophila. We previously showed that social experience and pheromone signaling modulate chromatin around behavioral switch gene fruitless, which encodes a transcription factor necessary and sufficient for male sexual behaviors. Fruitless drives social experience-dependent modulation of courtship behaviors and physiological sensory neuron responses to pheromone; however, the molecular mechanisms underlying this modulation of neural responses remain less clear. To identify the molecular mechanisms driving social experience-dependent changes in neuronal responses, we performed RNA-seq from antennal samples of mutants in pheromone receptors and fruitless, as well as grouped or isolated wild-type males. Genes affecting neuronal physiology and function, such as neurotransmitter receptors, ion channels, ion and membrane transporters, and odorant binding proteins are differentially regulated by social context and pheromone signaling. While we found that loss of pheromone detection only has small effects on differential promoter and exon usage within fruitless gene, many of the differentially regulated genes have Fruitless-binding sites or are bound by Fruitless in the nervous system. Recent studies showed that social experience and juvenile hormone signaling co-regulate fruitless chromatin to modify pheromone responses in olfactory neurons. Interestingly, genes involved in juvenile hormone metabolism are also misregulated in different social contexts and mutant backgrounds. Our results suggest that modulation of neuronal activity and behaviors in response to social experience and pheromone signaling likely arise due to large-scale changes in transcriptional programs for neuronal function downstream of behavioral switch gene function.
Collapse
Affiliation(s)
- Bryson Deanhardt
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Qichen Duan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Chengcheng Du
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Charles Soeder
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alec Morlote
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Deeya Garg
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Aishani Saha
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Corbin D Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
15
|
Lee SG, Sun D, Miao H, Wu Z, Kang C, Saad B, Nguyen KNH, Guerra-Phalen A, Bui D, Abbas AH, Trinh B, Malik A, Zeghal M, Auge AC, Islam ME, Wong K, Stern T, Lebedev E, Sherratt TN, Kim WJ. Taste and pheromonal inputs govern the regulation of time investment for mating by sexual experience in male Drosophila melanogaster. PLoS Genet 2023; 19:e1010753. [PMID: 37216404 DOI: 10.1371/journal.pgen.1010753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Males have finite resources to spend on reproduction. Thus, males rely on a 'time investment strategy' to maximize their reproductive success. For example, male Drosophila melanogaster extends their mating duration when surrounded by conditions enriched with rivals. Here we report a different form of behavioral plasticity whereby male fruit flies exhibit a shortened duration of mating when they are sexually experienced; we refer to this plasticity as 'shorter-mating-duration (SMD)'. SMD is a plastic behavior and requires sexually dimorphic taste neurons. We identified several neurons in the male foreleg and midleg that express specific sugar and pheromone receptors. Using a cost-benefit model and behavioral experiments, we further show that SMD behavior exhibits adaptive behavioral plasticity in male flies. Thus, our study delineates the molecular and cellular basis of the sensory inputs required for SMD; this represents a plastic interval timing behavior that could serve as a model system to study how multisensory inputs converge to modify interval timing behavior for improved adaptation.
Collapse
Affiliation(s)
- Seung Gee Lee
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Dongyu Sun
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Hongyu Miao
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Zekun Wu
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Changku Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Baraa Saad
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - Adrian Guerra-Phalen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Dorothy Bui
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Al-Hassan Abbas
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Brian Trinh
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Ashvent Malik
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Mahdi Zeghal
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Anne-Christine Auge
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Md Ehteshamul Islam
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Kyle Wong
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Tiffany Stern
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Elizabeth Lebedev
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - Woo Jae Kim
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
16
|
Sheng Y, Chen J, Jiang H, Lu Y, Dong Z, Pang L, Zhang J, Wang Y, Chen X, Huang J. The vitellogenin receptor gene contributes to mating and host-searching behaviors in parasitoid wasps. iScience 2023; 26:106298. [PMID: 36950109 PMCID: PMC10025991 DOI: 10.1016/j.isci.2023.106298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Vitellogenin receptor (VgR) is essential to vitellogenin uptaking and dominates ovary maturation in insects. However, the function of VgR in parasitoid wasps is largely unknown. Here, we applied the Drosophila parasitoid Leptopilina boulardi as a study model to investigate the function of VgR in parasitoids. Despite the conserved sequence characteristics with other insect VgRs, we found L. boulardi VgR (LbVgR) gene was highly expressed in head but lower in ovary. In addition, we found that LbVgR had no effects on ovary development, but participated in host-searching behavior of female L. boulardi and mating behavior of male L. boulardi. Comparative transcriptome analysis further revealed LbVgR might play crucial roles in regulating the expression of some important chemoreception genes to adjust the parasitoid behaviors. These results will broaden our knowledge of the function of VgR in insects, and contribute to develop advanced pest management strategies using parasitoids as biocontrol agents.
Collapse
Affiliation(s)
- Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jiani Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang University, Hangzhou 310058, China
| | - Hanyu Jiang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yueqi Lu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhi Dong
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Lan Pang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang University, Hangzhou 310058, China
| | - Junwei Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Ying Wang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xuexin Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Corresponding author
| |
Collapse
|
17
|
Brown NC, Gordon B, McDonough-Goldstein CE, Misra S, Findlay GD, Clark AG, Wolfner MF. The seminal odorant binding protein Obp56g is required for mating plug formation and male fertility in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526941. [PMID: 36798169 PMCID: PMC9934574 DOI: 10.1101/2023.02.03.526941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In Drosophila melanogaster and other insects, the seminal fluid proteins (SFPs) and male sex pheromones that enter the female with sperm during mating are essential for fertility and induce profound post-mating effects on female physiology and behavior. The SFPs in D. melanogaster and other taxa include several members of the large gene family known as odorant binding proteins (Obps). Previous work in Drosophila has shown that some Obp genes are highly expressed in the antennae and can mediate behavioral responses to odorants, potentially by binding and carrying these molecules to odorant receptors. These observations have led to the hypothesis that the seminal Obps might act as molecular carriers for pheromones or other compounds important for male fertility in the ejaculate, though functional evidence in any species is lacking. Here, we used RNAi and CRISPR/Cas9 generated mutants to test the role of the seven seminal Obps in D. melanogaster fertility and the post-mating response (PMR). We found that Obp56g is required for male fertility and the induction of the PMR, whereas the other six genes had no effect on fertility when mutated individually. Obp56g is expressed in the male's ejaculatory bulb, an important tissue in the reproductive tract that synthesizes components of the mating plug. We found males lacking Obp56g fail to form a mating plug in the mated female's reproductive tract, leading to ejaculate loss and reduced sperm storage. We also examined the evolutionary history of these seminal Obp genes, as several studies have documented rapid evolution and turnover of SFP genes across taxa. We found extensive lability in gene copy number and evidence of positive selection acting on two genes, Obp22a and Obp51a. Comparative RNAseq data from the male reproductive tract of multiple Drosophila species revealed that Obp56g shows high male reproductive tract expression only in species of the melanogaster and obscura groups, though conserved head expression in all species tested. Together, these functional and expression data suggest that Obp56g may have been co-opted for a reproductive function over evolutionary time.
Collapse
Affiliation(s)
- Nora C. Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Benjamin Gordon
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
- Present address: Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, United States
| | | | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
- Present address: University of Petroleum and Energy Studies, Dehradun, UK, India
| | - Geoffrey D. Findlay
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
- Department of Biology, College of the Holy Cross, Worcester, MA, United States
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
18
|
Alvarenga PH, Andersen JF. An Overview of D7 Protein Structure and Physiological Roles in Blood-Feeding Nematocera. BIOLOGY 2022; 12:biology12010039. [PMID: 36671732 PMCID: PMC9855781 DOI: 10.3390/biology12010039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Each time an insect bites a vertebrate host, skin and vascular injury caused by piercing triggers a series of responses including hemostasis, inflammation and immunity. In place, this set of redundant and interconnected responses would ultimately cause blood coagulation, itching and pain leading to host awareness, resulting in feeding interruption in the best-case scenario. Nevertheless, hematophagous arthropod saliva contains a complex cocktail of molecules that are crucial to the success of blood-feeding. Among important protein families described so far in the saliva of blood sucking arthropods, is the D7, abundantly expressed in blood feeding Nematocera. D7 proteins are distantly related to insect Odorant-Binding Proteins (OBP), and despite low sequence identity, observation of structural similarity led to the suggestion that like OBPs, they should bind/sequester small hydrophobic compounds. Members belonging to this family are divided in short forms and long forms, containing one or two OBP-like domains, respectively. Here, we provide a review of D7 proteins structure and function, discussing how gene duplication and some modifications in their OBP-like domains during the course of evolution lead to gain and loss of function among different hematophagous Diptera species.
Collapse
|
19
|
Aruçi E, Saliou JM, Ferveur JF, Briand L. Proteomic Characterization of Drosophila melanogaster Proboscis. BIOLOGY 2022; 11:1687. [PMID: 36421401 PMCID: PMC9687345 DOI: 10.3390/biology11111687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 09/02/2023]
Abstract
Drosophila melanogaster flies use their proboscis to taste and distinguish edible compounds from toxic compounds. With their proboscis, flies can detect sex pheromones at a close distance or by contact. Most of the known proteins associated with probosci's detection belong to gustatory receptor families. To extend our knowledge of the proboscis-taste proteins involved in chemo-detection, we used a proteomic approach to identify soluble proteins from Drosophila females and males. This investigation, performed with hundreds of dissected proboscises, was initiated by the chromatographic separation of tryptic peptides, followed by tandem mass spectrometry, allowing for femtomole detection sensitivity. We found 586 proteins, including enzymes, that are involved in intermediary metabolism and proteins dedicated to various functions, such as nucleic acid metabolism, ion transport, immunity, digestion, and organ development. Among 60 proteins potentially involved in chemosensory detection, we identified two odorant-binding proteins (OBPs), i.e., OBP56d (which showed much higher expression in females than in males) and OBP19d. Because OBP56d was also reported to be more highly expressed in the antennae of females, this protein can be involved in the detection of both volatile and contact male pheromone(s). Our proteomic study paves the way to better understand the complex role of Drosophila proboscis in the chemical detection of food and pheromonal compounds.
Collapse
Affiliation(s)
- Enisa Aruçi
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jean-Michel Saliou
- CNRS, INSERM CHU Lille, Institut Pasteur de Lille, UAR CNRS 2014–US Inserm 41–PLBS, University of Lille, 59000 Lille, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, 21000 Dijon, France
| |
Collapse
|
20
|
Gao H, Gu Z, Xing D, Yang Q, Li J, Zhou X, Zhao T, Li C. Identification of differentially expressed genes based on antennae RNA-seq analyses in Culex quinquefasciatus and Culex pipiens molestus. Parasit Vectors 2022; 15:353. [PMID: 36182902 PMCID: PMC9526932 DOI: 10.1186/s13071-022-05482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background Both Culex quinquefasciatus and Cx. pipiens molestus are sibling species within Cx. pipiens complex. Even though they are hard to distinguish morphologically, they have different physiological behaviors. However, the molecular mechanisms underlying these differences remain poorly understood. Methods Transcriptome sequencing was conducted on antennae of two sibling species. The identification of the differentially expressed genes (DEGs) was performed by the software DESeq2. Database for Annotation, Visualization and Integrated Discovery was used to perform GO pathway enrichment analysis. The protein–protein interaction (PPI) network was constructed with Cytoscape software. The hub genes were screened by the CytoHubba plugin and Degree algorithms. The identified genes were verified by quantitative real-time PCR. Results Most annotated transcripts (14,687/16,005) were expressed in both sibling species. Among 15 identified odorant-related DEGs, OBP10 was expressed 17.17 fold higher in Cx. pipiens molestus than Cx. quinquefasciatus. Eighteen resistance-related DEGs were identified, including 15 from CYP gene family and three from acetylcholinesterase, in which CYP4d1 was 86.59 fold more highly expressed in C. quinquefasciatus. Three reproductive DEGs were indentified with the expression from 5.01 to 6.55 fold. Among eight vision-related DEGs, retinoic acid receptor RXR-gamma in Cx. pipiens molestus group was more expressed with 214.08 fold. Among the 30 hub genes, there are 10 olfactory-related DEGs, 16 resistance-related DEGs, and four vision-related DEGs, with the highest score hub genes being OBP lush (6041148), CYP4C21 (6044704), and Rdh12 (6043932). The RT-qPCR results were consistent with the transcriptomic data with the correlation coefficient R = 0.78. Conclusion The study provided clues that antennae might play special roles in reproduction, drug resistance, and vision, not only the traditional olfactory function. OBP lush, CYP4C21, and Rdh12 may be key hints to the potential molecular mechanisms behind the two sibling species' biological differences. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05482-6.
Collapse
Affiliation(s)
- Heting Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Beijing, 100071, China
| | - Zhenyu Gu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Beijing, 100071, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Beijing, 100071, China
| | - Qiaojiang Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Beijing, 100071, China
| | - Jianhang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Beijing, 100071, China
| | - Xinyu Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Beijing, 100071, China
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Beijing, 100071, China.
| | - Chunxiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Beijing, 100071, China.
| |
Collapse
|
21
|
Sims C, Birkett MA, Withall DM. Enantiomeric Discrimination in Insects: The Role of OBPs and ORs. INSECTS 2022; 13:368. [PMID: 35447810 PMCID: PMC9030700 DOI: 10.3390/insects13040368] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023]
Abstract
Olfaction is a complex recognition process that is critical for chemical communication in insects. Though some insect species are capable of discrimination between compounds that are structurally similar, little is understood about how this high level of discrimination arises. Some insects rely on discriminating between enantiomers of a compound, demonstrating an ability for highly selective recognition. The role of two major peripheral olfactory proteins in insect olfaction, i.e., odorant-binding proteins (OBPs) and odorant receptors (ORs) has been extensively studied. OBPs and ORs have variable discrimination capabilities, with some found to display highly specialized binding capability, whilst others exhibit promiscuous binding activity. A deeper understanding of how odorant-protein interactions induce a response in an insect relies on further analysis such as structural studies. In this review, we explore the potential role of OBPs and ORs in highly specific recognition, specifically enantiomeric discrimination. We summarize the state of research into OBP and OR function and focus on reported examples in the literature of clear enantiomeric discrimination by these proteins.
Collapse
Affiliation(s)
- Cassie Sims
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; (C.S.); (M.A.B.)
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Michael A. Birkett
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; (C.S.); (M.A.B.)
| | - David M. Withall
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; (C.S.); (M.A.B.)
| |
Collapse
|
22
|
Han WK, Yang YL, Si YX, Wei ZQ, Liu SR, Liu XL, Yan Q, Dong SL. Involvement of GOBP2 in the perception of a sex pheromone component in both larval and adult Spodoptera litura revealed using CRISPR/Cas9 mutagenesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 141:103719. [PMID: 34999200 DOI: 10.1016/j.ibmb.2022.103719] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 05/14/2023]
Abstract
General odorant-binding proteins (GOBPs) are long considered responsible for the perception of plant odorants. In this study with the important noctuid pest Spodoptera litura, we functionally characterized that GOBP2 is also involved in the perception of sex pheromone components using in vivo CRISPR/Cas9 technique. First, the GOBP2 sgRNA and Cas9 protein were injected into the newly laid insect eggs, resulting in a 35.6% target mutagenesis in G0 moths. Then, the homozygous GOBP2 knockout strain (GOBP2-/-) was obtained after the screening of three generations. The knockout male and female moths displayed a significant reduction in EAG responses to the sex pheromone components, and the knockout females also displayed a significant reduction to plant odorants. In the behavioral assay of food choice, GOBP2-/- larvae lost the preference to artificial diet added with the major sex pheromone component Z9, E11-tetradecadienyl acetate (Z9, E11-14:Ac), whereas the WT larvae highly preferred the pheromone diet. Y-tube olfactometer assay and direct pheromone stimulation assay showed that GOBP2-/- male adults reduced significantly than WT males in percentages of choice, hair pencil displaying and mating attempt to Z9, E11-14:Ac. In the oviposition test, GOBP2-/- females showed significantly reduced preference for the soybean plants compared to the WT females. Our study demonstrated that GOBP2 plays an important role in perceiving sex pheromones in adult and larval stages, providing new insight into sex pheromone perception and a potential target for sex pheromone-based behavioral regulation in the pest.
Collapse
Affiliation(s)
- Wei-Kang Han
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yi-Lin Yang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yu-Xiao Si
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhi-Qiang Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Si-Ruo Liu
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xiao-Long Liu
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
23
|
Abstract
In this review, we highlight sources of alcohols in nature, as well as the behavioral and ecological roles that these fermentation cues play in the short lifespan of Drosophila melanogaster. With a focus on neuroethology, we describe the olfactory detection of alcohol as well as ensuing neural signaling within the brain of the fly. We proceed to explain the plethora of behaviors related to alcohol, including attraction, feeding, and oviposition, as well as general effects on aggression and courtship. All of these behaviors are shaped by physiological state and social contexts. In a comparative perspective, we also discuss inter- and intraspecies differences related to alcohol tolerance and metabolism. Lastly, we provide corollaries with other dipteran and coleopteran insect species that also have olfactory systems attuned to ethanol detection and describe ecological and evolutionary directions for further studies of the natural history of alcohol and the fly.
Collapse
Affiliation(s)
- Ian W Keesey
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA;
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany;
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany;
| |
Collapse
|
24
|
Atkinson NS. Alcohol-induced Aggression. Neurosci Insights 2021; 16:26331055211061145. [PMID: 34841248 PMCID: PMC8611288 DOI: 10.1177/26331055211061145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Intraspecies aggression is commonly focused on securing reproductive resources such as food, territory, and mates, and it is often males who do the fighting. In humans, individual acts of overt physical aggression seem maladaptive and probably represent dysregulation of the pathways underlying aggression. Such acts are often associated with ethanol consumption. The Drosophila melanogaster model system, which has long been used to study how ethanol affects the nervous system and behavior, has also been used to study the molecular origins of aggression. In addition, ethanol-induced aggression has been demonstrated in flies. Recent publications show that ethanol stimulates Drosophila aggression in 2 ways: the odor of ethanol and the consumption of ethanol both make males more aggressive. These ethanol effects occur at concentrations that flies likely experience in the wild. A picture emerges of males arriving on their preferred reproductive site-fermenting plant matter-and being stimulated by ethanol to fight harder to secure the site for their own use. Fly fighting assays appear to be a suitable bioassay for studying how low doses of ethanol reshape neural signaling.
Collapse
Affiliation(s)
- Nigel S Atkinson
- Department of Neuroscience and The Waggoner
Center for Alcohol and Addiction Research, The University of Texas at
Austin, Austin, TX, USA
| |
Collapse
|
25
|
Zhu X, Xu B, Qin Z, Kader A, Song B, Chen H, Liu Y, Liu W. Identification of Candidate Olfactory Genes in Scolytus schevyrewi Based on Transcriptomic Analysis. Front Physiol 2021; 12:717698. [PMID: 34671270 PMCID: PMC8521011 DOI: 10.3389/fphys.2021.717698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/30/2021] [Indexed: 11/20/2022] Open
Abstract
The bark beetle, Scolytus schevyrewi (S. schevyrewi), is an economically important pest in China that causes serious damage to the fruit industry, particularly, in Xinjiang Province. Chemical signals play an important role in the behavior of most insects, accordingly, ecofriendly traps can be used to monitor and control the target pests in agriculture. In order to lay a foundation for future research on chemical communication mechanisms at the molecular level, we generate antennal transcriptome databases for male and female S. schevyrewi using RNA sequencing (RNA-seq) analysis. By assembling and analyzing the adult male and female antennal transcriptomes, we identified 47 odorant receptors (ORs), 22 ionotropic receptors (IRs), 22 odorant-binding proteins (OBPs), and 11 chemosensory proteins (CSPs). Furthermore, expression levels of all the candidate OBPs and CSPs were validated in different tissues of male and female adults by semiquantitative reverse transcription PCR (RT-PCR). ScosOBP2 and ScosOBP18 were highly expressed in female antennae. ScosCSP2, ScosCSP3, and ScosCSP5 were specifically expressed in the antennae of both males and females. These results provide new potential molecular targets to inform and improve future management strategies of S. schevyrewi.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Bingqiang Xu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Zhenjie Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Abudukyoum Kader
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Bo Song
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haoyu Chen
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
26
|
Zhao N, Mao X, Liu N, Liu L, Zhang Z, Ze S, Yang B. Transcriptomic Characterization of Odorant Binding Proteins in Cacia cretifera thibetana and Their Association with Different Host Emitted Volatiles. INSECTS 2021; 12:insects12090787. [PMID: 34564227 PMCID: PMC8469897 DOI: 10.3390/insects12090787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The odorant binding proteins (OBPs) interact with host chemical compounds to elicit olfactory responses. Transcriptome analysis of six different tissues of male and female Cacia cretifera thibetana was performed to unravel the interaction of OBPs with host compounds. In both sexes, differentially expressed genes were associated with the KEGG pathways such as cutin, suberine and wax biosynthesis, glycerophospholipid metabolism, choline metabolism in cancer, and the chemokine signaling pathway. The expression of 11 out of 31 OBPs were confirmed by quantitative RT-PCR and seven were found to be specifically expressed in antennae. CcreOBP6 and CcreOBP10 showed strong affinity for terpineol and trans-2-hexenal exhibiting their potential role as an attractant or repellent to control C. cretifera thibetana. Abstract This study characterized the transcriptome of Cacia cretifera thibetana and explored odorant binding proteins (OBPs) and their interaction with host-specific compounds. A total of 36 samples from six different organs including antennae, head, thorax, abdomen, wings, and legs (12 groups with 3 replicates per group) from both male and female insects were collected for RNA extraction. Transcriptomic analysis revealed a total of 89,897 transcripts as unigenes, with an average length of 1036 bp. Between male and female groups, 31,095 transcripts were identified as differentially expressed genes (DEGs). The KEGG pathway analysis revealed 26 DEGs associated with cutin, suberine, and wax biosynthesis and 70, 48, and 62 were linked to glycerophospholipid metabolism, choline metabolism in cancer, and chemokine signaling pathways, respectively. A total of 31 OBP genes were identified. Among them, the relative expression of 11 OBP genes (OBP6, 10, 12, 14, 17, 20, 22, 26, 28, 30, and 31) was confirmed by quantitative RT-PCR in different tissues. Seven OBP genes including CcreOBP6 and CcreOBP10 revealed antennae-specific expression. Further, we selected two OBPs (CcreOBP6 and CcreOBP10) for functional analysis to evaluate their binding affinity with 20 host odorant compounds. The CcreOBP6 and CcreOBP10 exhibited strong binding affinities with terpineol and trans-2-hexenal revealing their potential as an attractant or repellent for controlling C. cretifera thibetana.
Collapse
Affiliation(s)
- Ning Zhao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Z.); (X.M.); (N.L.)
| | - Xiangzhong Mao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Z.); (X.M.); (N.L.)
| | - Naiyong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Z.); (X.M.); (N.L.)
| | - Ling Liu
- Yunnan Academy of Forestry and Grassland, Kunming 650224, China; (L.L.); (Z.Z.)
| | - Zhixiao Zhang
- Yunnan Academy of Forestry and Grassland, Kunming 650224, China; (L.L.); (Z.Z.)
| | - Sangzi Ze
- Yunnan Forestry and Grassland Pest Control and Quarantine Bureau, Kunming 650051, China;
| | - Bin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Z.); (X.M.); (N.L.)
- Correspondence:
| |
Collapse
|
27
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
28
|
Genome-Wide Identification of the Gustatory Receptor Gene Family of the Invasive Pest, Red Palm Weevil, Rhynchophorus ferrugineus (Olivier, 1790). INSECTS 2021; 12:insects12070611. [PMID: 34357271 PMCID: PMC8308034 DOI: 10.3390/insects12070611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/03/2021] [Indexed: 11/17/2022]
Abstract
The red palm weevil (Rhynchophorus ferrugineus) is a highly destructive pest of oil palm, date, and coconut in many parts of Asia, Europe, and Africa. The Food and Agriculture Organization of the United Nations has called for international collaboration to develop a multidisciplinary strategy to control this invasive pest. Previous research focused on the molecular basis of chemoreception in this species, particularly olfaction, to develop biosensors for early detection and more effective bait traps for mass trapping. However, the molecular basis of gustation, which plays an essential role in discriminating food and egg-laying sites and chemical communication in this species, is limited because its complete gustatory receptor gene family still has not been characterized. We manually annotated the gene family from the recently available genome and transcriptome data and reported 50 gustatory receptor genes encoding 65 gustatory receptors, including 7 carbon dioxide, 9 sugar, and 49 bitter receptors. This study provides a platform for future functional analysis and comparative chemosensory study. A better understanding of gustation will improve our understanding of this species' complex chemoreception, which is an important step toward developing more effective control methods.
Collapse
|
29
|
Diallo S, Shahbaaz M, Makwatta JO, Muema JM, Masiga D, Christofells A, Getahun MN. Antennal Enriched Odorant Binding Proteins Are Required for Odor Communication in Glossina f. fuscipes. Biomolecules 2021; 11:541. [PMID: 33917773 PMCID: PMC8068202 DOI: 10.3390/biom11040541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Olfaction is orchestrated at different stages and involves various proteins at each step. For example, odorant-binding proteins (OBPs) are soluble proteins found in sensillum lymph that might encounter odorants before reaching the odorant receptors. In tsetse flies, the function of OBPs in olfaction is less understood. Here, we investigated the role of OBPs in Glossina fuscipes fuscipes olfaction, the main vector of sleeping sickness, using multidisciplinary approaches. Our tissue expression study demonstrated that GffLush was conserved in legs and antenna in both sexes, whereas GffObp44 and GffObp69 were expressed in the legs but absent in the antenna. GffObp99 was absent in the female antenna but expressed in the male antenna. Short odorant exposure induced a fast alteration in the transcription of OBP genes. Furthermore, we successfully silenced a specific OBP expressed in the antenna via dsRNAi feeding to decipher its function. We found that silencing OBPs that interact with 1-octen-3-ol significantly abolished flies' attraction to 1-octen-3-ol, a known attractant for tsetse fly. However, OBPs that demonstrated a weak interaction with 1-octen-3-ol did not affect the behavioral response, even though it was successfully silenced. Thus, OBPs' selective interaction with ligands, their expression in the antenna and their significant impact on behavior when silenced demonstrated their direct involvement in olfaction.
Collapse
Affiliation(s)
- Souleymane Diallo
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Mohd Shahbaaz
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - JohnMark O Makwatta
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya
| | - Jackson M Muema
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya
| | - Alan Christofells
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Merid N Getahun
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya
| |
Collapse
|
30
|
Park A, Tran T, Scheuermann EA, Smith DP, Atkinson NS. Alcohol potentiates a pheromone signal in flies. eLife 2020; 9:59853. [PMID: 33141025 PMCID: PMC7671682 DOI: 10.7554/elife.59853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/01/2020] [Indexed: 01/29/2023] Open
Abstract
For decades, numerous researchers have documented the presence of the fruit fly or Drosophila melanogaster on alcohol-containing food sources. Although fruit flies are a common laboratory model organism of choice, there is relatively little understood about the ethological relationship between flies and ethanol. In this study, we find that when male flies inhabit ethanol-containing food substrates they become more aggressive. We identify a possible mechanism for this behavior. The odor of ethanol potentiates the activity of sensory neurons in response to an aggression-promoting pheromone. Finally, we observed that the odor of ethanol also promotes attraction to a food-related citrus odor. Understanding how flies interact with the complex natural environment they inhabit can provide valuable insight into how different natural stimuli are integrated to promote fundamental behaviors.
Collapse
Affiliation(s)
- Annie Park
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, United States
| | - Tracy Tran
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, United States
| | - Elizabeth A Scheuermann
- Department of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Dean P Smith
- Department of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Nigel S Atkinson
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, United States
| |
Collapse
|
31
|
Ruiz-May E, Altúzar-Molina A, Elizalde-Contreras JM, Arellano-de los Santos J, Monribot-Villanueva J, Guillén L, Vázquez-Rosas-Landa M, Ibarra-Laclette E, Ramírez-Vázquez M, Ortega R, Aluja M. A First Glimpse of the Mexican Fruit Fly Anastrepha ludens (Diptera: Tephritidae) Antenna Morphology and Proteome in Response to a Proteinaceous Attractant. Int J Mol Sci 2020; 21:ijms21218086. [PMID: 33138264 PMCID: PMC7663321 DOI: 10.3390/ijms21218086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022] Open
Abstract
Anastrepha ludens is a key pest of mangoes and citrus from Texas to Costa Rica but the mechanisms of odorant perception in this species are poorly understood. Detection of volatiles in insects occurs mainly in the antenna, where molecules penetrate sensillum pores and link to soluble proteins in the hemolymph until reaching specific odor receptors that trigger signal transduction and lead to behavioral responses. Scrutinizing the molecular foundation of odorant perception in A. ludens is necessary to improve biorational management strategies against this pest. After exposing adults of three maturity stages to a proteinaceous attractant, we studied antennal morphology and comparative proteomic profiles using nano-LC-MS/MS with tandem mass tags combined with synchronous precursor selection (SPS)-MS3. Antennas from newly emerged flies exhibited dense agglomerations of olfactory sensory neurons. We discovered 4618 unique proteins in the antennas of A. ludens and identified some associated with odor signaling, including odorant-binding and calcium signaling related proteins, the odorant receptor co-receptor (Orco), and putative odorant-degrading enzymes. Antennas of sexually immature flies exhibited the most upregulation of odor perception proteins compared to mature flies exposed to the attractant. This is the first report where critical molecular players are linked to the odor perception mechanism of A. ludens.
Collapse
Affiliation(s)
- Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (J.M.E.-C.); (J.A.-d.l.S.); (J.M.-V.); (E.I.-L.); (M.R.-V.)
- Correspondence: (E.R.-M.); (M.A.)
| | - Alma Altúzar-Molina
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (A.A.-M.); (L.G.); (M.V.-R.-L.); (R.O.)
| | - José M. Elizalde-Contreras
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (J.M.E.-C.); (J.A.-d.l.S.); (J.M.-V.); (E.I.-L.); (M.R.-V.)
| | - Jiovanny Arellano-de los Santos
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (J.M.E.-C.); (J.A.-d.l.S.); (J.M.-V.); (E.I.-L.); (M.R.-V.)
| | - Juan Monribot-Villanueva
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (J.M.E.-C.); (J.A.-d.l.S.); (J.M.-V.); (E.I.-L.); (M.R.-V.)
| | - Larissa Guillén
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (A.A.-M.); (L.G.); (M.V.-R.-L.); (R.O.)
| | - Mirna Vázquez-Rosas-Landa
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (A.A.-M.); (L.G.); (M.V.-R.-L.); (R.O.)
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (J.M.E.-C.); (J.A.-d.l.S.); (J.M.-V.); (E.I.-L.); (M.R.-V.)
| | - Mónica Ramírez-Vázquez
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (J.M.E.-C.); (J.A.-d.l.S.); (J.M.-V.); (E.I.-L.); (M.R.-V.)
| | - Rafael Ortega
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (A.A.-M.); (L.G.); (M.V.-R.-L.); (R.O.)
| | - Martín Aluja
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (A.A.-M.); (L.G.); (M.V.-R.-L.); (R.O.)
- Correspondence: (E.R.-M.); (M.A.)
| |
Collapse
|
32
|
Chen Z, Zhang Q, Shan J, Lu Y, Liu Q. Detection of Bitter Taste Molecules Based on Odorant-Binding Protein-Modified Screen-Printed Electrodes. ACS OMEGA 2020; 5:27536-27545. [PMID: 33134717 PMCID: PMC7594143 DOI: 10.1021/acsomega.0c04089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/29/2020] [Indexed: 05/08/2023]
Abstract
Bitter taste substances commonly represent a signal of toxicity. Fast and reliable detection of bitter molecules improves the safety of foods and beverages. Here, we report a biosensor using an easily accessible and cost-effective odorant-binding protein (OBP) of Drosophila melanogaster as a biosensitive material for the detection of bitter molecules. Based on the theoretical evaluation of the protein-ligand interaction, binding energies between the OBP and bitter molecules were calculated via molecular docking for the prediction and verification of binding affinities. Through one-step reduction, gold nanoparticles (AuNPs) and reduced graphene oxide (rGO) were deposited on the screen-printed electrodes for improving the electrochemical properties of electrodes. After the electrodes were immobilized with OBPs via layer-by-layer self-assembly, typical bitter molecules, such as denatonium, quinine, and berberine, were investigated through electrochemical impedance spectroscopy. The bitter molecules showed significant binding properties to the OBP with linear response concentrations ranging from 10-9 to 10-6 mg/mL. Therefore, the OBP-based biosensor offered powerful analytic techniques for the detection of bitter molecules and showed promising applications in the field of bitter taste evaluation.
Collapse
Affiliation(s)
- Zetao Chen
- Biosensor
National Special Laboratory, Key Laboratory for Biomedical Engineering
of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Qingqing Zhang
- Biosensor
National Special Laboratory, Key Laboratory for Biomedical Engineering
of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jianzhen Shan
- The
First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Yanli Lu
- Biosensor
National Special Laboratory, Key Laboratory for Biomedical Engineering
of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Collaborative
Innovation Center of TCM Health Management, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, P. R. China
- . Tel/Fax: +86 571 87953796
| | - Qingjun Liu
- Biosensor
National Special Laboratory, Key Laboratory for Biomedical Engineering
of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Collaborative
Innovation Center of TCM Health Management, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, P. R. China
| |
Collapse
|
33
|
Wang Z, Gao C, Liu J, Zhou W, Zeng X. Host plant odours and their recognition by the odourant-binding proteins of Diaphorina citri Kuwayama (Hemiptera: Psyllidae). PEST MANAGEMENT SCIENCE 2020; 76:2453-2464. [PMID: 32058655 DOI: 10.1002/ps.5786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND The Asian citrus psyllid (ACP), Diaphorina citri, is one of the major pests in citrus production because it transmits huanglongbing, a devastating disease of citrus plants. Odourant-binding proteins (OBPs) play an important role in the olfactory perception of insects. Revealing the function of DcitOBPs is beneficial to the development of new ACP management strategies. RESULTS An analysis of the components of volatiles from the new shoots of six host plant species showed that β-caryophyllene was the characteristic volatile compound in flushing shoots and the most abundant volatile compound in three of the six tested ACP host plant species. The tissue expression profiles of nine known DcitOBPs were analyzed based on a transcriptome database, and DcitOBP3 and DcitOBP6 exhibited high expression in the antennae of both sexes and the ovipositor of females. The binding ability of two recombinant proteins with eight ligands was studied through competitive binding analysis; the results showed that DcitOBP6 exhibited stronger binding to β-caryophyllene. Behavioural trials indicated that sexually mature female adults of D. citri were significantly attracted to β-caryophyllene at concentrations of 0.1 μL mL-1 and 10 μL mL-1 . RNAi analysis in female D. citri showed that the reduction of DcitOBP6 transcript abundance led to a decrease in antennae EAG activity and behavioural responses to β-caryophyllene. CONCLUSION The results demonstrate that DcitOBP6 is involved in the perception of an important host plant volatile, β-caryophyllene, in the ACP, and provide a theoretical foundation for behavioural interference in ACP management.
Collapse
Affiliation(s)
- Zhengbing Wang
- Guangdong Engineering Research Center for Insect Behavior Regulation; Key Laboratory of Bio-Pesticide Innovation and Application, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Chuanhe Gao
- Guangdong Engineering Research Center for Insect Behavior Regulation; Key Laboratory of Bio-Pesticide Innovation and Application, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jiali Liu
- Guangdong Engineering Research Center for Insect Behavior Regulation; Key Laboratory of Bio-Pesticide Innovation and Application, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Wenwu Zhou
- State Key Laboratory of Rice Biology; Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xinnian Zeng
- Guangdong Engineering Research Center for Insect Behavior Regulation; Key Laboratory of Bio-Pesticide Innovation and Application, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
34
|
Rooke R, Rasool A, Schneider J, Levine JD. Drosophila melanogaster behaviour changes in different social environments based on group size and density. Commun Biol 2020; 3:304. [PMID: 32533063 PMCID: PMC7293324 DOI: 10.1038/s42003-020-1024-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/22/2020] [Indexed: 12/05/2022] Open
Abstract
Many organisms, when alone, behave differently from when they are among a crowd. Drosophila similarly display social behaviour and collective behaviour dynamics within groups not seen in individuals. In flies, these emergent behaviours may be in response to the global size of the group or local nearest-neighbour density. Here we investigate i) which aspect of social life flies respond to: group size, density, or both and ii) whether behavioural changes within the group are dependent on olfactory support cells. Behavioural assays demonstrate that flies adjust their interactive behaviour to group size but otherwise compensate for density by achieving a standard rate of movement, suggesting that individuals are aware of the number of others within their group. We show that olfactory support cells are necessary for flies to behave normally in large groups. These findings shed insight into the subtle and complex life of Drosophila within a social setting.
Collapse
Affiliation(s)
- Rebecca Rooke
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd. North, Mississauga, ON, L5L 1C6, Canada
| | - Amara Rasool
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd. North, Mississauga, ON, L5L 1C6, Canada
| | - Jonathan Schneider
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd. North, Mississauga, ON, L5L 1C6, Canada
| | - Joel D Levine
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd. North, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
35
|
Seong KM, Kim Y, Kim D, Pittendrigh BR, Kim YH. Identification of transcriptional responsive genes to acetic acid, ethanol, and 2-phenylethanol exposure in Drosophila melanogaster. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104552. [PMID: 32359537 DOI: 10.1016/j.pestbp.2020.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/15/2020] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
The fruit fly, Drosophila melanogaster, is predominantly found in overripe, rotten, fermenting, or decaying fruits and is constantly exposed to chemical stressors such as acetic acid, ethanol, and 2-phenylethanol. D. melanogaster has been employed as a model system for studying the molecular bases of various types of chemical-induced tolerance. Expression profiling using Illumina sequencing has been performed for identifying changes in gene expression that may be associated with evolutionary adaptation to exposure of acetic acid, ethanol, and 2-phenylethanol. We identified a total of 457 differentially expressed genes that may affect sensitivity or tolerance to three chemicals in the chemical treatment group as opposed to the control group. Gene-set enrichment analysis revealed that the genes involved in metabolism, multicellular organism reproduction, olfaction, regulation of signal transduction, and stress tolerance were over-represented in response to chemical exposure. Furthermore, we also detected a coordinated upregulation of genes in the Toll- and Imd-signaling pathways after the chemical exposure. Quantitative reverse transcription PCR analysis revealed that the expression levels of nine genes within the set of genes identified by RNA sequencing were up- or downregulated owing to chemical exposure. Taken together, our data suggest that such differentially expressed genes are coordinately affected by chemical exposure. Transcriptional analyses after exposure of D. melanogaster with three chemicals provide unique insights into subsequent functional studies on the mechanisms underlying the evolutionary adaptation of insect species to environmental chemical stressors.
Collapse
Affiliation(s)
- Keon Mook Seong
- Department of Entomology, Michigan State University, East Lansing, MI, USA; Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | - YeongHo Kim
- Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | - Donghun Kim
- Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | | | - Young Ho Kim
- Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea.
| |
Collapse
|
36
|
Anholt RRH. Chemosensation and Evolution of Drosophila Host Plant Selection. iScience 2020; 23:100799. [PMID: 31923648 PMCID: PMC6951304 DOI: 10.1016/j.isci.2019.100799] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/01/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
The ability to respond to chemosensory cues is critical for survival of most organisms. Among insects, Drosophila melanogaster has the best characterized olfactory system, and the availability of genome sequences of 30 Drosophila species provides an ideal scenario for studies on evolution of chemosensation. Gene duplications of chemoreceptor genes allow for functional diversification of the rapidly evolving chemoreceptor repertoire. Although some species of the genus Drosophila are generalists for host plant selection, rapid evolution of olfactory receptors, gustatory receptors, odorant-binding proteins, and cytochrome P450s has enabled diverse host specializations of different members of the genus. Here, I review diversification of the chemoreceptor repertoire among members of the genus Drosophila along with co-evolution of detoxification mechanisms that may have enabled occupation of diverse host plant ecological niches.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA.
| |
Collapse
|
37
|
Anholt RRH, O'Grady P, Wolfner MF, Harbison ST. Evolution of Reproductive Behavior. Genetics 2020; 214:49-73. [PMID: 31907301 PMCID: PMC6944409 DOI: 10.1534/genetics.119.302263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
Behaviors associated with reproduction are major contributors to the evolutionary success of organisms and are subject to many evolutionary forces, including natural and sexual selection, and sexual conflict. Successful reproduction involves a range of behaviors, from finding an appropriate mate, courting, and copulation, to the successful production and (in oviparous animals) deposition of eggs following mating. As a consequence, behaviors and genes associated with reproduction are often under strong selection and evolve rapidly. Courtship rituals in flies follow a multimodal pattern, mediated through visual, chemical, tactile, and auditory signals. Premating behaviors allow males and females to assess the species identity, reproductive state, and condition of their partners. Conflicts between the "interests" of individual males, and/or between the reproductive strategies of males and females, often drive the evolution of reproductive behaviors. For example, seminal proteins transmitted by males often show evidence of rapid evolution, mediated by positive selection. Postmating behaviors, including the selection of oviposition sites, are highly variable and Drosophila species span the spectrum from generalists to obligate specialists. Chemical recognition features prominently in adaptation to host plants for feeding and oviposition. Selection acting on variation in pre-, peri-, and postmating behaviors can lead to reproductive isolation and incipient speciation. Response to selection at the genetic level can include the expansion of gene families, such as those for detecting pheromonal cues for mating, or changes in the expression of genes leading to visual cues such as wing spots that are assessed during mating. Here, we consider the evolution of reproductive behavior in Drosophila at two distinct, yet complementary, scales. Some studies take a microevolutionary approach, identifying genes and networks involved in reproduction, and then dissecting the genetics underlying complex behaviors in D. melanogaster Other studies take a macroevolutionary approach, comparing reproductive behaviors across the genus Drosophila and how these might correlate with environmental cues. A full synthesis of this field will require unification across these levels.
Collapse
Affiliation(s)
- Robert R H Anholt
- Center for Human Genetics, Clemson University, Greenwood, South Carolina 29646
- Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646
| | - Patrick O'Grady
- Department of Entomology, Cornell University, Ithaca, New York 14853
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Susan T Harbison
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
38
|
Scheuermann EA, Smith DP. Odor-Specific Deactivation Defects in a Drosophila Odorant-Binding Protein Mutant. Genetics 2019; 213:897-909. [PMID: 31492805 PMCID: PMC6827369 DOI: 10.1534/genetics.119.302629] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
Insect odorant-binding proteins (OBPs) are a large, diverse group of low-molecular weight proteins secreted into the fluid bathing olfactory and gustatory neuron dendrites. The best-characterized OBP, LUSH (OBP76a) enhances pheromone sensitivity enabling detection of physiological levels of the male-specific pheromone, 11-cis vaccenyl acetate. The role of the other OBPs encoded in the Drosophila genome is largely unknown. Here, using clustered regularly interspaced short palindromic repeats/Cas9, we generated and characterized the loss-of-function phenotype for two genes encoding homologous OBPs, OS-E (OBP83b) and OS-F (OBP83a). Instead of activation defects, these extracellular proteins are required for normal deactivation of odorant responses to a subset of odorants. Remarkably, odorants detected by the same odorant receptor are differentially affected by the loss of the OBPs, revealing an odorant-specific role in deactivation kinetics. In stark contrast to lush mutants, the OS-E/F mutants have normal activation kinetics to the affected odorants, even at low stimulus concentrations, suggesting that these OBPs are not competing for these ligands with the odorant receptors. We also show that OS-E and OS-F are functionally redundant as either is sufficient to revert the mutant phenotype in transgenic rescue experiments. These findings expand our understanding of the roles of OBPs to include the deactivation of odorant responses.
Collapse
Affiliation(s)
- Elizabeth A Scheuermann
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Dean P Smith
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| |
Collapse
|
39
|
Xiao S, Sun JS, Carlson JR. Robust olfactory responses in the absence of odorant binding proteins. eLife 2019; 8:51040. [PMID: 31651397 PMCID: PMC6814364 DOI: 10.7554/elife.51040] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/17/2019] [Indexed: 01/22/2023] Open
Abstract
Odorant binding proteins (Obps) are expressed at extremely high levels in the antennae of insects, and have long been believed essential for carrying hydrophobic odorants to odor receptors. Previously we found that when one functional type of olfactory sensillum in Drosophila was depleted of its sole abundant Obp, it retained a robust olfactory response (Larter et al., 2016). Here we have deleted all the Obp genes that are abundantly expressed in the antennal basiconic sensilla. All of six tested sensillum types responded robustly to odors of widely diverse chemical or temporal structure. One mutant gave a greater physiological and behavioral response to an odorant that affects oviposition. Our results support a model in which many sensilla can respond to odorants in the absence of Obps, and many Obps are not essential for olfactory response, but that some Obps can modulate olfactory physiology and the behavior that it drives.
Collapse
Affiliation(s)
- Shuke Xiao
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Jennifer S Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
40
|
Tang QF, Shen C, Zhang Y, Yang ZP, Han RR, Wang J. Antennal transcriptome analysis of the maize weevil Sitophilus zeamais: Identification and tissue expression profiling of candidate odorant-binding protein genes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21542. [PMID: 30820994 DOI: 10.1002/arch.21542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/14/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Our bioassays reviewed that antennae played crucial roles in the responses of maize weevil (Sitophilus zeamais) to food and sex volatiles. In order to identify the maize weevil odorant-binding protein (OBP) genes, we analyzed its antennal transcriptome. In total, 21,587,928 high-quality clean reads were obtained from RNA-seq, 52,206 unigenes were assembled, and 25,744 unigenes showed significant similarity ( E value < 10 -5 ) to known proteins in the NCBI nonredundant protein database. From those unigenes, we identified 41 candidate OBP proteins, which could be categorized into dimeric OBPs subfamily, minus-C OBPs subfamily, and classical OBPs subfamily. Phylogenic analysis indicated that most maize weevil OBPs were closely related to their orthologues in other beetles of the Superfamily Curculionoidea. We further investigated the expression profiles of those candidate OBP genes by quantitative real-time polymerase chain reaction. Twenty-six of forty-one maize weevil OBP genes were highly expressed in the antennae or other parts of the head. The rest were expressed in the legs, wings, or other tested tissues. The antennal transcriptomic data and candidate OBP genes described here provide a basis for the functional studies of the maize weevil chemical perception, which are potential novel targets for pest control strategies.
Collapse
Affiliation(s)
- Qing-Feng Tang
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Chen Shen
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Ying Zhang
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhi-Peng Yang
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Rong-Rong Han
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, Maryland
| |
Collapse
|
41
|
Engel GL, Taber K, Vinton E, Crocker AJ. Studying alcohol use disorder using Drosophila melanogaster in the era of 'Big Data'. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2019; 15:7. [PMID: 30992041 PMCID: PMC6469124 DOI: 10.1186/s12993-019-0159-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/04/2019] [Indexed: 02/08/2023]
Abstract
Our understanding of the networks of genes and protein functions involved in Alcohol Use Disorder (AUD) remains incomplete, as do the mechanisms by which these networks lead to AUD phenotypes. The fruit fly (Drosophila melanogaster) is an efficient model for functional and mechanistic characterization of the genes involved in alcohol behavior. The fly offers many advantages as a model organism for investigating the molecular and cellular mechanisms of alcohol-related behaviors, and for understanding the underlying neural circuitry driving behaviors, such as locomotor stimulation, sedation, tolerance, and appetitive (reward) learning and memory. Fly researchers are able to use an extensive variety of tools for functional characterization of gene products. To understand how the fly can guide our understanding of AUD in the era of Big Data we will explore these tools, and review some of the gene networks identified in the fly through their use, including chromatin-remodeling, glial, cellular stress, and innate immunity genes. These networks hold great potential as translational drug targets, making it prudent to conduct further research into how these gene mechanisms are involved in alcohol behavior.
Collapse
Affiliation(s)
- Gregory L. Engel
- Department of Psychological Sciences, Castleton University, Castleton, VT 05735 USA
| | - Kreager Taber
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| | - Elizabeth Vinton
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| | - Amanda J. Crocker
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| |
Collapse
|
42
|
Chai PC, Cruchet S, Wigger L, Benton R. Sensory neuron lineage mapping and manipulation in the Drosophila olfactory system. Nat Commun 2019; 10:643. [PMID: 30733440 PMCID: PMC6367400 DOI: 10.1038/s41467-019-08345-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/28/2018] [Indexed: 11/20/2022] Open
Abstract
Nervous systems exhibit myriad cell types, but understanding how this diversity arises is hampered by the difficulty to visualize and genetically-probe specific lineages, especially at early developmental stages prior to expression of unique molecular markers. Here, we use a genetic immortalization method to analyze the development of sensory neuron lineages in the Drosophila olfactory system, from their origin to terminal differentiation. We apply this approach to define a fate map of nearly all olfactory lineages and refine the model of temporal patterns of lineage divisions. Taking advantage of a selective marker for the lineage that gives rise to Or67d pheromone-sensing neurons and a genome-wide transcription factor RNAi screen, we identify the spatial and temporal requirements for Pointed, an ETS family member, in this developmental pathway. Transcriptomic analysis of wild-type and Pointed-depleted olfactory tissue reveals a universal requirement for this factor as a switch-like determinant of fates in these sensory lineages. Few tools exist to study molecular diversity during neurodevelopment. Here the authors apply a genetic immortalization method in Drosophila to generate a fate map of olfactory sensory lineages, examine the relationships of this map and the neuroanatomical, molecular and evolutionary properties of the mature circuits, and identify a novel factor controlling lineage development.
Collapse
Affiliation(s)
- Phing Chian Chai
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Steeve Cruchet
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Leonore Wigger
- Lausanne Genomic Technologies Facility, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.,Vital-IT Group, SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
43
|
Kwon OS, Song HS, Park TH, Jang J. Conducting Nanomaterial Sensor Using Natural Receptors. Chem Rev 2018; 119:36-93. [DOI: 10.1021/acs.chemrev.8b00159] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oh Seok Kwon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Nanobiotechnology and Bioinformatics (Major), University of Science & Technology (UST), Daejon 34141, Republic of Korea
| | - Hyun Seok Song
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
44
|
The Effects of High Fat Diet-Induced Stress on Olfactory Sensitivity, Behaviors, and Transcriptional Profiling in Drosophila melanogaster. Int J Mol Sci 2018; 19:ijms19102855. [PMID: 30241362 PMCID: PMC6213603 DOI: 10.3390/ijms19102855] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
High-fat diet (HFD) often causes obesity and it has detrimental effects on the sensory system. In particular, sensory-mediated responses are crucial for maintaining energy balance, as they are involved in a metabolic regulation; however, there is still no clear explanation about the relationship between HFD-induced stress and sensory system. To gain insight on how HFD-induced stress affects olfactory sensitivity and behavioral responses, we have used a Drosophila melanogaster model for olfactory and nutrient-related signaling and accessed physiological, behavioral, and transcriptional changes. We demonstrated that lifespan and climbing ability in HFD-treated flies decreased and that olfactory sensitivity and behavioral responses to odorants were changed. Olfactory sensitivity to eight of ten odorants after 14 days on HFD treatment were reduced, while behavioral attraction was increased to benzaldehyde in flies that were treated with HFD. This behavioral and physiological modification in HFD-treated flies for 14 days was accompanied by a significant decrease in DmOrco gene expression in a peripheral olfactory organ, suggesting that is could be involved in the action of metabolic and sensory signal. Gene expression profiles of antennae showed significant differences on the olfactory receptors, odorant-binding proteins, and insulin signaling. Our results suggested that olfactory sensitivity and behavioral responses to HFD-induced stress are mediated through olfactory and nutrient-related signaling pathways.
Collapse
|
45
|
Yu Y, Zhou P, Zhang J, Zheng C, Zhang J, Chen N. Pheromone-binding proteins in the Asian gypsy moth females, Lymantria dispar, recognizing the sex pheromone and plant volatiles. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21477. [PMID: 29926517 DOI: 10.1002/arch.21477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lepidopterans are known to have different pheromone-binding proteins with differential expression patterns that facilitate specific signal transduction of semiochemicals. Two PBPs of the Asian gypsy moth, Lymantria dispar, were reported to express in both females and males, but their physiological functions were unknown. Results showed that LdisPBP1 and LdisPBP2 were expressed in the sensilla trichodea of males and the s. trichodea and s. basiconica of females. When LdisPBP1 gene was targeted by RNA interference (RNAi) in males, the expression of LdisPBP1 and LdisPBP2 decreased by 69 and 76%, respectively, and when LdisPBP2 gene was targeted by RNAi, they decreased by 60 and 42%, respectively. In females, after treatment with LdisPBP1 dsRNA, LdisPBP1 and LdisPBP2 levels were reduced by 26 and 69%, respectively, and LdisPBP2 dsRNA reduced the relative expression of them by 4 and 62%, respectively. The expression of LdisPBP1 and LdisPBP2 was interdependent. Electroantennogram (EAG) recordings showed that LdisPBPs participate in the recognition of the sex pheromone in males, and the sex pheromone and plant volatiles in females. The function of LdisPBPs represents the sex-specific roles.
Collapse
Affiliation(s)
- Yanxue Yu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, 100176, Beijing, China
| | - Ping Zhou
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, 100176, Beijing, China
| | - Junhua Zhang
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, 100176, Beijing, China
| | - Chao Zheng
- Suifenhe Entry-Exit Inspection and Quarantine Bureau, Heilongjiang Province, 157399, Suifenhe, China
| | - Jian Zhang
- Suifenhe Entry-Exit Inspection and Quarantine Bureau, Heilongjiang Province, 157399, Suifenhe, China
| | - Naizhong Chen
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, 100176, Beijing, China
| |
Collapse
|
46
|
Chen XL, Su L, Li BL, Li GW, Wu JX. Molecular and functional characterization of three odorant binding proteins from the oriental fruit moth Grapholita molesta (Busck) (Lepidoptera: Tortricide). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 98:e21456. [PMID: 29569371 DOI: 10.1002/arch.21456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Odorant binding proteins (OBPs) act in recognizing odor molecules and their most well-studied functions are transporting odors across the sensillum lymph to olfactory receptor neurons within the insect antennal sensillum. The adults of Grapholita molesta highly depend on olfactory cues in locating host plants and selecting oviposition sites, in which OBPs play an important role in perceiving and recognizing host plant volatiles. Exploring the physiological function of OBPs could facilitate our understanding of their importance in insects' chemical communication. In this study, three OBP genes were cloned and named GmolOBP4, GmolOBP5, and GmolOBP10. Quantitative real-time PCR results indicated that GmolOBP4 and GmolOBP10 were predominantly expressed in adult antennae and GmolOBP5 was expressed in multiple tissues, including head, legs, and wings in addition to antennae. The binding affinities of the three recombinant GmolOBPs (rGmolOBPs) with four sex pheromone components and twenty-nine host plant volatiles were measured using 1-N-Phenyl-naphthylamine as a fluorescence probe. The three rGmolOBPs exhibited specific binding properties to potential ligands, GmolOBP4 and GmolOBP10 bound to minor sex pheromone components, such as (Z)-8-dodecenyl alcohol and dodecanol, respectively. rGmolOBP4 showed intermediate binding ability with hexanal, benzyl alcohol, and pear ester, rGmolOBP5 had a weak affinity for benzaldehyde, pear ester and, methyl jasmonate, and rGmolOBP10 showed strong binding capacity toward hexanol, decanol, and α-ocimene. We speculate that the GmolOBP4 and GmolOBP10 have dual functions in perception and recognition of host plant volatiles and sex pheromone components, while GmolOBP5 may serve other function(s).
Collapse
Affiliation(s)
- Xiu-Lin Chen
- Key Laboratory of Plant Protection Resources and Pest Management, Northwest A&F University, Ministry of Education, Yangling, Shaanxi, China
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, China
| | - Li Su
- Department of Plant Protection, Agricultural College, Guangxi University, Nanning, Guangxi, China
| | - Bo-Liao Li
- Key Laboratory of Plant Protection Resources and Pest Management, Northwest A&F University, Ministry of Education, Yangling, Shaanxi, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guang-Wei Li
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, China
| | - Jun-Xiang Wu
- Key Laboratory of Plant Protection Resources and Pest Management, Northwest A&F University, Ministry of Education, Yangling, Shaanxi, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
47
|
Song XM, Zhang LY, Fu XB, Wu F, Tan J, Li HL. Various Bee Pheromones Binding Affinity, Exclusive Chemosensillar Localization, and Key Amino Acid Sites Reveal the Distinctive Characteristics of Odorant-Binding Protein 11 in the Eastern Honey Bee, Apis cerana. Front Physiol 2018; 9:422. [PMID: 29740337 PMCID: PMC5924804 DOI: 10.3389/fphys.2018.00422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/04/2018] [Indexed: 12/14/2022] Open
Abstract
Odorant-binding proteins (OBPs) are the critical elements responsible for binding and transporting odors and pheromones in the sensitive olfactory system in insects. Honey bees are representative social insects that have complex odorants and pheromone communication systems relative to solitary insects. Here, we first cloned and characterized OBP11 (AcerOBP11), from the worker bees antennae of Eastern honey bee, Apis cerana. Based on sequence and phylogenetic analysis, most sequences homologous to AcerOBP11 belong to the typical OBPs family. The transcriptional expression profiles showed that AcerOBP11 was expressed throughout the developmental stages and highly specifically expressed in adult antennae. Using immunofluorescence localization, AcerOBP11 in worker bee's antennae was only localized in the sensilla basiconica (SB) near the fringe of each segment. Fluorescence ligand-binding assay showed that AcerOBP11 protein had strong binding affinity with the tested various bee pheromones components, including the main queen mandibular pheromones (QMPs), methyl p-hydroxybenzoate (HOB), and (E)-9-oxo-2-decanoic acid (9-ODA), alarm pheromone (n-hexanol), and worker pheromone components. AcerOBP11 also had strong binding affinity to plant volatiles, such as 4-Allylveratrole. Based on the docking and site-directed mutagenesis, two key amino acid residues (Ile97 and Ile140) were involved in the binding of AcerOBP11 to various bee pheromones. Taken together, we identified that AcerOBP11 was localized in a single type of antennal chemosensilla and had complex ligand-binding properties, which confer the dual-role with the primary characteristics of sensing various bee pheromones and secondary characteristics of sensing general odorants. This study not only prompts the theoretical basis of OBPs-mediated bee pheromones recognition of honey bee, but also extends the understanding of differences in pheromone communication between social and solitary insects.
Collapse
Affiliation(s)
- Xin-Mi Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Lin-Ya Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China.,College of Life Science, Shangrao Normal University, Shangrao, China
| | - Xiao-Bin Fu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Fan Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jing Tan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Hong-Liang Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
48
|
Paula DP, Togawa RC, do Carmo Costa MM, Grynberg P, Martins NF, Andow DA. Systemic and sex-biased regulation of OBP expression under semiochemical stimuli. Sci Rep 2018; 8:6035. [PMID: 29662070 PMCID: PMC5902564 DOI: 10.1038/s41598-018-24297-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/27/2018] [Indexed: 11/12/2022] Open
Abstract
Constitutive expression of Odorant-Binding Proteins (OBPs) in antennae and other body parts has been examined mainly to infer their involvement in insect olfaction, while their regulation in response to semiochemical stimuli has remained poorly known. Previous studies of semiochemical response were basically done using electrophysiology, which integrates the response of the set of OBPs present in an antenna or sensillum, without revealing the regulation of OBPs or which ones might be involved. In this study we used boll weevil as a model and mined its OBPs by RNA-Seq to study their simultaneous antennal expression by qPCR under controlled semiochemical stimuli with aggregation pheromone and plant volatiles. In the absence of a semiochemical stimulus, 23 of 24 OBPs were constitutively expressed in the antenna in both sexes. Semiochemicals changed systemically the expression of OBPs in both sexes. There were different patterns of up- and down-regulation in female antennae for each semiochemical stimulus, consistent with female chemical ecology. On the other hand, the only response in males was down-regulation of some OBPs. We suggest that these systemic changes in OBP expression might be related to enhancing detection of the semiochemical stimuli and/or priming the olfactory system to detect other environmental chemicals.
Collapse
Affiliation(s)
- Débora Pires Paula
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770-917, Brazil.
| | - Roberto Coiti Togawa
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770-917, Brazil
| | - Marcos Mota do Carmo Costa
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770-917, Brazil
| | - Priscila Grynberg
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770-917, Brazil
| | - Natália Florêncio Martins
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770-917, Brazil
| | - David Alan Andow
- Department of Entomology, University of Minnesota, 219 Hodson Hall, 1980 Folwell Ave., St. Paul, MN, 55108, USA
| |
Collapse
|
49
|
Steiner C, Bozzolan F, Montagné N, Maïbèche M, Chertemps T. Neofunctionalization of "Juvenile Hormone Esterase Duplication" in Drosophila as an odorant-degrading enzyme towards food odorants. Sci Rep 2017; 7:12629. [PMID: 28974761 PMCID: PMC5626784 DOI: 10.1038/s41598-017-13015-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/12/2017] [Indexed: 11/08/2022] Open
Abstract
Odorant degrading enzymes (ODEs) are thought to be responsible, at least in part, for olfactory signal termination in the chemosensory system by rapid degradation of odorants in the vicinity of the receptors. A carboxylesterase, specifically expressed in Drosophila antennae, called "juvenile hormone esterase duplication (JHEdup)" has been previously reported to hydrolyse different fruit esters in vitro. Here we functionally characterize JHEdup in vivo. We show that the jhedup gene is highly expressed in large basiconic sensilla that have been reported to detect several food esters. An electrophysiological analysis demonstrates that ab1A olfactory neurons of jhedup mutant flies exhibit an increased response to certain food acetates. Furthermore, mutant flies show a higher sensitivity towards the same odorants in behavioural assays. A phylogenetic analysis reveals that jhedup arose as a duplication of the juvenile hormone esterase gene during the evolution of Diptera, most likely in the ancestor of Schizophora, and has been conserved in all the 12 sequenced Drosophila species. Jhedup exhibits also an olfactory-predominant expression pattern in other Drosophila species. Our results support the implication of JHEdup in the degradation of food odorants in D. melanogaster and propose a neofunctionalization of this enzyme as a bona fide ODE in Drosophilids.
Collapse
Affiliation(s)
- Claudia Steiner
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, INRA, CNRS, IRD, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Françoise Bozzolan
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, INRA, CNRS, IRD, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Nicolas Montagné
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, INRA, CNRS, IRD, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Martine Maïbèche
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, INRA, CNRS, IRD, Institute of Ecology and Environmental Sciences of Paris, Paris, France.
| | - Thomas Chertemps
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, INRA, CNRS, IRD, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| |
Collapse
|
50
|
Chemosensory genes in the antennal transcriptome of two syrphid species, Episyrphus balteatus and Eupeodes corollae (Diptera: Syrphidae). BMC Genomics 2017; 18:586. [PMID: 28784086 PMCID: PMC5547493 DOI: 10.1186/s12864-017-3939-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Predatory syrphid larvae are an important natural enemy of aphids in cotton agro-ecosystems in China. Their behaviors in prey foraging, localization and oviposition greatly rely on the perception of chemical cues. As a first step to better understand syrphid olfaction at the molecular level, we have performed a systematic identification of their major chemosensory genes. RESULTS Male and female antennal transcriptomes of Episyrphus balteatus and Eupeodes corollae were sequenced and assembled using Illumina HiSeq2000 technology. A total of 154 chemosensory genes in E. balteatus transcriptome, including candidate 51 odorant receptors (ORs), 32 ionotropic receptors (IRs), 14 gustatory receptors (GRs), 49 odorant-binding proteins (OBPs), 6 chemosensory proteins (CSPs) and 2 sensory neuron membrane proteins (SNMPs) were identified. In E. corollae transcriptome, we identified 134 genes including 42 ORs, 23 IRs, 16 GRs, 44 OBPs, 7 CSPs and 2 SNMPs. We have provided full-length sequences of the highly conserved co-receptor Orco, IR8a/25a family and carbon dioxide gustatory receptor in both syrphid species. The expression of candidate OR genes in the two syrphid species was evaluated by semi-quantitative reverse transcription PCR. There were no significant differences of transcript abundances in the respective male and female antenna, which is consistent with differentially expressed genes (DEGs) analysis using the FPKM value. The sequences of candidate chemosensory genes were confirmed and phylogenetic analysis was performed. CONCLUSIONS This research comprehensively analyzed and identified many novel candidate chemosensory genes regarding syrphid olfaction. It provides an opportunity for understanding how syrphid insects use chemical cues to conduct their behaviors among tritrophic interactions of plants, herbivorous insects, and natural enemies in agricultural ecosystems.
Collapse
|