1
|
Regulatory switch enforced by basic helix-loop-helix and ACT-domain mediated dimerizations of the maize transcription factor R. Proc Natl Acad Sci U S A 2012; 109:E2091-7. [PMID: 22778424 DOI: 10.1073/pnas.1205513109] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The maize R2R3-MYB regulator C1 cooperates with the basic helix-loop-helix (bHLH) factor R to activate the expression of anthocyanin biosynthetic genes coordinately. As is the case for other bHLH factors, R harbors several protein-protein interaction domains. Here we show that not the classical but rather a briefly extended R bHLH region forms homodimers that bind canonical G-box DNA motifs. This bHLH DNA-binding activity is abolished if the C-terminal ACT (aspartokinase, chorismate, and TyrA) domain is licensed to homodimerize. Then the bHLH remains in the monomeric form, allowing it to interact with R-interacting factor 1 (RIF1). In this configuration, the R-RIF1 complex is recruited to the promoters of a subset of anthocyanin biosynthetic genes, such as A1, through the interaction with its MYB partner C1. If, however, the ACT domain remains monomeric, the bHLH region dimerizes and binds to G-boxes present in several anthocyanin genes, such as Bz1. Our results provide a mechanism by which a dimerization domain in a bHLH factor behaves as a switch that permits distinct configurations of a regulatory complex to be tethered to different promoters. Such a combinatorial gene regulatory framework provides one mechanism by which genes lacking obviously conserved cis-regulatory elements are regulated coordinately.
Collapse
|
2
|
Fujino K, Sekiguchi H. Transposition behavior of nonautonomous a hAT superfamily transposon nDart in rice (Oryza sativa L.). Mol Genet Genomics 2011; 286:135-42. [PMID: 21710178 DOI: 10.1007/s00438-011-0633-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/11/2011] [Indexed: 01/22/2023]
Abstract
Transposable elements (TEs) have a significant impact on the evolution of gene function and genome structures. An endogenous nonautonomous transposable element nDart was discovered in an albino mutant that had an insertion in the Mg-protoporphyrin IX methyltransferase gene in rice. In this study, we elucidated the transposition behavior of nDart, the frequency of nDart transposition and characterized the footprint of nDart. Novel independent nDart insertions in backcrossed progenies were detected by DNA blotting analysis. In addition, germinal excision of nDart occurred at very low frequency compared with that of somatic excision, 0-13.3%, in the nDart1-4(3-2) and nDart1-A loci by a locus-specific PCR strategy. A total of 253 clones from somatic excision at five nDart loci in 10 varieties were determined. nDart rarely caused deletions beyond target site duplication (TSD). The footprint of nDart contained few transversions of nucleotides flanking to both sides of the TSD. The predominant footprint of nDart was an 8-bp addition. Precise excision of nDart was detected at a rate of only 2.2%, which occurred at two loci among the five loci examined. Furthermore, the results in this study revealed that a highly conserved mechanism of transposition is involved between maize Ac/Ds and rice Dart/nDart, which are two-component transposon systems of the hAT superfamily transposons in plant species.
Collapse
Affiliation(s)
- Kenji Fujino
- Agricultural Research Institute, HOKUREN Federation of Agricultural Cooperatives, Naganuma, Hokkaido 067-1317, Japan.
| | | |
Collapse
|
3
|
Wang S, Chen JG. Arabidopsis transient expression analysis reveals that activation of GLABRA2 may require concurrent binding of GLABRA1 and GLABRA3 to the promoter of GLABRA2. PLANT & CELL PHYSIOLOGY 2008; 49:1792-804. [PMID: 18948276 DOI: 10.1093/pcp/pcn159] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Transcription factors regulate gene expression by directly binding the cis-acting regulatory elements of target genes via their DNA-binding domains or by interacting with other transcription factors. Trichome cell fate determination in Arabidopsis utilizes a lateral inhibition mechanism that relies on the interplay of transcription factors. GLABRA1 (GL1), an R2R3 MYB transcription factor, GLABRA3 (GL3), a basic helix-loop-helix (bHLH) transcription factor, and TRANSPARENT TESTA GLABRA1 (TTG1), a WD40 protein, are believed to form a transcriptional activator complex to control the transcription of GLABRA2 (GL2), which in turn induces trichome formation in shoots. However, the molecular mechanism of the regulation of GL2 expression by this activator complex is still poorly understood. Here we report that GL1 and GL3 control GL2 expression by a previously unrecognized mechanism in which in addition to the protein-protein interaction between GL1 and GL3, concurrent binding of GL1 and GL3 to the promoter of GL2 via their own DNA-binding domains is probably required to activate GL2. We demonstrate that disruption or deletion of the DNA-binding domains in either GL1 or GL3 completely abolishes the transcriptional activity of the GL1-GL3 complex in activating GL2. These results provide new insight into the interplay of GL1 and GL3 transcription factors in the activation of GL2.
Collapse
Affiliation(s)
- Shucai Wang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | |
Collapse
|
4
|
The basic helix loop helix domain of maize R links transcriptional regulation and histone modifications by recruitment of an EMSY-related factor. Proc Natl Acad Sci U S A 2007; 104:17222-7. [PMID: 17940002 DOI: 10.1073/pnas.0705629104] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The control of anthocyanin accumulation in maize by the cooperation of the basic helix-loop-helix (bHLH) protein R with the MYB transcription factor C1 provides one of the best examples of plant combinatorial transcriptional control. Establishing the function of the bHLH domain of R has remained elusive, and so far no proteins that interact with this conserved domain have been identified. We show here that the bHLH domain of R is dispensable for the activation of transiently expressed genes yet is essential for the activation of the endogenous genes in their normal chromatin environment. The activation of A1, one of the anthocyanin biosynthetic genes, is associated with increased acetylation of histone 3 (H3) at K9/K14 in the promoter region to which the C1/R complex binds. We identified R-interacting factor 1 (RIF1) as a nuclear, AGENET domain-containing EMSY-like protein that specifically interacts with the bHLH region of R. Knockdown experiments show that RIF1 is necessary for the activation of the endogenous promoters but not of transiently expressed genes. ChIP experiments established that RIF1 is tethered to the regulatory region of the A1 promoter by the C1/R complex. Together, these findings describe a function for the bHLH domain of R in linking transcriptional regulation with chromatin functions by the recruitment of an EMSY-related factor.
Collapse
|
5
|
Streisfeld MA, Rausher MD. Relaxed Constraint and Evolutionary Rate Variation between Basic Helix-Loop-Helix Floral Anthocyanin Regulators in Ipomoea. Mol Biol Evol 2007; 24:2816-26. [DOI: 10.1093/molbev/msm216] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
6
|
Bai L, Singh M, Pitt L, Sweeney M, Brutnell TP. Generating novel allelic variation through Activator insertional mutagenesis in maize. Genetics 2007; 175:981-92. [PMID: 17151236 PMCID: PMC1840078 DOI: 10.1534/genetics.106.066837] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Accepted: 11/25/2006] [Indexed: 01/30/2023] Open
Abstract
The maize transposable element Activator (Ac) has been exploited as an insertional mutagen to disrupt, clone, and characterize genes in a number of plant species. To develop an Ac-based mutagenesis platform for maize, a large-scale mutagenesis was conducted targeting the pink scutellum1 locus. We selected 1092 Ac transposition events from a closely linked donor Ac, resulting in the recovery of 17 novel ps1 alleles. Multiple phenotypic classes were identified corresponding to Ac insertions in the 5'-UTR and coding region of the predicted Ps1 gene. To generate a stable allelic series, we employed genetic screens and identified 83 germinally heritable ps1 excision alleles. Molecular characterization of these excision alleles revealed a position-dependent bias in excision allele frequencies and the predominance of 7- and 8-bp footprint products. In total, 19 unique ps1 excision alleles were generated in this study, including several that resulted in weak mutant phenotypes. The analysis of footprint alleles suggests a model of Ac excision in maize that is consistent with recent in vitro studies of hAT element excision. Importantly, the genetic and molecular methods developed in this study can be extended to generate novel allelic variation at any Ac-tagged gene in the genome.
Collapse
Affiliation(s)
- Ling Bai
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
7
|
Gruber MY, Wang S, Ethier S, Holowachuk J, Bonham-Smith PC, Soroka J, Lloyd A. "HAIRY CANOLA"--Arabidopsis GL3 induces a dense covering of trichomes on Brassica napus seedlings. PLANT MOLECULAR BIOLOGY 2006; 60:679-98. [PMID: 16649106 DOI: 10.1007/s11103-005-5472-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 11/27/2005] [Indexed: 05/05/2023]
Abstract
Transformation with the Arabidopsis bHLH gene 35S:GLABRA3 (GL3) produced novel B. napus plants with an extremely dense coverage of trichomes on seedling tissues (stems and young leaves). In contrast, trichomes were strongly induced in seedling stems and moderately induced in leaves of a hairy, purple phenotype transformed with a 2.2 kb allele of the maize anthocyanin regulator LEAF COLOUR (Lc), but only weakly induced by BOOSTER (B-Peru), the maize Lc 2.4 kb allele, or the Arabidopsis trichome MYB gene GLABRA1 (GL1). B. napus plants containing only the GL3 transgene had a greater proportion of trichomes on the adaxial leaf surface, whereas all other plant types had a greater proportion on the abaxial surface. Progeny of crosses between GL3+ and GL1+ plants resulted in trichome densities intermediate between a single-insertion GL3+ plant and a double-insertion GL3+ plant. None of the transformations stimulated trichomes on Brassica cotyledons or on non-seedling tissues. A small portion of bHLH gene-induced trichomes had a swollen terminal structure. The results suggest that trichome development in B. napus may be regulated differently from Arabidopsis. They also imply that insertion of GL3 into Brassica species under a tissue-specific promoter has strong potential for developing insect-resistant crop plants.
Collapse
Affiliation(s)
- M Y Gruber
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| | | | | | | | | | | | | |
Collapse
|
8
|
Sweeney MT, Thomson MJ, Pfeil BE, McCouch S. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. THE PLANT CELL 2006; 18:283-94. [PMID: 16399804 PMCID: PMC1356539 DOI: 10.1105/tpc.105.038430] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Rc is a domestication-related gene required for red pericarp in rice (Oryza sativa). The red grain color is ubiquitous among the wild ancestors of O. sativa, in which it is closely associated with seed shattering and dormancy. Rc encodes a basic helix-loop-helix (bHLH) protein that was fine-mapped to an 18.5-kb region on rice chromosome 7 using a cross between Oryza rufipogon (red pericarp) and O. sativa cv Jefferson (white pericarp). Sequencing of the alleles from both mapping parents as well as from two independent genetic stocks of Rc revealed that the dominant red allele differed from the recessive white allele by a 14-bp deletion within exon 6 that knocked out the bHLH domain of the protein. A premature stop codon was identified in the second mutant stock that had a light red pericarp. RT-PCR experiments confirmed that the Rc gene was expressed in both red- and white-grained rice but that a shortened transcript was present in white varieties. Phylogenetic analysis, supported by comparative mapping in rice and maize (Zea mays), showed that Rc, a positive regulator of proanthocyanidin, is orthologous with INTENSIFIER1, a negative regulator of anthocyanin production in maize, and is not in the same clade as rice bHLH anthocyanin regulators.
Collapse
Affiliation(s)
- Megan T. Sweeney
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14953-1901
| | - Michael J. Thomson
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14953-1901
| | - Bernard E. Pfeil
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Susan McCouch
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14953-1901
- To whom correspondence should be addressed. E-mail ; fax 607-255-6683
| |
Collapse
|
9
|
Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. TRENDS IN PLANT SCIENCE 2005; 10:236-42. [PMID: 15882656 DOI: 10.1016/j.tplants.2005.03.002] [Citation(s) in RCA: 952] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
For more than a century, the biosynthesis of flavonoid pigments has been a favorite of scientists to study a wide variety of biological processes, such as inheritance and transposition, and has become one of the best-studied pathways in nature. The analysis of pigmentation continues to provide insights into new areas, such as the channeling and intracellular transport of metabolites, regulation of gene expression and RNA interference. Moreover, because pigmentation is studied in a variety of species, it provides unique molecular insights into the evolution of biochemical pathways and regulatory networks.
Collapse
Affiliation(s)
- Ronald Koes
- Department of Genetics, Institute for Molecular Biological Sciences, Vrije Universiteit, de Boelelaan 1085, 1081HV Amsterdam, The Netherlands.
| | | | | |
Collapse
|
10
|
Spelt C, Quattrocchio F, Mol J, Koes R. ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. THE PLANT CELL 2002; 14:2121-35. [PMID: 12215510 PMCID: PMC150760 DOI: 10.1105/tpc.003772] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2002] [Accepted: 06/04/2002] [Indexed: 05/18/2023]
Abstract
ANTHOCYANIN1 (AN1) of petunia is a transcription factor of the basic helix-loop-helix (bHLH) family that is required for the synthesis of anthocyanin pigments. Here, we show that AN1 controls additional aspects of cell differentiation: the acidification of vacuoles in petal cells, and the size and morphology of cells in the seed coat epidermis. We identified an1 alleles, formerly known as ph6, that sustain anthocyanin synthesis but not vacuolar acidification and seed coat morphogenesis. These alleles express truncated proteins lacking the C-terminal half of AN1, including the bHLH domain, at an approximately 30-fold higher level than wild-type AN1. An allelic series in which one, two, or three amino acids were inserted into the bHLH domain indicated that this domain is required for both anthocyanin synthesis and vacuolar acidification. These findings show that AN1 controls more aspects of epidermal cell differentiation than previously thought through partially separable domains.
Collapse
Affiliation(s)
- Cornelis Spelt
- Department of Developmental Genetics, Institute for Molecular Biological Sciences, Vrije Universiteit, de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
11
|
Li Y, Bernot JP, Illingworth C, Lison W, Bernot KM, Eggleston WB, Fogle KJ, DiPaola JE, Kermicle J, Alleman M. Gene conversion within regulatory sequences generates maize r alleles with altered gene expression. Genetics 2001; 159:1727-40. [PMID: 11779810 PMCID: PMC1461907 DOI: 10.1093/genetics/159.4.1727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The maize r locus encodes a transcription factor that regulates the developmental expression of the plant pigment anthocyanin. In an unusual example of gene regulatory diversity, the R-sc (Sc, strong seed color) and the R-p (P, plant color) alleles of r have nonoverlapping tissue specificity and nonhomologous 5' flanking sequences. Heterozygotes between wild-type P and Sc mutants with Ds6 transposable element inserts (r-sc:m::Ds6 or sc:m) produce colored seed derivatives (Sc+) during meiotic recombination. The sc:m alleles with Ds6 insertion in 3' regions of r produce crossover Sc+ derivatives. sc:m alleles with Ds6 elements inserted in 5' regions produce rare Sc+ derivatives borne on nonrecombinant chromosomes. Among 52 such noncrossover Sc+ derivatives, 18 are indistinguishable from the Sc progenitor in phenotype and DNA sequence [Scp(+) alleles]. The remaining 34 derivatives have strong Sc+ expression, including darkly pigmented aleurone, scutellum, coleoptile, and scutellar node [Scp(e) alleles]. The coleoptile and scutellar node phenotypes are unique from either progenitor but are similar to those of some naturally occurring r alleles. Both classes of Sc+ derivatives are explained by gene conversion between the promoter region of Sc:124 and a homologous region located proximal to P. The recombinational intermediate formed between sc:m alleles and P results in deletion of the Ds6 element alone or both Ds6 and a nearby unrelated transposable element-like sequence.
Collapse
Affiliation(s)
- Y Li
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Payne CT, Zhang F, Lloyd AM. GL3 encodes a bHLH protein that regulates trichome development in arabidopsis through interaction with GL1 and TTG1. Genetics 2000; 156:1349-62. [PMID: 11063707 PMCID: PMC1461316 DOI: 10.1093/genetics/156.3.1349] [Citation(s) in RCA: 546] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Arabidopsis trichome development and differentiation is a well-studied model for plant cell-fate determination and morphogenesis. Mutations in TRANSPARENT TESTA GLABRA1 (TTG1) result in several pleiotropic defects including an almost complete lack of trichomes. The complex phenotype caused by ttg1 mutations is suppressed by ectopic expression of the maize anthocyanin regulator R. Here it is demonstrated that the Arabidopsis trichome development locus GLABRA3 (GL3) encodes an R homolog. GL3 and GLABRA1 (GL1) interact when overexpressed together in plants. Yeast two-hybrid assays indicate that GL3 participates in physical interactions with GL1, TTG1, and itself, but that GL1 and TTG1 do not interact. These data suggest a reiterated combinatorial model for the differential regulation of such diverse developmental pathways as trichome cell-fate determination, root hair spacing, and anthocyanin secondary metabolism.
Collapse
Affiliation(s)
- C T Payne
- Molecular Cell and Developmental Biology and the Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712-1095, USA
| | | | | |
Collapse
|
13
|
Payne CT, Zhang F, Lloyd AM. GL3 encodes a bHLH protein that regulates trichome development in arabidopsis through interaction with GL1 and TTG1. Genetics 2000; 156:1349-1362. [PMID: 11063707 DOI: 10.1016/s1474-6670(17)69558-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023] Open
Abstract
Arabidopsis trichome development and differentiation is a well-studied model for plant cell-fate determination and morphogenesis. Mutations in TRANSPARENT TESTA GLABRA1 (TTG1) result in several pleiotropic defects including an almost complete lack of trichomes. The complex phenotype caused by ttg1 mutations is suppressed by ectopic expression of the maize anthocyanin regulator R. Here it is demonstrated that the Arabidopsis trichome development locus GLABRA3 (GL3) encodes an R homolog. GL3 and GLABRA1 (GL1) interact when overexpressed together in plants. Yeast two-hybrid assays indicate that GL3 participates in physical interactions with GL1, TTG1, and itself, but that GL1 and TTG1 do not interact. These data suggest a reiterated combinatorial model for the differential regulation of such diverse developmental pathways as trichome cell-fate determination, root hair spacing, and anthocyanin secondary metabolism.
Collapse
Affiliation(s)
- C T Payne
- Molecular Cell and Developmental Biology and the Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712-1095, USA
| | | | | |
Collapse
|