1
|
Li S, Wang H, Jehi S, Li J, Liu S, Wang Z, Truong L, Chiba T, Wang Z, Wu X. PIF1 helicase promotes break-induced replication in mammalian cells. EMBO J 2021; 40:e104509. [PMID: 33470420 PMCID: PMC8047440 DOI: 10.15252/embj.2020104509] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Break‐induced replication (BIR) is a specialized homologous‐recombination pathway for DNA double‐strand break (DSB) repair, which often induces genome instability. In this study, we establish EGFP‐based recombination reporters to systematically study BIR in mammalian cells and demonstrate an important role of human PIF1 helicase in promoting BIR. We show that at endonuclease cleavage sites, PIF1‐dependent BIR is used for homology‐initiated recombination requiring long track DNA synthesis, but not short track gene conversion (STGC). We also show that structure formation‐prone AT‐rich DNA sequences derived from common fragile sites (CFS‐ATs) induce BIR upon replication stress and oncogenic stress, and PCNA‐dependent loading of PIF1 onto collapsed/broken forks is critical for BIR activation. At broken replication forks, even STGC‐mediated repair of double‐ended DSBs depends on POLD3 and PIF1, revealing an unexpected mechanism of BIR activation upon replication stress that differs from the conventional BIR activation model requiring DSB end sensing at endonuclease‐generated breaks. Furthermore, loss of PIF1 is synthetically lethal with loss of FANCM, which is involved in protecting CFS‐ATs. The breast cancer‐associated PIF1 mutant L319P is defective in BIR, suggesting a direct link of BIR to oncogenic processes.
Collapse
Affiliation(s)
- Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Hailong Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Sanaa Jehi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jun Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Shuo Liu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Zi Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.,Biomedical Gerontology Laboratory, Department of Health Science and Social Welfare, School of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Lan Truong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Takuya Chiba
- Biomedical Gerontology Laboratory, Department of Health Science and Social Welfare, School of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, University of Chinese Academy of Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
2
|
Yin Y, Dominska M, Yim E, Petes TD. High-resolution mapping of heteroduplex DNA formed during UV-induced and spontaneous mitotic recombination events in yeast. eLife 2017; 6. [PMID: 28714850 PMCID: PMC5531827 DOI: 10.7554/elife.28069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022] Open
Abstract
In yeast, DNA breaks are usually repaired by homologous recombination (HR). An early step for HR pathways is formation of a heteroduplex, in which a single-strand from the broken DNA molecule pairs with a strand derived from an intact DNA molecule. If the two strands of DNA are not identical, there will be mismatches within the heteroduplex DNA (hetDNA). In wild-type strains, these mismatches are repaired by the mismatch repair (MMR) system, producing a gene conversion event. In strains lacking MMR, the mismatches persist. Most previous studies involving hetDNA formed during mitotic recombination were restricted to one locus. Below, we present a global mapping of hetDNA formed in the MMR-defective mlh1 strain. We find that many recombination events are associated with repair of double-stranded DNA gaps and/or involve Mlh1-independent mismatch repair. Many of our events are not explicable by the simplest form of the double-strand break repair model of recombination. DOI:http://dx.doi.org/10.7554/eLife.28069.001
Collapse
Affiliation(s)
- Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Eunice Yim
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| |
Collapse
|
3
|
Chumki SA, Dunn MK, Coates TF, Mishler JD, Younkin EM, Casper AM. Remarkably Long-Tract Gene Conversion Induced by Fragile Site Instability in Saccharomyces cerevisiae. Genetics 2016; 204:115-28. [PMID: 27343237 PMCID: PMC5012379 DOI: 10.1534/genetics.116.191205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/23/2016] [Indexed: 01/29/2023] Open
Abstract
Replication stress causes breaks at chromosomal locations called common fragile sites. Deletions causing loss of heterozygosity (LOH) in human tumors are strongly correlated with common fragile sites, but the role of gene conversion in LOH at fragile sites in tumors is less well studied. Here, we investigated gene conversion stimulated by instability at fragile site FS2 in the yeast Saccharomyces cerevisiae In our screening system, mitotic LOH events near FS2 are identified by production of red/white sectored colonies. We analyzed single nucleotide polymorphisms between homologs to determine the cause and extent of LOH. Instability at FS2 increases gene conversion 48- to 62-fold, and conversions unassociated with crossover represent 6-7% of LOH events. Gene conversion can result from repair of mismatches in heteroduplex DNA during synthesis-dependent strand annealing (SDSA), double-strand break repair (DSBR), and from break-induced replication (BIR) that switches templates [double BIR (dBIR)]. It has been proposed that SDSA and DSBR typically result in shorter gene-conversion tracts than dBIR. In cells under replication stress, we found that bidirectional tracts at FS2 have a median length of 40.8 kb and a wide distribution of lengths; most of these tracts are not crossover-associated. Tracts that begin at the fragile site FS2 and extend only distally are significantly shorter. The high abundance and long length of noncrossover, bidirectional gene-conversion tracts suggests that dBIR is a prominent mechanism for repair of lesions at FS2, thus this mechanism is likely to be a driver of common fragile site-stimulated LOH in human tumors.
Collapse
Affiliation(s)
- Shahana A Chumki
- Department of Biology, Eastern Michigan University, Ypsilanti, Michigan 48197
| | - Mikael K Dunn
- Department of Biology, Eastern Michigan University, Ypsilanti, Michigan 48197
| | - Thomas F Coates
- Department of Biology, Eastern Michigan University, Ypsilanti, Michigan 48197
| | - Jeanmarie D Mishler
- Department of Biology, Eastern Michigan University, Ypsilanti, Michigan 48197
| | - Ellen M Younkin
- Department of Biology, Eastern Michigan University, Ypsilanti, Michigan 48197
| | - Anne M Casper
- Department of Biology, Eastern Michigan University, Ypsilanti, Michigan 48197
| |
Collapse
|
4
|
Hollywood JA, Lee CM, Scallan MF, Harrison PT. Analysis of gene repair tracts from Cas9/gRNA double-stranded breaks in the human CFTR gene. Sci Rep 2016; 6:32230. [PMID: 27557525 PMCID: PMC4997560 DOI: 10.1038/srep32230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 08/04/2016] [Indexed: 12/18/2022] Open
Abstract
To maximise the efficiency of template-dependent gene editing, most studies describe programmable and/or RNA-guided endonucleases that make a double-stranded break at, or close to, the target sequence to be modified. The rationale for this design strategy is that most gene repair tracts will be very short. Here, we describe a CRISPR Cas9/gRNA selection-free strategy which uses deep sequencing to characterise repair tracts from a donor plasmid containing seven nucleotide differences across a 216 bp target region in the human CFTR gene. We found that 90% of the template-dependent repair tracts were >100 bp in length with equal numbers of uni-directional and bi-directional repair tracts. The occurrence of long repair tracts suggests that a single gRNA could be used with variants of the same template to create or correct specific mutations within a 200 bp range, the size of ~80% of human exons. The selection-free strategy used here also allowed detection of non-homologous end joining events in many of the homology-directed repair tracts. This indicates a need to modify the donor, possibly by silent changes in the PAM sequence, to prevent creation of a second double-stranded break in an allele that has already been correctly edited by homology-directed repair.
Collapse
Affiliation(s)
- Jennifer A. Hollywood
- Department of Physiology, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Ciaran M. Lee
- Department of Physiology, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
5
|
Abstract
Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell.
Collapse
|
6
|
Tsaponina O, Haber JE. Frequent Interchromosomal Template Switches during Gene Conversion in S. cerevisiae. Mol Cell 2014; 55:615-25. [PMID: 25066232 DOI: 10.1016/j.molcel.2014.06.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/15/2014] [Accepted: 06/12/2014] [Indexed: 11/26/2022]
Abstract
Although repair of double-strand breaks (DSBs) by gene conversion is the most accurate way to repair such lesions, in budding yeast there is a 1,000-fold increase in accompanying mutations, including interchromosomal template switches (ICTS) involving highly mismatched (homeologous) ectopic sequences. Although such events are rare and appear at a rate of 2 × 10(-7) when template jumps occur between 71% identical sequences, they are surprisingly frequent (0.3% of all repair events) when the second template is identical to the first, revealing the remarkable instability of repair DNA synthesis. With homeologous donors, ICTS uses microhomologies as small as 2 bp. Cells lacking mismatch repair proteins Msh6 and Mlh1 form chimeric recombinants with two distinct patches of microhomology, implying that these proteins are crucial for strand discrimination of heteroduplex DNA formed during ICTS. We identify the chromatin remodeler Rdh54 as the first protein required for template switching that does not affect simple gene conversion.
Collapse
Affiliation(s)
- Olga Tsaponina
- Department of Biology, Brandeis University, Waltham, MA 02454-9110, USA; Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | - James E Haber
- Department of Biology, Brandeis University, Waltham, MA 02454-9110, USA; Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA.
| |
Collapse
|
7
|
High-resolution mapping of two types of spontaneous mitotic gene conversion events in Saccharomyces cerevisiae. Genetics 2014; 198:181-92. [PMID: 24990991 PMCID: PMC4174931 DOI: 10.1534/genetics.114.167395] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gene conversions and crossovers are related products of the repair of double-stranded DNA breaks by homologous recombination. Most previous studies of mitotic gene conversion events have been restricted to measuring conversion tracts that are <5 kb. Using a genetic assay in which the lengths of very long gene conversion tracts can be measured, we detected two types of conversions: those with a median size of ∼6 kb and those with a median size of >50 kb. The unusually long tracts are initiated at a naturally occurring recombination hotspot formed by two inverted Ty elements. We suggest that these long gene conversion events may be generated by a mechanism (break-induced replication or repair of a double-stranded DNA gap) different from the short conversion tracts that likely reflect heteroduplex formation followed by DNA mismatch repair. Both the short and long mitotic conversion tracts are considerably longer than those observed in meiosis. Since mitotic crossovers in a diploid can result in a heterozygous recessive deleterious mutation becoming homozygous, it has been suggested that the repair of DNA breaks by mitotic recombination involves gene conversion events that are unassociated with crossing over. In contrast to this prediction, we found that ∼40% of the conversion tracts are associated with crossovers. Spontaneous mitotic crossover events in yeast are frequent enough to be an important factor in genome evolution.
Collapse
|
8
|
Double-strand break repair assays determine pathway choice and structure of gene conversion events in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2014; 4:425-32. [PMID: 24368780 PMCID: PMC3962482 DOI: 10.1534/g3.113.010074] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Double-strand breaks (DSBs) must be accurately and efficiently repaired to maintain genome integrity. Depending on the organism receiving the break, the genomic location of the DSB, and the cell-cycle phase in which it occurs, a DSB can be repaired by homologous recombination (HR), nonhomologous end-joining (NHEJ), or single-strand annealing (SSA). Two novel DSB repair assays were developed to determine the contributions of these repair pathways and to finely resolve repair event structures in Drosophila melanogaster. Rad51-dependent homologous recombination is the preferred DSB repair pathway in mitotically dividing cells, and the pathway choice between HR and SSA occurs after end resection and before Rad51-dependent strand invasion. HR events are associated with long gene conversion tracts and are both bidirectional and unidirectional, consistent with repair via the synthesis-dependent strand annealing pathway. Additionally, HR between diverged sequences is suppressed in Drosophila, similar to levels reported in human cells. Junction analyses of rare NHEJ events reveal that canonical NHEJ is utilized in this system.
Collapse
|
9
|
Template switching during break-induced replication is promoted by the Mph1 helicase in Saccharomyces cerevisiae. Genetics 2014; 196:1017-28. [PMID: 24496010 PMCID: PMC3982708 DOI: 10.1534/genetics.114.162297] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chromosomal double-strand breaks (DSBs) that have only one end with homology to a donor duplex undergo repair by strand invasion followed by replication to the chromosome terminus (break-induced replication, BIR). Using a transformation-based assay system, it was previously shown that BIR could occur by several rounds of strand invasion, DNA synthesis, and dissociation. Here we describe a modification of the transformation-based assay to facilitate detection of switching between donor templates during BIR by genetic selection in diploid yeast. In addition to the expected recovery of template switch products, we found a high frequency of recombination between chromosome homologs during BIR, suggesting transfer of the DSB from the transforming linear DNA to the donor chromosome, initiating secondary recombination events. The frequency of BIR increased in the mph1Δ mutant, but the percentage of template switch events was significantly decreased, revealing an important role for Mph1 in promoting BIR-associated template switching. In addition, we show that the Mus81, Rad1, and Yen1 structure-selective nucleases act redundantly to facilitate BIR.
Collapse
|
10
|
Sander AF, Lavstsen T, Rask TS, Lisby M, Salanti A, Fordyce SL, Jespersen JS, Carter R, Deitsch KW, Theander TG, Pedersen AG, Arnot DE. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families. Nucleic Acids Res 2013; 42:2270-81. [PMID: 24253306 PMCID: PMC3936766 DOI: 10.1093/nar/gkt1174] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens.
Collapse
Affiliation(s)
- Adam F Sander
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, Building 22 & 23, PO Box 2099, 1014 Copenhagen K, Denmark, Centre for Medical Parasitology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen K, Denmark, Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark, Department of Biology, University of Copenhagen, Ole Maaloees Vej 5, DK-2200 Copenhagen N, Denmark, Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark, Institute of Infection and Immunology Research, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, Scotland, UK and Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rosen DM, Younkin EM, Miller SD, Casper AM. Fragile site instability in Saccharomyces cerevisiae causes loss of heterozygosity by mitotic crossovers and break-induced replication. PLoS Genet 2013; 9:e1003817. [PMID: 24068975 PMCID: PMC3778018 DOI: 10.1371/journal.pgen.1003817] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/06/2013] [Indexed: 11/19/2022] Open
Abstract
Loss of heterozygosity (LOH) at tumor suppressor loci is a major contributor to cancer initiation and progression. Both deletions and mitotic recombination can lead to LOH. Certain chromosomal loci known as common fragile sites are susceptible to DNA lesions under replication stress, and replication stress is prevalent in early stage tumor cells. There is extensive evidence for deletions stimulated by common fragile sites in tumors, but the role of fragile sites in stimulating mitotic recombination that causes LOH is unknown. Here, we have used the yeast model system to study the relationship between fragile site instability and mitotic recombination that results in LOH. A naturally occurring fragile site, FS2, exists on the right arm of yeast chromosome III, and we have analyzed LOH on this chromosome. We report that the frequency of spontaneous mitotic BIR events resulting in LOH on the right arm of yeast chromosome III is higher than expected, and that replication stress by low levels of polymerase alpha increases mitotic recombination 12-fold. Using single-nucleotide polymorphisms between the two chromosome III homologs, we mapped the locations of recombination events and determined that FS2 is a strong hotspot for both mitotic reciprocal crossovers and break-induced replication events under conditions of replication stress.
Collapse
Affiliation(s)
- Danielle M. Rosen
- Department of Biology, Eastern Michigan University, Ypsilanti, Michigan, United States of America
| | - Ellen M. Younkin
- Department of Biology, Eastern Michigan University, Ypsilanti, Michigan, United States of America
| | - Shaylynn D. Miller
- Department of Biology, Eastern Michigan University, Ypsilanti, Michigan, United States of America
| | - Anne M. Casper
- Department of Biology, Eastern Michigan University, Ypsilanti, Michigan, United States of America
- * E-mail:
| |
Collapse
|
12
|
Abstract
Break-induced replication (BIR) refers to recombination-dependent DNA synthesis initiated from one end of a DNA double-strand break and can extend for more than 100 kb. BIR initiates by Rad51-catalyzed strand invasion, but the mechanism for DNA synthesis is not known. Here, we used BrdU incorporation to track DNA synthesis during BIR and found that the newly synthesized strands segregate with the broken chromosome, indicative of a conservative mode of DNA synthesis. Furthermore, we show the frequency of BIR is reduced and product formation is progressively delayed when the donor is placed at an increasing distance from the telomere, consistent with replication by a migrating D-loop from the site of initiation to the telomere.
Collapse
|
13
|
Rockwood J, Mao D, Grogan DW. Homologous recombination in the archaeon Sulfolobus acidocaldarius: effects of DNA substrates and mechanistic implications. MICROBIOLOGY-SGM 2013; 159:1888-1899. [PMID: 23832004 DOI: 10.1099/mic.0.067942-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although homologous recombination (HR) is known to influence the structure, stability, and evolution of microbial genomes, few of its functional properties have been measured in cells of hyperthermophilic archaea. The present study manipulated various properties of the parental DNAs in high-resolution assays of Sulfolobus acidocaldarius transformation, and measured the impact on the efficiency and pattern of marker transfer to the recipient chromosome. The relative orientation of homologous sequences, the type and position of chromosomal mutation being replaced, and the length of DNA flanking the marked region all affected the efficiency, linkage, tract continuity, and other parameters of marker transfer. Effects predicted specifically by the classical reciprocal-exchange model of HR were not observed. One analysis observed only 90 % linkage between markers defined by adjacent bases; in another series of experiments, sequence divergence up to 4 % had no detectable impact on overall efficiency of HR or on the co-transfer of a distal non-selected marker. The effects of introducing DNA via conjugation, rather than transformation, were more difficult to assess, but appeared to increase co-transfer (i.e. linkage) of relatively distant non-selected markers. The results indicate that HR events between gene-sized duplex DNAs and the S. acidocaldarius chromosome typically involve neither crossing over nor interference from a mismatch-activated anti-recombination system. Instead, the donor DNA may anneal to a transient chromosomal gap, as in the mechanism proposed for oligonucleotide-mediated transformation of Sulfolobus and other micro-organisms.
Collapse
Affiliation(s)
- Jananie Rockwood
- Department of Biological Sciences, University of Cincinnati, 614 Rieveschl Hall, ML0006, Clifton Court, Cincinnati, OH 45221-0006, USA
| | - Dominic Mao
- Department of Biological Sciences, University of Cincinnati, 614 Rieveschl Hall, ML0006, Clifton Court, Cincinnati, OH 45221-0006, USA
| | - Dennis W Grogan
- Department of Biological Sciences, University of Cincinnati, 614 Rieveschl Hall, ML0006, Clifton Court, Cincinnati, OH 45221-0006, USA
| |
Collapse
|
14
|
Nonrandom distribution of interhomolog recombination events induced by breakage of a dicentric chromosome in Saccharomyces cerevisiae. Genetics 2013; 194:69-80. [PMID: 23410835 PMCID: PMC3632482 DOI: 10.1534/genetics.113.150144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dicentric chromosomes undergo breakage in mitosis, resulting in chromosome deletions, duplications, and translocations. In this study, we map chromosome break sites of dicentrics in Saccharomyces cerevisiae by a mitotic recombination assay. The assay uses a diploid strain in which one homolog has a conditional centromere in addition to a wild-type centromere, and the other homolog has only the wild-type centromere; the conditional centromere is inactive when cells are grown in galactose and is activated when the cells are switched to glucose. In addition, the two homologs are distinguishable by multiple single-nucleotide polymorphisms (SNPs). Under conditions in which the conditional centromere is activated, the functionally dicentric chromosome undergoes double-stranded DNA breaks (DSBs) that can be repaired by mitotic recombination with the homolog. Such recombination events often lead to loss of heterozygosity (LOH) of SNPs that are centromere distal to the crossover. Using a PCR-based assay, we determined the position of LOH in multiple independent recombination events to a resolution of ∼4 kb. This analysis shows that dicentric chromosomes have recombination breakpoints that are broadly distributed between the two centromeres, although there is a clustering of breakpoints within 10 kb of the conditional centromere.
Collapse
|
15
|
High-resolution genome-wide analysis of irradiated (UV and γ-rays) diploid yeast cells reveals a high frequency of genomic loss of heterozygosity (LOH) events. Genetics 2012; 190:1267-84. [PMID: 22267500 PMCID: PMC3316642 DOI: 10.1534/genetics.111.137927] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In diploid eukaryotes, repair of double-stranded DNA breaks by homologous recombination often leads to loss of heterozygosity (LOH). Most previous studies of mitotic recombination in Saccharomyces cerevisiae have focused on a single chromosome or a single region of one chromosome at which LOH events can be selected. In this study, we used two techniques (single-nucleotide polymorphism microarrays and high-throughput DNA sequencing) to examine genome-wide LOH in a diploid yeast strain at a resolution averaging 1 kb. We examined both selected LOH events on chromosome V and unselected events throughout the genome in untreated cells and in cells treated with either γ-radiation or ultraviolet (UV) radiation. Our analysis shows the following: (1) spontaneous and damage-induced mitotic gene conversion tracts are more than three times larger than meiotic conversion tracts, and conversion tracts associated with crossovers are usually longer and more complex than those unassociated with crossovers; (2) most of the crossovers and conversions reflect the repair of two sister chromatids broken at the same position; and (3) both UV and γ-radiation efficiently induce LOH at doses of radiation that cause no significant loss of viability. Using high-throughput DNA sequencing, we also detected new mutations induced by γ-rays and UV. To our knowledge, our study represents the first high-resolution genome-wide analysis of DNA damage-induced LOH events performed in any eukaryote.
Collapse
|
16
|
Sebesta M, Burkovics P, Haracska L, Krejci L. Reconstitution of DNA repair synthesis in vitro and the role of polymerase and helicase activities. DNA Repair (Amst) 2011; 10:567-76. [PMID: 21565563 PMCID: PMC3119790 DOI: 10.1016/j.dnarep.2011.03.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/04/2011] [Accepted: 03/08/2011] [Indexed: 12/15/2022]
Abstract
The error-free repair of double-strand DNA breaks by homologous recombination (HR) ensures genomic stability using undamaged homologous sequence to copy genetic information. While some of the aspects of the initial steps of HR are understood, the molecular mechanisms underlying events downstream of the D-loop formation remain unclear. Therefore, we have reconstituted D-loop-based in vitro recombination-associated DNA repair synthesis assay and tested the efficacy of polymerases Pol δ and Pol η to extend invaded primer, and the ability of three helicases (Mph1, Srs2 and Sgs1) to displace this extended primer. Both Pol δ and Pol η extended up to 50% of the D-loop substrate, but differed in product length and dependency on proliferating cell nuclear antigen (PCNA). Mph1, but not Srs2 or Sgs1, displaced the extended primer very efficiently, supporting putative role of Mph1 in promoting the synthesis-dependent strand-annealing pathway. The experimental system described here can be employed to increase our understanding of HR events following D-loop formation, as well as the regulatory mechanisms involved.
Collapse
Affiliation(s)
- Marek Sebesta
- Department of Biology, Masaryk University, Kamenice 5/A7, 625 00 Brno, Czech Republic
| | | | | | | |
Collapse
|
17
|
Ho CK, Mazón G, Lam AF, Symington LS. Mus81 and Yen1 promote reciprocal exchange during mitotic recombination to maintain genome integrity in budding yeast. Mol Cell 2010; 40:988-1000. [PMID: 21172663 PMCID: PMC3021384 DOI: 10.1016/j.molcel.2010.11.016] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/08/2010] [Accepted: 09/22/2010] [Indexed: 01/30/2023]
Abstract
Holliday junction (HJ) resolution is required for segregation of chromosomes and for formation of crossovers during homologous recombination. The identity of the resolvase(s) that functions in vivo has yet to be established, although several proteins able to cut HJs in vitro have been identified as candidates in yeasts and mammals. Using an assay to detect unselected products of mitotic recombination, we found a significant decrease in crossovers in the Saccharomyces cerevisiae mus81Δ mutant. Yen1 serves a backup function responsible for resolving intermediates in mus81Δ mutants, or when conversion tracts are short. In the absence of both Mus81 and Yen1, intermediates are not channeled exclusively to noncrossover recombinants, but instead are processed by Pol32-dependent break-induced replication (BIR). The channeling of recombination from reciprocal exchange to BIR results in greatly increased spontaneous loss of heterozygosity (LOH) and chromosome mis-segregation in the mus81Δ yen1Δ mutant, typical of the genomic instability found in tumor cells.
Collapse
Affiliation(s)
- Chu Kwen Ho
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY 10032
| | - Gerard Mazón
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY 10032
| | - Alicia F. Lam
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY 10032
| | - Lorraine S. Symington
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
18
|
Affiliation(s)
- S. S. Couto
- Research Pathology, Genentech, Inc, South San Francisco, California
| |
Collapse
|
19
|
From the Cover: mitotic gene conversion events induced in G1-synchronized yeast cells by gamma rays are similar to spontaneous conversion events. Proc Natl Acad Sci U S A 2010; 107:7383-8. [PMID: 20231456 DOI: 10.1073/pnas.1001940107] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a previous study, we mapped spontaneous mitotic reciprocal crossovers (RCOs) in a 120-kb interval of chromosome V of Saccharomyces cerevisiae. About three-quarters of the crossovers were associated with gene conversion tracts. About 40% of these conversion tracts had the pattern expected as a consequence of repair of a double-stranded DNA break (DSB) of an unreplicated chromosome. We test this hypothesis by examining the crossovers and gene conversion events induced by gamma irradiation in G1- and G2-arrested diploid yeast cells. The gene conversion patterns of G1-irradiated cells (but not G2-irradiated cells) mimic conversion events associated with spontaneous RCOs, confirming our previous conclusion that many spontaneous crossovers are initiated by a DSB on an unreplicated chromosome.
Collapse
|
20
|
Lee PS, Greenwell PW, Dominska M, Gawel M, Hamilton M, Petes TD. A fine-structure map of spontaneous mitotic crossovers in the yeast Saccharomyces cerevisiae. PLoS Genet 2009; 5:e1000410. [PMID: 19282969 PMCID: PMC2646836 DOI: 10.1371/journal.pgen.1000410] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/06/2009] [Indexed: 12/04/2022] Open
Abstract
Homologous recombination is an important mechanism for the repair of DNA damage in mitotically dividing cells. Mitotic crossovers between homologues with heterozygous alleles can produce two homozygous daughter cells (loss of heterozygosity), whereas crossovers between repeated genes on non-homologous chromosomes can result in translocations. Using a genetic system that allows selection of daughter cells that contain the reciprocal products of mitotic crossing over, we mapped crossovers and gene conversion events at a resolution of about 4 kb in a 120-kb region of chromosome V of Saccharomyces cerevisiae. The gene conversion tracts associated with mitotic crossovers are much longer (averaging about 12 kb) than the conversion tracts associated with meiotic recombination and are non-randomly distributed along the chromosome. In addition, about 40% of the conversion events have patterns of marker segregation that are most simply explained as reflecting the repair of a chromosome that was broken in G1 of the cell cycle. Most higher organisms have two copies of several different types of chromosomes. For example, the human female has 23 pairs of chromosomes. Although the chromosome pairs have very similar sequences, they are not identical. Members of a chromosome pair can swap segments from one chromosome to the other; these exchanges are called “recombination.” Most previous studies of recombination have been done in cells undergoing meiosis, the process that leads to the formation of eggs and sperm (gametes). Recombination, however, can also occur in cells that are dividing mitotically. In our study, we examine the properties of mitotic recombination in yeast. We show that mitotic recombination differs from meiotic recombination in two important ways. First, the sizes of the chromosome segments that are non-reciprocally transferred during mitotic recombination are much larger than those transferred during meiotic exchange. Second, in meiosis, most recombination events involve the repair of a single chromosome break, whereas in mitosis, about half of the recombination events appear to involve the repair of two chromosome breaks.
Collapse
Affiliation(s)
- Phoebe S Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | | | | | | | | | | |
Collapse
|
21
|
INO80-dependent chromatin remodeling regulates early and late stages of mitotic homologous recombination. DNA Repair (Amst) 2009; 8:360-9. [DOI: 10.1016/j.dnarep.2008.11.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/14/2008] [Accepted: 11/20/2008] [Indexed: 11/17/2022]
|
22
|
Malik PS, Symington LS. Rad51 gain-of-function mutants that exhibit high affinity DNA binding cause DNA damage sensitivity in the absence of Srs2. Nucleic Acids Res 2008; 36:6504-10. [PMID: 18927106 PMCID: PMC2582631 DOI: 10.1093/nar/gkn720] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 09/30/2008] [Indexed: 11/13/2022] Open
Abstract
We previously identified several rad51 gain-of-function alleles that partially suppress the requirement for RAD55 and RAD57 in DNA repair. To gain further insight into the mechanism of action of these alleles, we compared the activities of Rad51-V328A, Rad51-P339S and Rad51-I345T with wild-type Rad51, for DNA binding, filament stability, strand exchange and interaction with the antirecombinase helicase, Srs2. These alleles were chosen because they show the highest activity in suppression of ionizing radiation sensitivity of the rad57 mutant, and Val 328 and Ile 345 are conserved in the human Rad51 protein. All three mutant proteins exhibited higher affinity for single-stranded DNA (ssDNA) and showed more robust strand exchange activity with oligonucleotide substrates than wild-type Rad51, with the Rad51-I345T and Rad51-V328A proteins displaying higher activity than Rad51-P339S. However, the Srs2 antirecombinase was able to disrupt Rad51-ssDNA complexes formed with all the mutant proteins. In vivo, the rad51-I345T mutant strain exhibited high resistance to methyl methane sulfonate that was dependent on functional SRS2. These results suggest the Srs2 translocase is able to disrupt Rad51-ssDNA complexes at stalled replication forks, but in the absence of Srs2 the enhanced DNA binding of the Rad51-I345T protein is detrimental to cell survival.
Collapse
Affiliation(s)
| | - Lorraine S. Symington
- Department of Microbiology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
23
|
Dupaigne P, Le Breton C, Fabre F, Gangloff S, Le Cam E, Veaute X. The Srs2 Helicase Activity Is Stimulated by Rad51 Filaments on dsDNA: Implications for Crossover Incidence during Mitotic Recombination. Mol Cell 2008; 29:243-54. [DOI: 10.1016/j.molcel.2007.11.033] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/20/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
|
24
|
Maloisel L, Fabre F, Gangloff S. DNA polymerase delta is preferentially recruited during homologous recombination to promote heteroduplex DNA extension. Mol Cell Biol 2008; 28:1373-82. [PMID: 18086882 PMCID: PMC2258756 DOI: 10.1128/mcb.01651-07] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/26/2007] [Accepted: 12/05/2007] [Indexed: 01/30/2023] Open
Abstract
DNA polymerases play a central role during homologous recombination (HR), but the identity of the enzyme(s) implicated remains elusive. The pol3-ct allele of the gene encoding the catalytic subunit of DNA polymerase delta (Poldelta) has highlighted a role for this polymerase in meiotic HR. We now address the ubiquitous role of Poldelta during HR in somatic cells. We find that pol3-ct affects gene conversion tract length during mitotic recombination whether the event is initiated by single-strand gaps following UV irradiation or by site-specific double-strand breaks. We show that the pol3-ct effects on gene conversion are completely independent of mismatch repair, indicating that shorter gene conversion tracts in pol3-ct correspond to shorter extensions of primed DNA synthesis. Interestingly, we find that shorter repair tracts do not favor synthesis-dependent strand annealing at the expense of double-strand-break repair. Finally, we show that the DNA polymerases that have been previously suspected to mediate HR repair synthesis (Polepsilon and Poleta) do not affect gene conversion during induced HR, including in the pol3-ct background. Our results argue strongly for the preferential recruitment of Poldelta during HR.
Collapse
|
25
|
Analysis of spontaneous gene conversion tracts within and between mammalian chromosomes. J Mol Biol 2008; 377:337-51. [PMID: 18262541 DOI: 10.1016/j.jmb.2008.01.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 01/04/2008] [Accepted: 01/15/2008] [Indexed: 11/24/2022]
Abstract
In the present study, we report the first characterization of gene conversion tract length, continuity and fidelity for pathways of gene targeting, ectopic and intrachromosomal homologous recombination using the same locus and mammalian somatic cell type. In this isogenic cell system, the vast majority of recombinants (>97%) are generated by homologous recombination and display a high degree of fidelity in the gene conversion process. Individual gene conversion tracts are highly likely to involve single, independent recombination events and proceed through a heteroduplex DNA intermediate. In all recombination pathways, gene conversion tracts are long, extending up to approximately 2 kb. Most gene conversion tracts are continuous in favor of donor region sequences, but in a small fraction of recombinants (15%), discontinuous gene conversion tracts are observed. In most cases, the recombination donor sequence is unaltered, although in two cases of intrachromosomal recombination, both recombination donor and recipient sequences bear gene conversion tracts. Overall, gene conversion events are similar, both qualitatively and quantitatively, for homologous recombination within and between mammalian chromosomes.
Collapse
|
26
|
Abstract
Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double-stranded breaks (DSBs) and interstrand crosslinks (ICLs). In addition, recombination provides critical support for DNA replication in the recovery of stalled or broken replication forks, contributing to tolerance of DNA damage. A central core of proteins, most critically the RecA homolog Rad51, catalyzes the key reactions that typify HR: homology search and DNA strand invasion. The diverse functions of recombination are reflected in the need for context-specific factors that perform supplemental functions in conjunction with the core proteins. The inability to properly repair complex DNA damage and resolve DNA replication stress leads to genomic instability and contributes to cancer etiology. Mutations in the BRCA2 recombination gene cause predisposition to breast and ovarian cancer as well as Fanconi anemia, a cancer predisposition syndrome characterized by a defect in the repair of DNA interstrand crosslinks. The cellular functions of recombination are also germane to DNA-based treatment modalities of cancer, which target replicating cells by the direct or indirect induction of DNA lesions that are substrates for recombination pathways. This review focuses on mechanistic aspects of HR relating to DSB and ICL repair as well as replication fork support.
Collapse
Affiliation(s)
- Xuan Li
- Section of Microbiology University of California, Davis, Davis CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Section of Microbiology University of California, Davis, Davis CA 95616-8665, USA
- Section of Molecular and Cellular Biology, University of California, Davis, Davis CA 95616-8665, USA
| |
Collapse
|
27
|
Rad51-independent interchromosomal double-strand break repair by gene conversion requires Rad52 but not Rad55, Rad57, or Dmc1. Mol Cell Biol 2007; 28:897-906. [PMID: 18039855 DOI: 10.1128/mcb.00524-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Homologous recombination (HR) is critical for DNA double-strand break (DSB) repair and genome stabilization. In yeast, HR is catalyzed by the Rad51 strand transferase and its "mediators," including the Rad52 single-strand DNA-annealing protein, two Rad51 paralogs (Rad55 and Rad57), and Rad54. A Rad51 homolog, Dmc1, is important for meiotic HR. In wild-type cells, most DSB repair results in gene conversion, a conservative HR outcome. Because Rad51 plays a central role in the homology search and strand invasion steps, DSBs either are not repaired or are repaired by nonconservative single-strand annealing or break-induced replication mechanisms in rad51Delta mutants. Although DSB repair by gene conversion in the absence of Rad51 has been reported for ectopic HR events (e.g., inverted repeats or between plasmids), Rad51 has been thought to be essential for DSB repair by conservative interchromosomal (allelic) gene conversion. Here, we demonstrate that DSBs stimulate gene conversion between homologous chromosomes (allelic conversion) by >30-fold in a rad51Delta mutant. We show that Rad51-independent allelic conversion and break-induced replication occur independently of Rad55, Rad57, and Dmc1 but require Rad52. Unlike DSB-induced events, spontaneous allelic conversion was detected in both rad51Delta and rad52Delta mutants, but not in a rad51Delta rad52Delta double mutant. The frequencies of crossovers associated with DSB-induced gene conversion were similar in the wild type and the rad51Delta mutant, but discontinuous conversion tracts were fivefold more frequent and tract lengths were more widely distributed in the rad51Delta mutant, indicating that heteroduplex DNA has an altered structure, or is processed differently, in the absence of Rad51.
Collapse
|
28
|
Díaz-Castillo C, Golic KG. Evolution of gene sequence in response to chromosomal location. Genetics 2007; 177:359-74. [PMID: 17890366 PMCID: PMC2013720 DOI: 10.1534/genetics.107.077081] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 06/06/2007] [Indexed: 12/26/2022] Open
Abstract
Evolutionary forces acting on the repetitive DNA of heterochromatin are not constrained by the same considerations that apply to protein-coding genes. Consequently, such sequences are subject to rapid evolutionary change. By examining the Troponin C gene family of Drosophila melanogaster, which has euchromatic and heterochromatic members, we find that protein-coding genes also evolve in response to their chromosomal location. The heterochromatic members of the family show a reduced CG content and increased variation in DNA sequence. We show that the CG reduction applies broadly to the protein-coding sequences of genes located at the heterochromatin:euchromatin interface, with a very strong correlation between CG content and the distance from centric heterochromatin. We also observe a similar trend in the transition from telomeric heterochromatin to euchromatin. We propose that the methylation of DNA is one of the forces driving this sequence evolution.
Collapse
|
29
|
Neuwirth EAH, Honma M, Grosovsky AJ. Interchromosomal crossover in human cells is associated with long gene conversion tracts. Mol Cell Biol 2007; 27:5261-74. [PMID: 17515608 PMCID: PMC1952082 DOI: 10.1128/mcb.01852-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Revised: 11/02/2006] [Accepted: 04/23/2007] [Indexed: 11/20/2022] Open
Abstract
Crossovers have rarely been observed in specific association with interchromosomal gene conversion in mammalian cells. In this investigation two isogenic human B-lymphoblastoid cell lines, TI-112 and TSCER2, were used to select for I-SceI-induced gene conversions that restored function at the selectable thymidine kinase locus. Additionally, a haplotype linkage analysis methodology enabled the rigorous detection of all crossover-associated convertants, whether or not they exhibited loss of heterozygosity. This methodology also permitted characterization of conversion tract length and structure. In TI-112, gene conversion tracts were required to be complex in tract structure and at least 7.0 kb in order to be selectable. The results demonstrated that 85% (39/46) of TI-112 convertants extended more than 11.2 kb and 48% also exhibited a crossover, suggesting a mechanistic link between long tracts and crossover. In contrast, continuous tracts as short as 98 bp are selectable in TSCER2, although selectable gene conversion tracts could include a wide range of lengths. Indeed, only 16% (14/95) of TSCER2 convertants were crossover associated, further suggesting a link between long tracts and crossover. Overall, these results demonstrate that gene conversion tracts can be long in human cells and that crossovers are observable when long tracts are recoverable.
Collapse
Affiliation(s)
- Efrem A H Neuwirth
- University of California, Department of Cell Biology and Neuroscience and Environmental Toxicology Graduate Program, 2211 Biological Sciences Building, Riverside, CA 92521, USA
| | | | | |
Collapse
|
30
|
Krishna S, Wagener BM, Liu HP, Lo YC, Sterk R, Petrini JH, Nickoloff JA. Mre11 and Ku regulation of double-strand break repair by gene conversion and break-induced replication. DNA Repair (Amst) 2007; 6:797-808. [PMID: 17321803 PMCID: PMC1948817 DOI: 10.1016/j.dnarep.2007.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 01/08/2007] [Accepted: 01/17/2007] [Indexed: 02/06/2023]
Abstract
The yeast Mre11-Rad50-Xrs2 (MRX) and Ku complexes regulate single-strand resection at DNA double-strand breaks (DSB), a key early step in homologous recombination (HR). A prior plasmid gap repair study showed that mre11 mutations, which slow single-strand resection, reduce gene conversion tract lengths and the frequency of associated crossovers. Here we tested whether mre11Delta or nuclease-defective mre11 mutations reduced gene conversion tract lengths during HR between homologous chromosomes in diploid yeast. We found that mre11 mutations reduced the efficiency of HR but did not reduce tract lengths or crossovers, despite substantially reduced end-resection at the test (ura3) locus. End-resection is increased in yku70Delta, but this change also had no effect on tract lengths. Thus, heteroduplex formation and tract lengths are not regulated by the extent of end-resection during DSB repair in a chromosomal context. In a plasmid-chromosome DSB repair assay, tract lengths were again similar in wild-type and mre11Delta, but they were reduced in mre11Delta in a gap repair assay. These results indicate that tract lengths are not affected by the extent of end processing when broken ends can invade nearby sites, perhaps because MRX coordination of the two broken ends is dispensable when ends invade nearby sites. Although HR outcome was largely unaffected in mre11 mutants, break-induced replication (BIR) and chromosome loss increased, suggesting that Mre11 function in mitotic HR is limited to early HR stages. Interestingly, yku70Delta suppressed BIR in mre11 mutants. BIR is also elevated in rad51 mutants, but yku70Delta did not suppress BIR in a rad51 background. These results indicate that Mre11 functions in Rad51-independent BIR, and that Ku functions in Rad51-dependent BIR.
Collapse
Affiliation(s)
- Sanchita Krishna
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center University of New Mexico School of Medicine Albuquerque, NM 87131
| | - Brant M. Wagener
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center University of New Mexico School of Medicine Albuquerque, NM 87131
| | - Hui Ping Liu
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center University of New Mexico School of Medicine Albuquerque, NM 87131
| | - Yi-Chen Lo
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center University of New Mexico School of Medicine Albuquerque, NM 87131
| | - Rosa Sterk
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center University of New Mexico School of Medicine Albuquerque, NM 87131
| | - John H.J. Petrini
- Molecular Biology Program Memorial Sloan-Kettering Cancer Center New York, NY 10021
| | - Jac A. Nickoloff
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center University of New Mexico School of Medicine Albuquerque, NM 87131
| |
Collapse
|
31
|
Smith CE, Llorente B, Symington LS. Template switching during break-induced replication. Nature 2007; 447:102-5. [PMID: 17410126 DOI: 10.1038/nature05723] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 02/27/2007] [Indexed: 11/09/2022]
Abstract
DNA double-strand breaks (DSBs) are potentially lethal lesions that arise spontaneously during normal cellular metabolism, as a consequence of environmental genotoxins or radiation, or during programmed recombination processes. Repair of DSBs by homologous recombination generally occurs by gene conversion resulting from transfer of information from an intact donor duplex to both ends of the break site of the broken chromosome. In mitotic cells, gene conversion is rarely associated with reciprocal exchange and thus limits loss of heterozygosity for markers downstream of the site of repair and restricts potentially deleterious chromosome rearrangements. DSBs that arise by replication fork collapse or by erosion of uncapped telomeres have only one free end and are thought to repair by strand invasion into a homologous duplex DNA followed by replication to the chromosome end (break-induced replication, BIR). BIR from one of the two ends of a DSB would result in loss of heterozygosity, suggesting that BIR is suppressed when DSBs have two ends so that repair occurs by the more conservative gene conversion mechanism. Here we show that BIR can occur by several rounds of strand invasion, DNA synthesis and dissociation. We further show that chromosome rearrangements can occur during BIR if dissociation and reinvasion occur within dispersed repeated sequences. This dynamic process could function to promote gene conversion by capture of the displaced invading strand at two-ended DSBs to prevent BIR.
Collapse
Affiliation(s)
- Catherine E Smith
- Department of Microbiology, Columbia University Medical Center, 701 West 168th Street, New York, New York 10032, USA
| | | | | |
Collapse
|
32
|
Lo YC, Paffett KS, Amit O, Clikeman JA, Sterk R, Brenneman MA, Nickoloff JA. Sgs1 regulates gene conversion tract lengths and crossovers independently of its helicase activity. Mol Cell Biol 2006; 26:4086-94. [PMID: 16705162 PMCID: PMC1489077 DOI: 10.1128/mcb.00136-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RecQ helicases maintain genome stability and suppress tumors in higher eukaryotes through roles in replication and DNA repair. The yeast RecQ homolog Sgs1 interacts with Top3 topoisomerase and Rmi1. In vitro, Sgs1 binds to and branch migrates Holliday junctions (HJs) and the human RecQ homolog BLM, with Top3alpha, resolves synthetic double HJs in a noncrossover sense. Sgs1 suppresses crossovers during the homologous recombination (HR) repair of DNA double-strand breaks (DSBs). Crossovers are associated with long gene conversion tracts, suggesting a model in which Sgs1 helicase catalyzes reverse branch migration and convergence of double HJs for noncrossover resolution by Top3. Consistent with this model, we show that allelic crossovers and gene conversion tract lengths are increased in sgs1Delta. However, crossover and tract length suppression was independent of Sgs1 helicase activity, which argues against helicase-dependent HJ convergence. HJs may converge passively by a "random walk," and Sgs1 may play a structural role in stimulating Top3-dependent resolution. In addition to the new helicase-independent functions for Sgs1 in crossover and tract length control, we define three new helicase-dependent functions, including the suppression of chromosome loss, chromosome missegregation, and synthetic lethality in srs2Delta. We propose that Sgs1 has helicase-dependent functions in replication and helicase-independent functions in DSB repair by HR.
Collapse
Affiliation(s)
- Yi-Chen Lo
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Paffett KS, Clikeman JA, Palmer S, Nickoloff JA. Overexpression of Rad51 inhibits double-strand break-induced homologous recombination but does not affect gene conversion tract lengths. DNA Repair (Amst) 2005; 4:687-98. [PMID: 15878310 DOI: 10.1016/j.dnarep.2005.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 03/02/2005] [Accepted: 03/03/2005] [Indexed: 10/25/2022]
Abstract
DNA double-strand breaks (DSBs) in yeast are repaired by homologous recombination (HR) and non-homologous end-joining (NHEJ). Rad51 forms nucleoprotein filaments at processed broken ends that effect strand exchange, forming heteroduplex DNA (hDNA) that gives rise to a gene conversion tract. We hypothesized that excess Rad51 would increase gene conversion tract lengths. We found that excess Rad51 reduced DSB-induced HR but did not alter tract lengths or other outcomes including rates of crossovers, break-induced replication, or chromosome loss. Thus, excess Rad51 appears to influence DSB-induced HR at an early stage. MAT heterozygosity largely mitigated the inhibitory effect of excess Rad51 on allelic HR, but not direct repeat HR. Excess Rad52 had no effect on DSB-induced HR efficiency or outcome, nor did it mitigate the dominant negative effects of excess Rad51. Excess Rad51 had little effect on DSB-induced lethality in wild-type cells, but it did enhance lethality in yku70Delta mutants. Interestingly, dnl4Delta showed marked DSB-induced lethality but this was not further enhanced by excess Rad51. The differential effects of yku70Delta and dnl4Delta indicate that the enhanced killing with excess Rad51 in yku70Delta is not due to its NHEJ defect, but may reflect its defect in end-protection and/or its inability to escape from checkpoint arrest. Srs2 displaces Rad51 from nucleoprotein filaments in vitro, suggesting that excess Rad51 might antagonize Srs2. We show that excess Rad51 does not reduce survival of wild-type cells treated with methylmethane sulfonate (MMS), or cells suffering a single DSB. In contrast, excess Rad51 sensitized srs2Delta cells to both MMS and a single DSB. These results support the idea that excess Rad51 antagonizes Srs2, and underscores the importance of displacing Rad51 from nucleoprotein filaments to achieve optimum repair efficiency.
Collapse
Affiliation(s)
- Kimberly S Paffett
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
34
|
Lo YC, Kurtz RB, Nickoloff JA. Analysis of chromosome/allele loss in genetically unstable yeast by quantitative real-time PCR. Biotechniques 2005; 38:685-6, 688, 690. [PMID: 15948291 DOI: 10.2144/05385bm01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yi-Chen Lo
- University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
35
|
Schildkraut E, Miller CA, Nickoloff JA. Gene conversion and deletion frequencies during double-strand break repair in human cells are controlled by the distance between direct repeats. Nucleic Acids Res 2005; 33:1574-80. [PMID: 15767282 PMCID: PMC1065255 DOI: 10.1093/nar/gki295] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Homologous recombination (HR) repairs DNA double-strand breaks and maintains genome stability. HR between linked, direct repeats can occur by gene conversion without an associated crossover that maintains the gross repeat structure. Alternatively, direct repeat HR can occur by gene conversion with a crossover, or by single-strand annealing (SSA), both of which delete one repeat and the sequences between the repeats. Prior studies of different repeat structures in yeast and mammalian cells revealed disparate conversion:deletion ratios. Here, we show that a key factor controlling this ratio is the distance between the repeats, with conversion frequency increasing linearly with the distances from 850 to 3800 bp. Deletions are thought to arise primarily by SSA, which involves extensive end-processing to reveal complementary single-strands in each repeat. The results can be explained by a model in which strand-invasion leading to gene conversion competes more effectively with SSA as more extensive end-processing is required for SSA. We hypothesized that a transcription unit between repeats would inhibit end-processing and SSA, thereby increasing the fraction of conversions. However, conversion frequencies were identical for direct repeats separated by 3800 bp of transcriptionally silent or active DNA, indicating that end-processing and SSA are not affected by transcription.
Collapse
Affiliation(s)
| | | | - Jac A. Nickoloff
- To whom correspondence should be addressed. Tel: +1 505 272 6960; Fax: +1 505 272 6029;
| |
Collapse
|
36
|
Malkova A, Naylor ML, Yamaguchi M, Ira G, Haber JE. RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion. Mol Cell Biol 2005; 25:933-44. [PMID: 15657422 PMCID: PMC544012 DOI: 10.1128/mcb.25.3.933-944.2005] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diploid Saccharomyces cells experiencing a double-strand break (DSB) on one homologous chromosome repair the break by RAD51-mediated gene conversion >98% of the time. However, when extensive homologous sequences are restricted to one side of the DSB, repair can occur by both RAD51-dependent and RAD51-independent break-induced replication (BIR) mechanisms. Here we characterize the kinetics and checkpoint dependence of RAD51-dependent BIR when the DSB is created within a chromosome. Gene conversion products appear within 2 h, and there is little, if any, induction of the DNA damage checkpoint; however, RAD51-dependent BIR occurs with a further delay of 2 to 4 h and cells arrest in response to the G(2)/M DNA damage checkpoint. RAD51-dependent BIR does not require special facilitating sequences that are required for a less efficient RAD51-independent process. RAD51-dependent BIR occurs efficiently in G(2)-arrested cells. Once repair is initiated, the rate of repair replication during BIR is comparable to that of normal DNA replication, as copying of >100 kb is completed less than 30 min after repair DNA synthesis is detected close to the DSB.
Collapse
Affiliation(s)
- Anna Malkova
- Rosenstiel Center, Brandeis University, 415 South St., Mail Stop 029, Waltham, MA 02454-9110, USA
| | | | | | | | | |
Collapse
|
37
|
Yandeau-Nelson MD, Zhou Q, Yao H, Xu X, Nikolau BJ, Schnable PS. MuDR transposase increases the frequency of meiotic crossovers in the vicinity of a Mu insertion in the maize a1 gene. Genetics 2005; 169:917-29. [PMID: 15489518 PMCID: PMC1449141 DOI: 10.1534/genetics.104.035089] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 10/19/2004] [Indexed: 01/15/2023] Open
Abstract
Although DNA breaks stimulate mitotic recombination in plants, their effects on meiotic recombination are not known. Recombination across a maize a1 allele containing a nonautonomous Mu transposon was studied in the presence and absence of the MuDR-encoded transposase. Recombinant A1' alleles isolated from a1-mum2/a1::rdt heterozygotes arose via either crossovers (32 CO events) or noncrossovers (8 NCO events). In the presence of MuDR, the rate of COs increased fourfold. This increase is most likely a consequence of the repair of MuDR-induced DNA breaks at the Mu1 insertion in a1-mum2. Hence, this study provides the first in vivo evidence that DNA breaks stimulate meiotic crossovers in plants. The distribution of recombination breakpoints is not affected by the presence of MuDR in that 19 of 24 breakpoints isolated from plants that carried MuDR mapped to a previously defined 377-bp recombination hotspot. This result is consistent with the hypothesis that the DNA breaks that initiate recombination at a1 cluster at its 5' end. Conversion tracts associated with eight NCO events ranged in size from <700 bp to >1600 bp. This study also establishes that MuDR functions during meiosis and that ratios of CO/NCO vary among genes and can be influenced by genetic background.
Collapse
|
38
|
Miller CA, Bill CA, Nickoloff JA. Characterization of palindromic loop mismatch repair tracts in mammalian cells. DNA Repair (Amst) 2004; 3:421-8. [PMID: 15010318 DOI: 10.1016/j.dnarep.2003.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2003] [Indexed: 01/03/2023]
Abstract
Single- and multi-base (loop) mismatches can arise in DNA by replication errors, during recombination, and by chemical modification of DNA. Single-base and loop mismatches of several nucleotides are efficiently repaired in mammalian cells by a nick-directed, MSH2-dependent mechanism. Larger loop mismatches (> or =12 bases) are repaired by an MSH2-independent mechanism. Prior studies have shown that 12- and 14-base palindromic loops are repaired with bias toward loop retention, and that repair bias is eliminated when five single-base mismatches flank the loop mismatch. Here we show that one single-base mismatch near a 12-base palindromic loop is sufficient to eliminate loop repair bias in wild-type, but not MSH2-defective mammalian cells. We also show that palindromic loop and single-base mismatches separated by 12 bases are repaired independently at least 10% of the time in wild-type cells, and at least 30% of the time in MSH2-defective cells. Palindromic loop and single-base mismatches separated by two bases were never repaired independently. These and other data indicate that loop repair tracts are variable in length. All tracts extend at least 2 bases, some extend <12 bases, and others >12 bases, on one side of the loop. These properties distinguish palindromic loop mismatch repair from the three known excision repair pathways: base excision repair which has one to six base tracts, nucleotide excision repair which has approximately 30 base tracts, and MSH2-dependent mismatch repair, which has tracts that extend for several hundred bases.
Collapse
Affiliation(s)
- Cheryl A Miller
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
39
|
Abstract
Classical genetic studies show that gene conversion can favour some alleles over others. Molecular experiments suggest that gene conversion could favour GC over AT basepairs, leading to the concept of biased gene conversion towards GC (BGC(GC)). The expected consequence of such a process is the GC-enrichment of DNA sequences under gene conversion. Recent genomic work suggests that BGC(GC) affects the base composition of yeast, invertebrate and mammalian genomes. Hypotheses for the mechanisms and evolutionary origin of such a strange phenomenon have been proposed. Most BGC(GC) events probably occur during meiosis, which has implications for our understanding of the evolution of sex and recombination.
Collapse
Affiliation(s)
- Gabriel Marais
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, Scotland, UK.
| |
Collapse
|
40
|
Honma M, Izumi M, Sakuraba M, Tadokoro S, Sakamoto H, Wang W, Yatagai F, Hayashi M. Deletion, rearrangement, and gene conversion; genetic consequences of chromosomal double-strand breaks in human cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2003; 42:288-298. [PMID: 14673874 DOI: 10.1002/em.10201] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chromosomal double-strand breaks (DSBs) in mammalian cells are usually repaired through either of two pathways: end-joining (EJ) or homologous recombination (HR). To clarify the relative contribution of each pathway and the ensuing genetic changes, we developed a system to trace the fate of DSBs that occur in an endogenous single-copy human gene. Lymphoblastoid cell lines TSCE5 and TSCER2 are heterozygous (+/-) or compound heterozygous (-/-), respectively, for the thymidine kinase gene (TK), and we introduced an I-SceI endonuclease site into the gene. EJ for a DSB at the I-SceI site results in TK-deficient mutants in TSCE5 cells, while HR between the alleles produces TK-proficient revertants in TSCER2 cells. We found that almost all DSBs were repaired by EJ and that HR rarely contributes to the repair in this system. EJ contributed to the repair of DSBs 270 times more frequently than HR. Molecular analysis of the TK gene showed that EJ mainly causes small deletions limited to the TK gene. Seventy percent of the small deletion mutants analyzed showed 100- to 4,000-bp deletions with a 0- to 6-bp homology at the joint. Another 30%, however, were accompanied by complicated DNA rearrangements, presumably the result of sister-chromatid fusion. HR, on the other hand, always resulted in non-crossing-over gene conversion without any loss of genetic information. Thus, although HR is important to the maintenance of genomic stability in DNA containing DSBs, almost all chromosomal DSBs in human cells are repaired by EJ.
Collapse
Affiliation(s)
- Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Symington LS. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 2002; 66:630-70, table of contents. [PMID: 12456786 PMCID: PMC134659 DOI: 10.1128/mmbr.66.4.630-670.2002] [Citation(s) in RCA: 804] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.
Collapse
Affiliation(s)
- Lorraine S Symington
- Department of Microbiology and Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| |
Collapse
|
42
|
Raynard SJ, Baker MD. Incorporation of large heterologies into heteroduplex DNA during double-strand-break repair in mouse cells. Genetics 2002; 162:977-85. [PMID: 12399405 PMCID: PMC1462280 DOI: 10.1093/genetics/162.2.977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, the formation and repair of large (>1 kb) insertion/deletion (I/D) heterologies during double-strand-break repair (DSBR) was investigated using a gene-targeting assay that permits efficient recovery of sequence insertion events at the haploid chromosomal immunoglobulin (Ig) mu-locus in mouse hybridoma cells. The results revealed that (i) large I/D heterologies were generated on one or both sides of the DSB and, in some cases, formed symmetrically in both homology regions; (ii) large I/D heterologies did not negatively affect the gene targeting frequency; and (iii) prior to DNA replication, the large I/D heterologies were rectified.
Collapse
Affiliation(s)
- Steven J Raynard
- Department of Molecular Biology and Genetics, College of Biological Science, University of Guelph, Ontario, Canada
| | | |
Collapse
|
43
|
Kim PM, Paffett KS, Solinger JA, Heyer WD, Nickoloff JA. Spontaneous and double-strand break-induced recombination, and gene conversion tract lengths, are differentially affected by overexpression of wild-type or ATPase-defective yeast Rad54. Nucleic Acids Res 2002; 30:2727-35. [PMID: 12087154 PMCID: PMC117068 DOI: 10.1093/nar/gkf413] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2002] [Revised: 05/14/2002] [Accepted: 05/14/2002] [Indexed: 11/12/2022] Open
Abstract
Rad54 plays key roles in homologous recombination (HR) and double-strand break (DSB) repair in yeast, along with Rad51, Rad52, Rad55 and Rad57. Rad54 belongs to the Swi2/Snf2 family of DNA-stimulated ATPases. Rad51 nucleoprotein filaments catalyze DNA strand exchange and Rad54 augments this activity of Rad51. Mutations in the Rad54 ATPase domain (ATPase(-)) impair Rad54 function in vitro, sensitize yeast to killing by methylmethane sulfonate and reduce spontaneous gene conversion. We found that overexpression of ATPase(-) Rad54 reduced spontaneous direct repeat gene conversion and increased both spontaneous direct repeat deletion and spontaneous allelic conversion. Overexpression of ATPase(-) Rad54 decreased DSB-induced allelic conversion, but increased chromosome loss and DSB-dependent lethality. Thus, ATP hydrolysis by Rad54 contributes to genome stability by promoting high-fidelity DSB repair and suppressing spontaneous deletions. Overexpression of wild-type Rad54 did not alter DSB-induced HR levels, but conversion tract lengths were reduced. Interestingly, ATPase(-) Rad54 decreased overall HR levels and increased tract lengths. These tract length changes provide new in vivo evidence that Rad54 functions in the post-synaptic phase during recombinational repair of DSBs.
Collapse
Affiliation(s)
- Perry M Kim
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
44
|
Dooner HK. Extensive interallelic polymorphisms drive meiotic recombination into a crossover pathway. THE PLANT CELL 2002; 14:1173-83. [PMID: 12034905 PMCID: PMC150615 DOI: 10.1105/tpc.001271] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2001] [Accepted: 02/11/2002] [Indexed: 05/22/2023]
Abstract
Recombinants isolated from most meiotic intragenic recombination experiments in maize, but not in yeast, are borne principally on crossover chromosomes. This excess of crossovers is not explained readily by the canonical double-strand break repair model of recombination, proposed to account for a large body of yeast data, which predicts that crossovers (COs) and noncrossovers (NCOs) should be recovered equally. An attempt has been made here to identify general rules governing the recovery of the CO and NCO classes of intragenic recombinants in maize. Recombination was analyzed in bz heterozygotes between a variety of mutations derived from the same or different progenitor alleles. The mutations include point mutations, transposon insertions, and transposon excision footprints. Consequently, the differences between the bz heteroalleles ranged from just two nucleotides to many nucleotides, indels, and insertions. In this article, allelic pairs differing at only two positions are referred to as dimorphic to distinguish them from polymorphic pairs, which differ at multiple positions. The present study has revealed the following effects at these bz heteroalleles: (1) recombination between polymorphic heteroalleles produces mostly CO chromosomes; (2) recombination between dimorphic heteroalleles produces both CO and NCO chromosomes, in ratios apparently dependent on the nature of the heteroalleles; and (3) in dimorphic heterozygotes, the two NCO classes are recovered in approximately equal numbers when the two mutations are point mutations but not when one or both mutations are insertions. These observations are discussed in light of a recent version of the double-strand break repair model of recombination that postulates separate pathways for the formation of CO and NCO products.
Collapse
Affiliation(s)
- Hugo K Dooner
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08855, USA.
| |
Collapse
|
45
|
Chamnanpunt J, Shan WX, Tyler BM. High frequency mitotic gene conversion in genetic hybrids of the oomycete Phytophthora sojae. Proc Natl Acad Sci U S A 2001; 98:14530-5. [PMID: 11724938 PMCID: PMC64716 DOI: 10.1073/pnas.251464498] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2001] [Indexed: 11/18/2022] Open
Abstract
Microbial populations depend on genetic variation to respond to novel environmental challenges. Plant pathogens are notorious for their ability to overcome pesticides and host resistance genes as a result of genetic changes. We report here that in particular hybrid strains of Phytophthora sojae, an oomycete pathogen of soybean, high frequency mitotic gene conversion rapidly converts heterozygous loci to homozygosity, resulting in heterokaryons containing highly diverse populations of diploid nuclei. In hybrids involving strain P7076, conversion rates of up to 3 x 10(-2) per locus per nucleus per generation were observed. In other hybrids, rates were of the order of 5 x 10(-5). Independent gene conversion was observed within a selected linkage group including loci as close as 0.7 kb apart and in unlinked markers throughout the genome. Gene conversions continued throughout vegetative growth and were stimulated by further sexual reproduction. At many loci, conversion showed extreme disparity, with one allele always being lost, suggesting that conversion was initiated by allele-specific double-stranded breaks. Pedigree analysis indicated that individual loci undergo multiple independent conversions within the nuclei of a vegetative clone and that conversion may be preceded by a heritable "activation" state.
Collapse
Affiliation(s)
- J Chamnanpunt
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
46
|
Klein HL. Spontaneous chromosome loss in Saccharomyces cerevisiae is suppressed by DNA damage checkpoint functions. Genetics 2001; 159:1501-9. [PMID: 11779792 PMCID: PMC1461919 DOI: 10.1093/genetics/159.4.1501] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genomic instability is one of the hallmarks of cancer cells and is often the causative factor in revealing recessive gene mutations that progress cells along the pathway to unregulated growth. Genomic instability can take many forms, including aneuploidy and changes in chromosome structure. Chromosome loss, loss and reduplication, and deletions are the majority events that result in loss of heterozygosity (LOH). Defective DNA replication, repair, and recombination can significantly increase the frequency of spontaneous genomic instability. Recently, DNA damage checkpoint functions that operate during the S-phase checkpoint have been shown to suppress spontaneous chromosome rearrangements in haploid yeast strains. To further study the role of DNA damage checkpoint functions in genomic stability, we have determined chromosome loss in DNA damage checkpoint-deficient yeast strains. We have found that the DNA damage checkpoints are essential for preserving the normal chromosome number and act synergistically with homologous recombination functions to ensure that chromosomes are segregated correctly to daughter cells. Failure of either of these processes increases LOH events. However, loss of the G2/M checkpoint does not result in an increase in chromosome loss, suggesting that it is the various S-phase DNA damage checkpoints that suppress chromosome loss. The mec1 checkpoint function mutant, defective in the yeast ATR homolog, results in increased recombination through a process that is distinct from that operative in wild-type cells.
Collapse
Affiliation(s)
- H L Klein
- Department of Biochemistry and Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA.
| |
Collapse
|
47
|
Bill CA, Nickoloff JA. Spontaneous and ultraviolet light-induced direct repeat recombination in mammalian cells frequently results in repeat deletion. Mutat Res 2001; 487:41-50. [PMID: 11595407 DOI: 10.1016/s0921-8777(01)00101-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recombination is enhanced by transcription and by DNA damage caused by ultraviolet light (UV). Recombination between direct repeats can occur by gene conversion without an associated crossover, which maintains the gross repeat structure. There are several possible mechanisms that delete one repeat and the intervening sequences (gene conversion associated with a crossover, unequal sister chromatid exchange, and single-strand annealing). We examined transcription-enhanced spontaneous recombination, and UV-induced recombination between neomycin (neo) direct repeats. One neo gene was driven by the inducible MMTV promoter. Multiple (silent) markers in the second neo gene were used to map conversion tracts. These markers are thought to inhibit spontaneous recombination, and our data suggest that this inhibition is partially overcome by high level transcription. Recombination was stimulated by transcription and by UV doses of 6-12J/m(2), but not by 18J/m(2). About 70% of spontaneous and UV-induced products were deletions. In contrast, only 3% of DSB-induced products were deletions. We propose that these product spectra differ because spontaneous and UV-induced recombination is replication-dependent, whereas DSB-induced recombination is replication-independent.
Collapse
Affiliation(s)
- C A Bill
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, Albuquerque, NM 87131, USA
| | | |
Collapse
|
48
|
Kim PM, Allen C, Wagener BM, Shen Z, Nickoloff JA. Overexpression of human RAD51 and RAD52 reduces double-strand break-induced homologous recombination in mammalian cells. Nucleic Acids Res 2001; 29:4352-60. [PMID: 11691922 PMCID: PMC60192 DOI: 10.1093/nar/29.21.4352] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Double-strand breaks (DSBs) can be repaired by homologous recombination (HR) in mammalian cells, often resulting in gene conversion. RAD51 functions with RAD52 and other proteins to effect strand exchange during HR, forming heteroduplex DNA (hDNA) that is resolved by mismatch repair to yield a gene conversion tract. In mammalian cells RAD51 and RAD52 overexpression increase the frequency of spontaneous HR, and one study indicated that overexpression of mouse RAD51 enhances DSB-induced HR in Chinese hamster ovary (CHO) cells. We tested the effects of transient and stable overexpression of human RAD51 and/or human RAD52 on DSB-induced HR in CHO cells and in human cells. DSBs were targeted to chromosomal recombination substrates with I-SceI nuclease. In all cases, excess RAD51 and/or RAD52 reduced DSB-induced HR, contrasting with prior studies. These distinct results may reflect differences in recombination substrate structures or different levels of overexpression. Excess RAD51/RAD52 did not increase conversion tract lengths, nor were product spectra otherwise altered, indicating that excess HR proteins can have dominant negative effects on HR initiation, but do not affect later steps such as hDNA formation, mismatch repair or the resolution of intermediates.
Collapse
Affiliation(s)
- P M Kim
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
49
|
Greenberg RB, Alberti M, Hearst JE, Chua MA, Saffran WA. Recombinational and mutagenic repair of psoralen interstrand cross-links in Saccharomyces cerevisiae. J Biol Chem 2001; 276:31551-60. [PMID: 11390398 DOI: 10.1074/jbc.m103588200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Psoralen photoreacts with DNA to form interstrand cross-links, which can be repaired by both nonmutagenic nucleotide excision repair and recombinational repair pathways and by mutagenic pathways. In the yeast Saccharomyces cerevisiae, psoralen cross-links are processed by nucleotide excision repair to form double-strand breaks (DSBs). In yeast, DSBs are repaired primarily by homologous recombination, predicting that cross-link and DSB repair should induce similar recombination end points. We compared psoralen cross-link, psoralen monoadduct, and DSB repair using plasmid substrates with site-specific lesions and measured the patterns of gene conversion, crossing over, and targeted mutation. Psoralen cross-links induced both recombination and mutations, whereas DSBs induced only recombination, and monoadducts were neither recombinogenic nor mutagenic. Although the cross-link- and DSB-induced patterns of plasmid integration and gene conversion were similar in most respects, they showed opposite asymmetries in their unidirectional conversion tracts: primarily upstream from the damage site for cross-links but downstream for DSBs. Cross-links induced targeted mutations in 5% of the repaired plasmids; all were base substitutions, primarily T --> C transitions. The major pathway of psoralen cross-link repair in yeast is error-free and involves the formation of DSB intermediates followed by homologous recombination. A fraction of the cross-links enter an error-prone pathway, resulting in mutations at the damage site.
Collapse
Affiliation(s)
- R B Greenberg
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, New York 11367, USA
| | | | | | | | | |
Collapse
|
50
|
Clikeman JA, Wheeler SL, Nickoloff JA. Efficient incorporation of large (>2 kb) heterologies into heteroduplex DNA: Pms1/Msh2-dependent and -independent large loop mismatch repair in Saccharomyces cerevisiae. Genetics 2001; 157:1481-91. [PMID: 11290705 PMCID: PMC1461601 DOI: 10.1093/genetics/157.4.1481] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA double-strand break (DSB) repair in yeast is effected primarily by gene conversion. Conversion can conceivably result from gap repair or from mismatch repair of heteroduplex DNA (hDNA) in recombination intermediates. Mismatch repair is normally very efficient, but unrepaired mismatches segregate in the next cell division, producing sectored colonies. Conversion of small heterologies (single-base differences or insertions <15 bp) in meiosis and mitosis involves mismatch repair of hDNA. The repair of larger loop mismatches in plasmid substrates or arising by replication slippage is inefficient and/or independent of Pms1p/Msh2p-dependent mismatch repair. However, large insertions convert readily (without sectoring) during meiotic recombination, raising the question of whether large insertions convert by repair of large loop mismatches or by gap repair. We show that insertions of 2.2 and 2.6 kbp convert efficiently during DSB-induced mitotic recombination, primarily by Msh2p- and Pms1p-dependent repair of large loop mismatches. These results support models in which Rad51p readily incorporates large heterologies into hDNA. We also show that large heterologies convert more frequently than small heterologies located the same distance from an initiating DSB and propose that this reflects Msh2-independent large loop-specific mismatch repair biased toward loop loss.
Collapse
Affiliation(s)
- J A Clikeman
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| | | | | |
Collapse
|