1
|
Sogame Y, Saito R, Hakozaki S. Resting Cyst Formation as a Strategy for Environmental Adaptation in Colpodid Ciliates. Zoolog Sci 2025; 42. [PMID: 39932756 DOI: 10.2108/zs240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/04/2024] [Indexed: 05/08/2025]
Abstract
Resting cyst formation is a strategic aspect of the life cycle of some eukaryotes such as protists, and particularly ciliates, that enables adaptation to unfavorable environmental conditions. The formation of resting cysts involves large scale morphological and physiological changes that provide tolerance of extreme environmental stresses. The resting cyst shows suppression of normal features of life such as eating, moving, proliferation, and even mitochondrial metabolic activity, and appears lifeless. This review discusses resting cyst formation in the ciliates Colpoda as a representative model of cyst-forming organisms, and focusses on morphogenesis, molecular events, tolerances, and metabolic activities in resting cysts.
Collapse
Affiliation(s)
- Yoichiro Sogame
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima 970-8034, Japan,
| | - Ryota Saito
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima 970-8034, Japan
| | - Shuntaro Hakozaki
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima 970-8034, Japan
| |
Collapse
|
2
|
Wu S, Luo Y, Zeng Z, Yu Y, Zhang S, Hu Y, Chen L. Determination of internal controls for quantitative gene expression of Spodoptera litura under microbial pesticide stress. Sci Rep 2024; 14:6143. [PMID: 38480844 PMCID: PMC10937984 DOI: 10.1038/s41598-024-56724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/10/2024] [Indexed: 03/17/2024] Open
Abstract
Quantitative real-time polymerase chain reaction (qRT-PCR) has become a commonly used method for the quantification of gene expression. However, accurate qRT-PCR analysis requires a valid internal reference for data normalization. To determine the valid reference characterized with low expression variability among Spodoptera litura samples after microbial pesticide treatments, nine housekeeping genes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), arginine kinase, ubiquitin C, actin-5C (ACT5C), actin, ribosomal protein S13 (RPS13), tubulin, acidic ribosomal protein P0 (RPLP0) and ubiquinol-cytochrome c reductase, were evaluated for their suitability using geNorm, Normfinder, BestKeeper, RefFinder and the comparative delta CT methods in this study. S. litura larvae after direct treatment (larvae were immersed in biopesticides), indirect treatment (larvae were fed with biopesticide immersed artificial diets) and comprehensive treatment (larvae were treated with the first two treatments in sequence), respectively with Metarhizium anisopliae, Empedobacter brevis and Bacillus thuringiensis, were investigated. The results indicated that the best sets of internal references were as follows: RPLP0 and ACT5C for direct treatment conditions; RPLP0 and RPS13 for indirect treatment conditions; RPS13 and GAPDH for comprehensive treatment conditions; RPS13 and RPLP0 for all the samples. These results provide valuable bases for further genetic researches in S. litura.
Collapse
Affiliation(s)
- Shuang Wu
- Institute of Vegetable and Flower Research, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Yunmi Luo
- Institute of Vegetable and Flower Research, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Zhihong Zeng
- Institute of Vegetable and Flower Research, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Ying Yu
- Institute of Vegetable and Flower Research, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Shicai Zhang
- Institute of Vegetable and Flower Research, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Yan Hu
- Institute of Vegetable and Flower Research, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Lei Chen
- Institute of Vegetable and Flower Research, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China.
| |
Collapse
|
3
|
Huang Y, Shukla H, Lee YCG. Species-specific chromatin landscape determines how transposable elements shape genome evolution. eLife 2022; 11:81567. [PMID: 35997258 PMCID: PMC9398452 DOI: 10.7554/elife.81567] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Transposable elements (TEs) are selfish genetic parasites that increase their copy number at the expense of host fitness. The ‘success’, or genome-wide abundance, of TEs differs widely between species. Deciphering the causes for this large variety in TE abundance has remained a central question in evolutionary genomics. We previously proposed that species-specific TE abundance could be driven by the inadvertent consequences of host-direct epigenetic silencing of TEs—the spreading of repressive epigenetic marks from silenced TEs into adjacent sequences. Here, we compared this TE-mediated local enrichment of repressive marks, or ‘the epigenetic effect of TEs’, in six species in the Drosophila melanogaster subgroup to dissect step-by-step the role of such effect in determining genomic TE abundance. We found that TE-mediated local enrichment of repressive marks is prevalent and substantially varies across and even within species. While this TE-mediated effect alters the epigenetic states of adjacent genes, we surprisingly discovered that the transcription of neighboring genes could reciprocally impact this spreading. Importantly, our multi-species analysis provides the power and appropriate phylogenetic resolution to connect species-specific host chromatin regulation, TE-mediated epigenetic effects, the strength of natural selection against TEs, and genomic TE abundance unique to individual species. Our findings point toward the importance of host chromatin landscapes in shaping genome evolution through the epigenetic effects of a selfish genetic parasite. All the instructions required for life are encoded in the set of DNA present in a cell. It therefore seems natural to think that every bit of this genetic information should serve the organism. And yet most species carry parasitic ‘transposable’ sequences, or transposons, whose only purpose is to multiply and insert themselves at other positions in the genome. It is possible for cells to suppress these selfish elements. Chemical marks can be deposited onto the DNA to temporarily ‘silence’ transposons and prevent them from being able to move and replicate. However, this sometimes comes at a cost: the repressive chemical modifications can spread to nearby genes that are essential for the organism and perturb their function. Strangely, the prevalence of transposons varies widely across the tree of life. These sequences form the majority of the genome of certain species – in fact, they represent about half of the human genetic information. But their abundance is much lower in other organisms, forming a measly 6% of the genome of puffer fish for instance. Even amongst fruit fly species, the prevalence of transposable elements can range between 2% and 25%. What explains such differences? Huang et al. set out to examine this question through the lens of transposon silencing, systematically comparing how this process impacts nearby regions in six species of fruit flies. This revealed variations in the strength of the side effects associated with transposon silencing, resulting in different levels of perturbation on neighbouring genes. A stronger impact was associated with the species having fewer transposons in its genome, suggesting that an evolutionary pressure is at work to keep the abundance of transposons at a low level in these species. Further analyses showed that the genes which determine how silencing marks are distributed may also be responsible for the variations in the impact of transposon silencing. They could therefore be the ones driving differences in the abundance of transposons between species. Overall, this work sheds light on the complex mechanisms shaping the evolution of genomes, and it may help to better understand how transposons are linked to processes such as aging and cancer.
Collapse
Affiliation(s)
- Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| | - Harsh Shukla
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| | - Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| |
Collapse
|
4
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
5
|
Kar B, Mohapatra A, Mohanty J, Sahoo PK. Evaluation of ribosomal P0 peptide as a vaccine candidate against Argulus siamensis in Labeo rohita. Open Life Sci 2017. [DOI: 10.1515/biol-2017-0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractArgulusspp. are important ectoparasites of fish, and the current approach of their control using chemical pesticides has numerous drawbacks. Vaccination is a promising alternative but identification of protective antigens is a limiting step. The ribosomal protein P0, essential for protein synthesis, has been studied as a vaccine candidate. We generated sequence information of the P0 protein of the ectoparasiteArgulus siamensisand the hostLabeo rohita. The region of the parasite P0 protein with less sequence similarity with that of the host P0 protein and high predicted antigenicity was used for peptide synthesis. The peptide was conjugated with keyhole limpet hemocyanin (KLH) for immunization of rohu at a dose of 1.5 μg/g body weight. Dot blot assays confirmed production of antibodies against pP0-KLH in immunized fish. We evaluated the efficiency of pP0-KLH as a vaccine antigen by challenge of the immunized fish withA.siamensis. Although there was no significant difference in parasite load between both groups, a reduced and delayed mortality of 59% (15 days post-infection) in immunized group was noticed as compared to 75% mortality (within 7–15 days post-infection) in control group. The partial protection observed indicated the need for further optimization of this molecule to develop it into a vaccine candidate.
Collapse
Affiliation(s)
- Banya Kar
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar-751 002, Odisha, India
| | - Amruta Mohapatra
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar-751 002, Odisha, India
| | - Jyotirmaya Mohanty
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar-751 002, Odisha, India
| | - Pramoda Kumar Sahoo
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar-751 002, Odisha, India
| |
Collapse
|
6
|
Swenson JM, Colmenares SU, Strom AR, Costes SV, Karpen GH. The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic. eLife 2016; 5:e16096. [PMID: 27514026 PMCID: PMC4981497 DOI: 10.7554/elife.16096] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors and regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.
Collapse
Affiliation(s)
- Joel M Swenson
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Serafin U Colmenares
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Amy R Strom
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Sylvain V Costes
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Gary H Karpen
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
7
|
Sogame Y, Kojima K, Takeshita T, Fujiwara S, Miyata S, Kinoshita E, Matsuoka T. Protein phosphorylation in encystment-induced Colpoda cucullus: localization and identification of phosphoproteins. FEMS Microbiol Lett 2012; 331:128-35. [DOI: 10.1111/j.1574-6968.2012.02560.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 03/23/2012] [Accepted: 03/23/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
- Yoichiro Sogame
- Institute of Biological Science; Faculty of Science; Kochi University; Kochi; Japan
| | - Katsuhiko Kojima
- Department of Microbiology and Immunology; Shinshu University School of Medicine; Nagano; Japan
| | - Toshikazu Takeshita
- Department of Microbiology and Immunology; Shinshu University School of Medicine; Nagano; Japan
| | - Shigeki Fujiwara
- Department of Applied Science; Faculty of Science; Kochi University; Kochi; Japan
| | - Seiji Miyata
- Department of Applied Biology; Kyoto Institute of Technology; Kyoto; Japan
| | - Eiji Kinoshita
- Department of Functional Molecular Science; Graduate School of Biomedical Sciences; Hiroshima University; Hiroshima; Japan
| | - Tatsuomi Matsuoka
- Institute of Biological Science; Faculty of Science; Kochi University; Kochi; Japan
| |
Collapse
|
8
|
Plasmodium riboprotein PfP0 induces a deviant humoral immune response in Balb/c mice. J Biomed Biotechnol 2012; 2012:695843. [PMID: 22315513 PMCID: PMC3270442 DOI: 10.1155/2012/695843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/30/2011] [Accepted: 10/02/2011] [Indexed: 12/04/2022] Open
Abstract
Passive immunization with antibodies to recombinant Plasmodium falciparum P0 riboprotein (rPfP0, 61–316 amino acids) provides protection against malaria. Carboxy-terminal 16 amino acids of the protein (PfP0C0) are conserved and show 69% identity to human and mouse P0. Antibodies to this domain are found in 10–15% of systemic lupus erythematosus patients. We probed the nature of humoral response to PfP0C0 by repeatedly immunizing mice with rPfP0. We failed to raise stable anti-PfP0C0 hybridomas from any of the 21 mice. The average serum anti-PfP0C0 titer remained low (5.1 ± 1.3 × 104). Pathological changes were observed in the mice after seven boosts. Adsorption with dinitrophenyl hapten revealed that the anti-PfP0C0 response was largely polyreactive. This polyreactivity was distributed across all isotypes. Similar polyreactive responses to PfP0 and PfP0C0 were observed in sera from malaria patients. Our data suggests that PfP0 induces a deviant humoral response, and this may contribute to immune evasion mechanisms of the parasite.
Collapse
|
9
|
Ambegaokar SS, Jackson GR. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum Mol Genet 2011; 20:4947-77. [PMID: 21949350 PMCID: PMC3221533 DOI: 10.1093/hmg/ddr432] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation.
Collapse
Affiliation(s)
- Surendra S Ambegaokar
- Department of Neurology, University of Texas Medical Branch, 301 University Blvd., MRB 10.138, Galveston, TX 77555, USA
| | | |
Collapse
|
10
|
Ramos CAN, Araújo FR, Souza IIF, Oliveira RHM, Elisei C, Soares CO, Sacco AMS, Rosinha GMS, Alves LC. Molecular and antigenic characterisation of ribosomal phosphoprotein P0 from Babesia bovis. Mem Inst Oswaldo Cruz 2010; 104:998-1002. [PMID: 20027467 DOI: 10.1590/s0074-02762009000700010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 09/23/2009] [Indexed: 11/21/2022] Open
Abstract
Babesia bovis is a tick-borne pathogen that remains an important constraint for the development of cattle industries in tropical and subtropical regions of the world. Effective control can be achieved by vaccination with live attenuated phenotypes of the parasite. However, these phenotypes have a number of drawbacks, which justifies the search for new, more efficient immunogens based mainly on recombinant protein technology. In the present paper, ribosomal phosphoprotein P0 from a Brazilian isolate of B. bovis was produced and evaluated with regard to conservation and antigenicity. The protein sequence displayed high conservation between different Brazilian isolates of B. bovis and several Apicomplexa parasites such as Theileria, Neospora and Toxoplasma. IgG from cattle experimentally and naturally infected with B. bovisas well as IgG1 and IgG2 from naturally infected cattle reacted with the recombinant protein. IgG from cattle experimentally infected with Babesia bigemina cross-reacted with B. bovis recombinant P0. These characteristics suggest that P0 is a potential antigen for recombinant vaccine preparations against bovine babesiosis.
Collapse
Affiliation(s)
- Carlos A N Ramos
- Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gene silencing of ribosomal protein P0 is lethal to the tick Haemaphysalis longicornis. Vet Parasitol 2008; 151:268-78. [DOI: 10.1016/j.vetpar.2007.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/06/2007] [Accepted: 11/07/2007] [Indexed: 11/18/2022]
|
12
|
Kavi HH, Fernandez H, Xie W, Birchler JA. Genetics and biochemistry of RNAi in Drosophila. Curr Top Microbiol Immunol 2008; 320:37-75. [PMID: 18268839 DOI: 10.1007/978-3-540-75157-1_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RNA interference (RNAi) is the technique employing double-stranded RNA to target the destruction of homologous messenger RNAs. It has gained wide usage in genetics. While having the potential for many practical applications, it is a reflection of a much broader spectrum of small RNA-mediated processes in the cell. The RNAi machinery was originally perceived as a defense mechanism against viruses and transposons. While this is certainly true, small RNAs have now been implicated in many other aspects of cell biology. Here we review the current knowledge of the biochemistry of RNAi in Drosophila and the involvement of small RNAs in RNAi, transposon silencing, virus defense, transgene silencing, pairing-sensitive silencing, telomere function, chromatin insulator activity, nucleolar stability, and heterochromatin formation. The discovery of the role of RNA molecules in the degradation of mRNA transcripts leading to decreased gene expression resulted in a paradigm shift in the field of molecular biology. Transgene silencing was first discovered in plant cells (Matzke et al. 1989; van der Krol et al. 1990; Napoli et al. 1990) and can occur on both the transcriptional and posttranscriptional levels, but both involve short RNA moieties in their mechanism. RNA interference (RNAi) is a type of gene silencing mechanism in which a double-stranded RNA (dsRNA) molecule directs the specific degradation of the corresponding mRNA (target RNA). The technique of RNAi was first discovered in Caenorhabditis elegans in 1994 (Guo and Kemphues 1994). Later the active component was found to be a dsRNA (Fire et al. 1998). In subsequent years, it has been found to occur in diverse eukaryotes
Collapse
Affiliation(s)
- Harsh H Kavi
- Division of Biological Sciences, University of Missouri, Tucker Hall, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
13
|
Di Stefano L, Ji JY, Moon NS, Herr A, Dyson N. Mutation of Drosophila Lsd1 disrupts H3-K4 methylation, resulting in tissue-specific defects during development. Curr Biol 2007; 17:808-12. [PMID: 17462898 PMCID: PMC1909692 DOI: 10.1016/j.cub.2007.03.068] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 03/29/2007] [Accepted: 03/30/2007] [Indexed: 11/30/2022]
Abstract
Histone-tail modifications play a fundamental role in the processes that establish chromatin structure and determine gene expression. One such modification, histone methylation, was considered irreversible until the recent discovery of histone demethylases. Lsd1 was the first histone demethylase to be identified. Lsd1 is highly conserved in many species, from yeast to humans, but its function has primarily been studied through biochemical approaches. The mammalian ortholog has been shown to demethylate monomethyl- and dimethyl-K4 and -K9 residues of histone H3. Here we describe the effects of Lsd1 mutation in Drosophila. The inactivation of dLsd1 strongly affects the global level of monomethyl- and dimethyl-H3-K4 methylation and results in elevated expression of a subset of genes. dLsd1 is not an essential gene, but animal viability is strongly reduced in mutant animals in a gender-specific manner. Interestingly, dLsd1 mutants are sterile and possess defects in ovary development, indicating that dLsd1 has tissue-specific functions. Mutant alleles of dLsd1 suppress positional-effect variegation, suggesting a disruption of the balance between euchromatin and heterochromatin. Taken together, these results show that dLsd1-mediated H3-K4 demethylation has a significant and specific role in Drosophila development.
Collapse
Affiliation(s)
| | | | | | | | - Nicholas Dyson
- *Corresponding author: Nicholas Dyson, , Fax: +1-617-726-7808, Tel: +1-617-726-7800
| |
Collapse
|
14
|
Terkawi MA, Jia H, Gabriel A, Goo YK, Nishikawa Y, Yokoyama N, Igarashi I, Fujisaki K, Xuan X. A shared antigen among Babesia species: ribosomal phosphoprotein P0 as a universal babesial vaccine candidate. Parasitol Res 2007; 102:35-40. [PMID: 17823817 DOI: 10.1007/s00436-007-0718-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
Abstract
Babesia gibsoni ribosomal phosphoprotein P0 (BgP0) was previously identified as a cross-protective antigen against Babesia microti infection in mice. Interestingly, the same protein showed considerable antigenicity when tested with serum samples collected from Babesia-infected animals. Moreover, the polyclonal antibody raised against the recombinant BgP0 (rBgP0) recognized the P0 homologues from other Babesia species either by immunoblotting or by immunoscreening. The P0 genes from Babesia caballi, Babesia equi, and Babesia bigemina were then cloned and sequenced. The phylogenic analyses based on the amino acid sequences indicated that BgP0 has high identities with B. caballi P0 (88.1%), B. bigemina P0 (85.6%), Babesia bovis P0 (81.4%), and B. equi P0 (64.9%). Western blot analyses revealed that the corresponding native proteins ranged between 31 and 34 kDa, consistent with predicated molecular weight of Babesia P0. Furthermore, the immunogenic property of anti-rBgP0 IgG was evaluated against a B. bovis in vitro culture. The growth of B. bovis parasites was restricted by anti-rBgP0 IgG in a concentration-dependent manner, and significant reductions in parasitemia were observed only at 1 mg/ml in the culture. Taken together, these data suggest that P0 is a conserved protective antigen among Babesia species and might be a potentially universal vaccine candidate for babesiosis.
Collapse
Affiliation(s)
- M Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Terkawi MA, Jia H, Zhou J, Lee EG, Igarashi I, Fujisaki K, Nishikawa Y, Xuan X. Babesia gibsoni ribosomal phosphoprotein P0 induces cross-protective immunity against B. microti infection in mice. Vaccine 2007; 25:2027-35. [PMID: 17229504 DOI: 10.1016/j.vaccine.2006.11.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 11/20/2006] [Accepted: 11/20/2006] [Indexed: 11/22/2022]
Abstract
Babesia gibsoni ribosomal phosphoprotein P0 (BgP0) was identified as an immunodominant cross-reactive antigen with B. microti. The BgP0 gene is a single copy with a predicted open reading frame of 942 bp and 314 amino acids. The BgP0 was expressed as a glutathione S-transferase fusion protein in Escherichia coli. The serum raised in mice with the recombinant BgP0 showed a specific band with a 34-kDa molecular mass in the extracts of B. gibsoni and B. microti merozoites. Furthermore, the intraperitoneal (i.p.) immunization of rBgP0 and Freund's adjuvant induced strong humoral response consisting of mixed immunoglobulins IgG1 and IgG2a in BALB/c mice. Following the challenge with B. microti, these mice delayed the onset of parasites and significantly reduced the peripheral parasitemia. On the other hand, passive-transfer of purified anti-BgP0 IgG into SCID mice showed partial protection against B. microti challenge infection. It was only effective in restricting the initial parasitemia but not later during its progress. Taken together, the immunological response elicited by rBgP0 protected the mice against B. microti challenge infection. These data suggest that BgP0 is a potentially universal vaccine candidate for both B. gibsoni and B. microti infections.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/immunology
- Babesia/genetics
- Babesia/immunology
- Babesiosis/immunology
- Babesiosis/prevention & control
- Blotting, Western
- Cloning, Molecular
- Cross Reactions
- Disease Models, Animal
- Dogs
- Enzyme-Linked Immunosorbent Assay
- Female
- Gene Expression
- Humans
- Immunization, Passive
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Molecular Sequence Data
- Parasitemia
- Protozoan Vaccines/genetics
- Protozoan Vaccines/immunology
- Ribosomal Proteins/genetics
- Ribosomal Proteins/immunology
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- M Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kavi HH, Fernandez HR, Xie W, Birchler JA. RNA silencing inDrosophila. FEBS Lett 2005; 579:5940-9. [PMID: 16198344 DOI: 10.1016/j.febslet.2005.08.069] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/26/2005] [Accepted: 08/28/2005] [Indexed: 11/18/2022]
Abstract
Knowledge of the role of RNA in affecting gene expression has expanded in the past several years. Small RNAs serve as homology guides to target messenger RNAs for destruction at the post-transcriptional level in the experimental technique known as RNA interference and in the silencing of some transgenes. These small RNAs are also involved in sequence-specific targeting of chromatin modifications for transcriptional silencing of transgenes, transposable elements, heterochromatin and some cases of Polycomb-mediated gene silencing. RNA silencing processes in Drosophila are described.
Collapse
Affiliation(s)
- Harsh H Kavi
- Division of Biological Sciences, University of Missouri, 117 Tucker Hall, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
17
|
Wu S, Storey KB. Up-regulation of acidic ribosomal phosphoprotein P0 in response to freezing or anoxia in the freeze tolerant wood frog, Rana sylvatica. Cryobiology 2005; 50:71-82. [PMID: 15710371 DOI: 10.1016/j.cryobiol.2004.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 11/16/2004] [Accepted: 11/18/2004] [Indexed: 10/25/2022]
Abstract
Natural freezing survival by the wood frog, Rana sylvatica, involves multiple organ-specific, freeze-responsive changes in gene expression. The present study provides the first report of freeze-responsive genes in brain. Differential screening of a cDNA library made from brain of frozen wood frogs revealed a freeze-responsive clone encoding a protein of 315 amino acids that was identified as the acidic ribosomal phosphoprotein, P0 (GenBank Accession No. AF176302). The amino acid sequence showed 91-92% identity with the protein from other vertebrates. Thirteen unique amino acid substitutions occurred as compared with mammalian or avian P0 sequences; these may represent structural differences that support protein function at low body temperature. Transcripts of P0 rose by 8-fold in brain of frogs frozen for 24 h at -2.5 degrees C, compared with controls at 5 degrees C, and reached 12-fold higher in 24 h thawed frogs. Immunoblotting showed that P0 protein increased by approximately 3-fold in brain during freezing and remained high after thawing. Freeze up-regulation of P0 was largely brain-specific; transcript levels were unaffected in skeletal muscle and skin and, although transcripts rose approximately 2-fold in liver of frozen frogs, liver P0 protein was unchanged (although P0 protein was much higher overall in liver than in brain). P0 transcripts in wood frog brain were also elevated during anoxia exposure (by approximately 4-fold), but did not change under dehydration stress. The gene was similarly up-regulated under anoxia in brain of the freeze intolerant leopard frog, Rana pipiens. This suggests that P0 expression responds to anoxia stress during freezing. Changes in P0 content in ribosomes may contribute to altered patterns of protein synthesis under anoxia or ischemia.
Collapse
Affiliation(s)
- Shaobo Wu
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., Canada K1S 5B6
| | | |
Collapse
|
18
|
Abstract
Vigilin proteins, the absence of which is known to cause abnormalities in heterochromatin, have been found to bind edited RNAs. Molecular complexes including vigilin comprise proteins involved with RNA editing and with DNA repair, making connections between these processes and RNA-based silencing mechanisms.
Collapse
Affiliation(s)
- H R Fernandez
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
19
|
Aruna K, Chakraborty T, Nambeesan S, Mannan AB, Sehgal A, Bhalchandara SR, Sharma S. Identification of a hypothetical membrane protein interactor of ribosomal phosphoprotein P0. J Biosci 2004; 29:33-43. [PMID: 15286401 DOI: 10.1007/bf02702559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ribosomal phosphoprotein P0 of the human malarial parasite Plasmodium falciparum (PfP0) has been identified as a protective surface protein. In Drosophila, P0 protein functions in the nucleus. The ribosomal function of P0 is mediated at the stalk of the large ribosomal subunit at the GTPase centre, where the elongation factor eEF2 binds. The multiple roles of the P0 protein presumably occur through interactions with other proteins. To identify such interacting protein domains, a yeast two-hybrid screen was carried out. Out of a set of sixty clones isolated, twelve clones that interacted strongly with both PfP0 and the Saccharomyces cerevisiae P0 (ScP0) protein were analysed. These belonged to three broad classes: namely (i) ribosomal proteins; (ii) proteins involved in nucleotide binding; and (iii) hypothetical integral membrane proteins. One of the strongest interactors (clone 67B) mapped to the gene YFL034W which codes for a hypothetical integral membrane protein, and is conserved amongst several eukaryotic organisms. The insert of clone 67B was expressed as a recombinant protein, and immunoprecipitaion (IP) reaction with anti-P0 antibodies pulled down this protein along with PfP0 as well as ScP0 protein. Using deletion constructions, the domain of ScP0, which interacted with clone 67B, was mapped to 60-148 amino acids. It is envisaged that the surface localization of P0 protein may be mediated through interactions with putative YFL034W-like proteins in P. falciparum.
Collapse
Affiliation(s)
- K Aruna
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | | | | | | | | |
Collapse
|
20
|
Sehgal A, Kumar N, Carruthers VB, Sharma S. Translocation of ribosomal protein P0 onto the Toxoplasma gondii tachyzoite surface. Int J Parasitol 2003; 33:1589-94. [PMID: 14636674 DOI: 10.1016/s0020-7519(03)00267-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A ribosomal phosphoprotein P0 detected on the surface of the human malarial parasite Plasmodium falciparum (PfP0) has been shown to be recognised by invasion blocking antibodies. Using cross-reactive polyclonal antibodies against PfP0, the surface localisation has also been demonstrated on certain mammalian cells, yeast and Toxoplasma gondii. We sought to characterise the phenomenon of surface localisation in Toxoplasma using T. gondii P0 protein. Sequence analysis of a cDNA clone isolated from a T. gondii library showed marked similarity to PfP0, suggesting that T. gondii expresses an orthologous gene, TgP0. The expression of TgP0 was corroborated by Northern blot analysis revealing a transcript of 1.8 kb in size. Immunofluorescence analysis using anti-PfP0 indicated surface localisation of TgP0. To confirm surface translocation of the TgP0, tachyzoites were transfected with the HA-tagged TgP0 gene followed by immunofluorescence detection of the HA-tag. Surface translocation of transiently expressed TgP0 and blocking of tachyzoite invasion of human foreskin fibroblasts by anti-PfP0 antibodies suggest that P0 protein plays an important role in T. gondii invasion of human cells.
Collapse
Affiliation(s)
- Alfica Sehgal
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | | | | | | |
Collapse
|
21
|
Yu J, Garfinkel AB, Wolfner MF. Interaction of the essential Drosophila nuclear protein YA with P0/AP3 in the cytoplasm and in vitro: implications for developmental regulation of YA's subcellular location. Dev Biol 2002; 244:429-41. [PMID: 11944949 DOI: 10.1006/dbio.2002.0601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Drosophila nuclear lamina protein YA is essential for the transition from female meiosis to embryo mitosis. Its localization and, hence, function is under developmental and cell cycle controls. YA protein is hyperphosphorylated and cytoplasmic in ovaries. Upon egg activation, YA is partially dephosphorylated and acquires the ability to enter nuclei. Its function is first detected at this time. To investigate the cytoplasmic retention machinery that keeps YA from entering nuclei, we used affinity chromatography and blot overlay assays to identify cytoplasmic proteins that associate with YA. Drosophila P0/AP3, a ribosomal protein that is also an apurinic/apyrimidinic endonuclease, binds to YA in ovary and embryo cytoplasms. P0 and YA bind specifically and directly in vitro and are present in a 20S complex in the cytoplasmic extracts. YA protein can be phosphorylated by MAPK, but not by p34(Cdc2) kinase, in vitro. This phosphorylation increases YA's binding to P0. We propose that the P0-containing 20S cytoplasmic complex retains hyperphosphorylated ovarian YA in the cytoplasm. In response to egg activation, YA is partially dephosphorylated and its binding to the 20S complex is reduced. Hence, some YA dissociates from the complex and enters nuclei. Consistent with this model, decreasing P0 levels partially suppress a hypomorphic Ya mutant allele.
Collapse
Affiliation(s)
- Jing Yu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850-2703, USA
| | | | | |
Collapse
|
22
|
Inoue N, Otsu K, Ferraro DM, Donelson JE. Tetracycline-regulated RNA interference in Trypanosoma congolense. Mol Biochem Parasitol 2002; 120:309-13. [PMID: 11897138 DOI: 10.1016/s0166-6851(02)00015-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Noboru Inoue
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | |
Collapse
|
23
|
Singh S, Sehgal A, Waghmare S, Chakraborty T, Goswami A, Sharma S. Surface expression of the conserved ribosomal protein P0 on parasite and other cells. Mol Biochem Parasitol 2002; 119:121-4. [PMID: 11755193 DOI: 10.1016/s0166-6851(01)00394-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Subhash Singh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, 400 005, Mumbai, India
| | | | | | | | | | | |
Collapse
|
24
|
Birchler JA, Bhadra U, Bhadra MP, Auger DL. Dosage-dependent gene regulation in multicellular eukaryotes: implications for dosage compensation, aneuploid syndromes, and quantitative traits. Dev Biol 2001; 234:275-88. [PMID: 11396999 DOI: 10.1006/dbio.2001.0262] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evidence from a variety of data suggests that regulatory mechanisms in multicellular eukaryotes have evolved in such a manner that the stoichiometric relationship of the components of regulatory complexes affects target gene expression. This type of mechanism sets the level of gene expression and, as a consequence, the phenotypic characteristics. Because many types of regulatory processes exhibit dosage-dependent behavior, they would impact quantitative traits and contribute to their multigenic control in a semidominant fashion. Many dosage-dependent effects would also account for the extensive modulation of gene expression throughout the genome that occurs when chromosomes are added to or subtracted from the karyotype (aneuploidy). Moreover, because the majority of dosage-dependent regulators act negatively, this property can account for the up-regulation of genes in monosomics and hemizygous sex chromosomes to achieve dosage compensation.
Collapse
Affiliation(s)
- J A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | |
Collapse
|
25
|
Craig TL, Denlinger DL. Sequence and transcription patterns of 60S ribosomal protein P0, a diapause-regulated AP endonuclease in the flesh fly, Sarcophaga crassipalpis. Gene 2000; 255:381-8. [PMID: 11024299 DOI: 10.1016/s0378-1119(00)00307-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have isolated and sequenced a 1308bp clone from a pupal brain cDNA library of the flesh fly, Sarcophaga crassipalpis, showing 97% amino acid (aa) sequence similarity to Ceratitis capitata 60S acidic ribosomal protein P0 (CcP0) and 93% aa sequence similiarity to Drosophila melanogaster P0 (DmP0). DmP0 is a multifunctional protein necessary for efficient protein translation of the 60S ribosome as well as DNA repair via AP3 endonuclease activity. In this study, we observed that S. crassipalpis P0 (ScP0) is cyclically regulated throughout the fly's overwintering pupal diapause. Expression of ScP0 cycles out of phase with the 4day cycles of O(2) consumption: the peak day of O(2) consumption is characterized by low ScP0 expression, while high expression is noted during the trough of the O(2) consumption cycle. The O(2) cycles, which are in turn driven by cycles of juvenile hormone (JH), can be eliminated by application of a JH analog (JHA). Pupae rendered acyclic with a JHA application consume O(2) at a constant high rate and ScP0 is consistently downregulated. Our findings thus suggest that the cyclic nature of ScP0 regulation during pupal diapause is linked to the JH-mediated metabolic cycles characteristic of this species.
Collapse
Affiliation(s)
- T L Craig
- The Ohio State University, Department of Entomology, Columbus, OH 43210-1220, USA
| | | |
Collapse
|
26
|
Chatterjee S, Singh S, Sohoni R, Singh NJ, Vaidya A, Long C, Sharma S. Antibodies against ribosomal phosphoprotein P0 of Plasmodium falciparum protect mice against challenge with Plasmodium yoelii. Infect Immun 2000; 68:4312-8. [PMID: 10858250 PMCID: PMC101754 DOI: 10.1128/iai.68.7.4312-4318.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibodies against the Plasmodium falciparum P0 ribosomal phosphoprotein (PfP0) have been detected exclusively but extensively in malaria-immune persons. Polyclonal rabbit and mice sera were raised against two recombinant polypeptides of P. falciparum P0 protein, PfP0N and PfP0C, covering amino acids 17 to 61 and the remaining amino acids 61 to 316, respectively. Sera against both these domains detected a 35-kDa protein from Plasmodium yoelii subsp. yoelii, a rodent malarial parasite, and stained the surface of merozoites in immunofluorescence assays. Total immunoglobulin G (IgG) purified from rabbit and mouse anti-PfP0 sera by ammonium sulfate and DEAE-cellulose chromatography was used for passive transfer experiments in mice. Mice passively immunized with both anti-PfP0N and anti-PfP0C showed distinctly lower levels of parasitemia than control mice. With immunizations on days -1, 0, 1, 3, and 5, about 50% of both sets of mice receiving anti-PfP0N and anti-PfP0C cleared the lethal 17XL strain of P. yoelii and revived by day 25. All the control mice died by day 10. By extending the immunization schedule, the survival period of the mice could be extended for every mouse that received anti-PfP0 IgG. These data demonstrate the cross-protection of the anti-PfP0 IgG and establish parasite P0 protein as a target for invasion-blocking antibodies.
Collapse
Affiliation(s)
- S Chatterjee
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400 005, India
| | | | | | | | | | | | | |
Collapse
|