1
|
Pettie N, Llopart A, Comeron JM. Meiotic, genomic and evolutionary properties of crossover distribution in Drosophila yakuba. PLoS Genet 2022; 18:e1010087. [PMID: 35320272 PMCID: PMC8979470 DOI: 10.1371/journal.pgen.1010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/04/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
The number and location of crossovers across genomes are highly regulated during meiosis, yet the key components controlling them are fast evolving, hindering our understanding of the mechanistic causes and evolutionary consequences of changes in crossover rates. Drosophila melanogaster has been a model species to study meiosis for more than a century, with an available high-resolution crossover map that is, nonetheless, missing for closely related species, thus preventing evolutionary context. Here, we applied a novel and highly efficient approach to generate whole-genome high-resolution crossover maps in D. yakuba to tackle multiple questions that benefit from being addressed collectively within an appropriate phylogenetic framework, in our case the D. melanogaster species subgroup. The genotyping of more than 1,600 individual meiotic events allowed us to identify several key distinct properties relative to D. melanogaster. We show that D. yakuba, in addition to higher crossover rates than D. melanogaster, has a stronger centromere effect and crossover assurance than any Drosophila species analyzed to date. We also report the presence of an active crossover-associated meiotic drive mechanism for the X chromosome that results in the preferential inclusion in oocytes of chromatids with crossovers. Our evolutionary and genomic analyses suggest that the genome-wide landscape of crossover rates in D. yakuba has been fairly stable and captures a significant signal of the ancestral crossover landscape for the whole D. melanogaster subgroup, even informative for the D. melanogaster lineage. Contemporary crossover rates in D. melanogaster, on the other hand, do not recapitulate ancestral crossovers landscapes. As a result, the temporal stability of crossover landscapes observed in D. yakuba makes this species an ideal system for applying population genetic models of selection and linkage, given that these models assume temporal constancy in linkage effects. Our studies emphasize the importance of generating multiple high-resolution crossover rate maps within a coherent phylogenetic context to broaden our understanding of crossover control during meiosis and to improve studies on the evolutionary consequences of variable crossover rates across genomes and time.
Collapse
Affiliation(s)
- Nikale Pettie
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Ana Llopart
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Josep M. Comeron
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
2
|
Jackson BC, Campos JL, Haddrill PR, Charlesworth B, Zeng K. Variation in the Intensity of Selection on Codon Bias over Time Causes Contrasting Patterns of Base Composition Evolution in Drosophila. Genome Biol Evol 2017; 9:102-123. [PMID: 28082609 PMCID: PMC5381600 DOI: 10.1093/gbe/evw291] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2016] [Indexed: 12/11/2022] Open
Abstract
Four-fold degenerate coding sites form a major component of the genome, and are often used to make inferences about selection and demography, so that understanding their evolution is important. Despite previous efforts, many questions regarding the causes of base composition changes at these sites in Drosophila remain unanswered. To shed further light on this issue, we obtained a new whole-genome polymorphism data set from D. simulans. We analyzed samples from the putatively ancestral range of D. simulans, as well as an existing polymorphism data set from an African population of D. melanogaster. By using D. yakuba as an outgroup, we found clear evidence for selection on 4-fold sites along both lineages over a substantial period, with the intensity of selection increasing with GC content. Based on an explicit model of base composition evolution, we suggest that the observed AT-biased substitution pattern in both lineages is probably due to an ancestral reduction in selection intensity, and is unlikely to be the result of an increase in mutational bias towards AT alone. By using two polymorphism-based methods for estimating selection coefficients over different timescales, we show that the selection intensity on codon usage has been rather stable in D. simulans in the recent past, but the long-term estimates in D. melanogaster are much higher than the short-term ones, indicating a continuing decline in selection intensity, to such an extent that the short-term estimates suggest that selection is only active in the most GC-rich parts of the genome. Finally, we provide evidence for complex evolutionary patterns in the putatively neutral short introns, which cannot be explained by the standard GC-biased gene conversion model. These results reveal a dynamic picture of base composition evolution.
Collapse
Affiliation(s)
- Benjamin C Jackson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - José L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Penelope R Haddrill
- Centre for Forensic Science, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Kai Zeng
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
James JE, Lanfear R, Eyre-Walker A. Molecular Evolutionary Consequences of Island Colonization. Genome Biol Evol 2016; 8:1876-88. [PMID: 27358424 PMCID: PMC4943191 DOI: 10.1093/gbe/evw120] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Island endemics are expected to have low effective population sizes (Ne), first because some may experience population bottlenecks when they are founded, and second because they have restricted ranges. Therefore, we expect island species to have reduced genetic diversity, inefficient selection, and reduced adaptive potential compared with their mainland counterparts. We used both polymorphism and substitution data to address these predictions, improving on the approach of recent studies that only used substitution data. This allowed us to directly test the assumption that island species have small values of Ne We found that island species had significantly less genetic diversity than mainland species; however, this pattern could be attributed to a subset of island species that appeared to have undergone a recent population bottleneck. When these species were excluded from the analysis, island and mainland species had similar levels of genetic diversity, despite island species occupying considerably smaller areas than their mainland counterparts. We also found no overall difference between island and mainland species in terms of the effectiveness of selection or the mutation rate. Our evidence suggests that island colonization has no lasting impact on molecular evolution. This surprising result highlights gaps in our knowledge of the relationship between census and effective population size.
Collapse
Affiliation(s)
- Jennifer E James
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Robert Lanfear
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia Division of Evolution Ecology and Genetics, Research School of Biology, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
4
|
McCandlish DM, Stoltzfus A. Modeling evolution using the probability of fixation: history and implications. QUARTERLY REVIEW OF BIOLOGY 2014; 89:225-52. [PMID: 25195318 DOI: 10.1086/677571] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Many models of evolution calculate the rate of evolution by multiplying the rate at which new mutations originate within a population by a probability of fixation. Here we review the historical origins, contemporary applications, and evolutionary implications of these "origin-fixation" models, which are widely used in evolutionary genetics, molecular evolution, and phylogenetics. Origin-fixation models were first introduced in 1969, in association with an emerging view of "molecular" evolution. Early origin-fixation models were used to calculate an instantaneous rate of evolution across a large number of independently evolving loci; in the 1980s and 1990s, a second wave of origin-fixation models emerged to address a sequence of fixation events at a single locus. Although origin fixation models have been applied to a broad array of problems in contemporary evolutionary research, their rise in popularity has not been accompanied by an increased appreciation of their restrictive assumptions or their distinctive implications. We argue that origin-fixation models constitute a coherent theory of mutation-limited evolution that contrasts sharply with theories of evolution that rely on the presence of standing genetic variation. A major unsolved question in evolutionary biology is the degree to which these models provide an accurate approximation of evolution in natural populations.
Collapse
|
5
|
Kostka D, Hubisz MJ, Siepel A, Pollard KS. The role of GC-biased gene conversion in shaping the fastest evolving regions of the human genome. Mol Biol Evol 2011; 29:1047-57. [PMID: 22075116 PMCID: PMC3278478 DOI: 10.1093/molbev/msr279] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
GC-biased gene conversion (gBGC) is a recombination-associated evolutionary process that accelerates the fixation of guanine or cytosine alleles, regardless of their effects on fitness. gBGC can increase the overall rate of substitutions, a hallmark of positive selection. Many fast-evolving genes and noncoding sequences in the human genome have GC-biased substitution patterns, suggesting that gBGC-in contrast to adaptive processes-may have driven the human changes in these sequences. To investigate this hypothesis, we developed a substitution model for DNA sequence evolution that quantifies the nonlinear interacting effects of selection and gBGC on substitution rates and patterns. Based on this model, we used a series of lineage-specific likelihood ratio tests to evaluate sequence alignments for evidence of changes in mode of selection, action of gBGC, or both. With a false positive rate of less than 5% for individual tests, we found that the majority (76%) of previously identified human accelerated regions are best explained without gBGC, whereas a substantial minority (19%) are best explained by the action of gBGC alone. Further, more than half (55%) have substitution rates that significantly exceed local estimates of the neutral rate, suggesting that these regions may have been shaped by positive selection rather than by relaxation of constraint. By distinguishing the effects of gBGC, relaxation of constraint, and positive selection we provide an integrated analysis of the evolutionary forces that shaped the fastest evolving regions of the human genome, which facilitates the design of targeted functional studies of adaptation in humans.
Collapse
Affiliation(s)
- Dennis Kostka
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, USA.
| | | | | | | |
Collapse
|
6
|
Kulikov AM, Lazebnyi OE, Gornostaev NG, Chekunova AI, Mitrofanov VG. Unequal evolutionary rates in the Drosophila virilis species group: I. The use of phylogeny-based Takezaki’s tests. BIOL BULL+ 2010. [DOI: 10.1134/s1062359010010036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Sackton TB, Kulathinal RJ, Bergman CM, Quinlan AR, Dopman EB, Carneiro M, Marth GT, Hartl DL, Clark AG. Population genomic inferences from sparse high-throughput sequencing of two populations of Drosophila melanogaster. Genome Biol Evol 2009; 1:449-65. [PMID: 20333214 PMCID: PMC2839279 DOI: 10.1093/gbe/evp048] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2009] [Indexed: 12/20/2022] Open
Abstract
Short-read sequencing techniques provide the opportunity to capture genome-wide sequence data in a single experiment. A current challenge is to identify questions that shallow-depth genomic data can address successfully and to develop corresponding analytical methods that are statistically sound. Here, we apply the Roche/454 platform to survey natural variation in strains of Drosophila melanogaster from an African (n = 3) and a North American (n = 6) population. Reads were aligned to the reference D. melanogaster genomic assembly, single nucleotide polymorphisms were identified, and nucleotide variation was quantified genome wide. Simulations and empirical results suggest that nucleotide diversity can be accurately estimated from sparse data with as little as 0.2x coverage per line. The unbiased genomic sampling provided by random short-read sequencing also allows insight into distributions of transposable elements and copy number polymorphisms found within populations and demonstrates that short-read sequencing methods provide an efficient means to quantify variation in genome organization and content. Continued development of methods for statistical inference of shallow-depth genome-wide sequencing data will allow such sparse, partial data sets to become the norm in the emerging field of population genomics.
Collapse
Affiliation(s)
- Timothy B Sackton
- Department of Organismic and Evolutionary Biology, Harvard University, Boston, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Estimating selection intensity on synonymous codon usage in a nonequilibrium population. Genetics 2009; 183:651-62, 1SI-23SI. [PMID: 19620398 DOI: 10.1534/genetics.109.101782] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Codon usage bias is the nonrandom use of synonymous codons for the same amino acid. Most population genetic models of codon usage evolution assume that the population is at mutation-selection-drift equilibrium. Natural populations, however, frequently deviate from equilibrium, often because of recent demographic changes. Here, we construct a matrix model that includes the effects of a recent change in population size on estimates of selection on preferred vs. unpreferred codons. Our results suggest that patterns of synonymous polymorphisms affecting codon usage can be quite erratic after such a change; statistical methods that fail to take demographic effects into account can then give incorrect estimates of important parameters. We propose a new method that can accurately estimate both demographic and codon usage parameters. The method also provides a simple way of testing for the effects of covariates such as gene length and level of gene expression on the intensity of selection, which we apply to a large Drosophila melanogaster polymorphism data set. Our analyses of twofold degenerate codons reveal that (i) selection acts in favor of preferred codons, (ii) there is mutational bias in favor of unpreferred codons, (iii) shorter genes and genes with higher expression levels are under stronger selection, and (iv) there is little evidence for a recent change in population size in the Zimbabwe population of D. melanogaster.
Collapse
|
9
|
Singh ND, Arndt PF, Clark AG, Aquadro CF. Strong evidence for lineage and sequence specificity of substitution rates and patterns in Drosophila. Mol Biol Evol 2009; 26:1591-605. [PMID: 19351792 DOI: 10.1093/molbev/msp071] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rates of single nucleotide substitution in Drosophila are highly variable within the genome, and several examples illustrate that evolutionary rates differ among Drosophila species as well. Here, we use a maximum likelihood method to quantify lineage-specific substitutional patterns and apply this method to 4-fold degenerate synonymous sites and introns from more than 8,000 genes aligned in the Drosophila melanogaster group. We find that within species, different classes of sequence evolve at different rates, with long introns evolving most slowly and short introns evolving most rapidly. Relative rates of individual single nucleotide substitutions vary approximately 3-fold among lineages, yielding patterns of substitution that are comparatively less GC-biased in the melanogaster species complex relative to Drosophila yakuba and Drosophila erecta. These results are consistent with a model coupling a mutational shift toward reduced GC content, or a shift in mutation-selection balance, in the D. melanogaster species complex, with variation in selective constraint among different classes of DNA sequence. Finally, base composition of coding and intronic sequences is not at equilibrium with respect to substitutional patterns, which primarily reflects the slow rate of the substitutional process. These results thus support the view that mutational and/or selective processes are labile on an evolutionary timescale and that if the process is indeed selection driven, then the distribution of selective constraint is variable across the genome.
Collapse
Affiliation(s)
- Nadia D Singh
- Department of Molecular Biology and Genetics, Cornell University.
| | | | | | | |
Collapse
|
10
|
Anderson JA, Gilliland WD, Langley CH. Molecular population genetics and evolution of Drosophila meiosis genes. Genetics 2009; 181:177-85. [PMID: 18984573 PMCID: PMC2621166 DOI: 10.1534/genetics.108.093807] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/28/2008] [Indexed: 12/17/2022] Open
Abstract
While many functional elements of the meiotic process are well characterized in model organisms, the genetic basis of most of the natural phenotypic variation observed in meiotic pathways has not been determined. To begin to address this issue, we characterized patterns of polymorphism and divergence in the protein-coding regions of 33 genes across 31 lines of Drosophila melanogaster and 6 lines of Drosophila simulans. We sequenced genes known to be involved in chromosome segregation, recombination, DNA repair, and related heterochromatin binding. As expected, we found several of the genes to be highly conserved, consistent with purifying selection. However, a subset of genes showed patterns of polymorphism and divergence typical of other types of natural selection. Moreover, several intriguing differences between the two Drosophila lineages were evident: along the D. simulans lineage we consistently found evidence of adaptive protein evolution, whereas along the D. melanogaster lineage several loci exhibited patterns consistent with the maintenance of protein variation.
Collapse
|
11
|
A multispecies approach for comparing sequence evolution of X-linked and autosomal sites inDrosophila. Genet Res (Camb) 2008; 90:421-31. [DOI: 10.1017/s0016672308009804] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
SummaryPopulation genetics models show that, under certain conditions, the X chromosome is expected to be under more efficient selection than the autosomes. This could lead to ‘faster-X evolution’, if a large proportion of mutations are fixed by positive selection, as suggested by recent studies inDrosophila. We used a multispecies approach to test this: Muller's element D, an autosomal arm, is fused to the ancestral X chromosome inDrosophila pseudoobscuraand its sister species,Drosophila affinis. We tested whether the same set of genes had higher rates of non-synonymous evolution when they were X-linked (in theD. pseudoobscura/D. affiniscomparison) than when they were autosomal (inDrosophila melanogaster/Drosophila yakuba). Although not significant, our results suggest this may be the case, but only for genes under particularly strong positive selection/weak purifying selection. They also suggest that genes that have become X-linked have higher levels of codon bias and slower synonymous site evolution, consistent with more effective selection on codon usage at X-linked sites.
Collapse
|
12
|
Llopart A, Comeron JM. Recurrent events of positive selection in independent Drosophila lineages at the spermatogenesis gene roughex. Genetics 2008; 179:1009-20. [PMID: 18505872 PMCID: PMC2429854 DOI: 10.1534/genetics.107.086231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 04/08/2008] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the role of positive selection in the evolution of genes with male-biased expression can be hindered by two observations. First, male-biased genes tend to be overrepresented among lineage-specific genes. Second, novel genes are prone to experience bursts of adaptive evolution shortly after their formation. A thorough study of the forces acting on male-biased genes therefore would benefit from phylogenywide analyses that could distinguish evolutionary trends associated with gene formation and later events, while at the same time tackling the interesting question of whether adaptive evolution is indeed idiosyncratic. Here we investigate the roughex (rux) gene, a dose-dependent regulator of Drosophila spermatogenesis with a C-terminal domain responsible for nuclear localization that shows a distinct amino acid sequence in the melanogaster subgroup. We collected polymorphism and divergence data in eight populations of six Drosophila species, for a total of 99 rux sequences, to study rates and patterns of evolution at this male-biased gene. Our results from two phylogeny-based methods (PAML and HyPhy) as well as from population genetics analyses (McDonald-Kreitman-based tests) indicate that amino acid replacements have contributed disproportionately to divergence, consistent with adaptive evolution at the Rux protein. Analyses based on extant variation show also the signature of recent selective sweeps in several of the populations surveyed. Most important, we detect the significant and consistent signature of positive selection in several independent Drosophila lineages, which evidences recurrent and concurrent events of adaptive evolution after rux formation.
Collapse
Affiliation(s)
- Ana Llopart
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
13
|
Akashi H, Goel P, John A. Ancestral inference and the study of codon bias evolution: implications for molecular evolutionary analyses of the Drosophila melanogaster subgroup. PLoS One 2007; 2:e1065. [PMID: 17957249 PMCID: PMC2020436 DOI: 10.1371/journal.pone.0001065] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 09/21/2007] [Indexed: 11/18/2022] Open
Abstract
Reliable inference of ancestral sequences can be critical to identifying both patterns and causes of molecular evolution. Robustness of ancestral inference is often assumed among closely related species, but tests of this assumption have been limited. Here, we examine the performance of inference methods for data simulated under scenarios of codon bias evolution within the Drosophila melanogaster subgroup. Genome sequence data for multiple, closely related species within this subgroup make it an important system for studying molecular evolutionary genetics. The effects of asymmetric and lineage-specific substitution rates (i.e., varying levels of codon usage bias and departures from equilibrium) on the reliability of ancestral codon usage was investigated. Maximum parsimony inference, which has been widely employed in analyses of Drosophila codon bias evolution, was compared to an approach that attempts to account for uncertainty in ancestral inference by weighting ancestral reconstructions by their posterior probabilities. The latter approach employs maximum likelihood estimation of rate and base composition parameters. For equilibrium and most non-equilibrium scenarios that were investigated, the probabilistic method appears to generate reliable ancestral codon bias inferences for molecular evolutionary studies within the D. melanogaster subgroup. These reconstructions are more reliable than parsimony inference, especially when codon usage is strongly skewed. However, inference biases are considerable for both methods under particular departures from stationarity (i.e., when adaptive evolution is prevalent). Reliability of inference can be sensitive to branch lengths, asymmetry in substitution rates, and the locations and nature of lineage-specific processes within a gene tree. Inference reliability, even among closely related species, can be strongly affected by (potentially unknown) patterns of molecular evolution in lineages ancestral to those of interest.
Collapse
Affiliation(s)
- Hiroshi Akashi
- Institute of Molecular Evolutionary Genetics, Department of Biology, Pennsylvania State University, State College, Pennsylvania, United States of America.
| | | | | |
Collapse
|
14
|
Charlesworth J, Eyre-Walker A. The other side of the nearly neutral theory, evidence of slightly advantageous back-mutations. Proc Natl Acad Sci U S A 2007; 104:16992-7. [PMID: 17940029 PMCID: PMC2040392 DOI: 10.1073/pnas.0705456104] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Indexed: 11/18/2022] Open
Abstract
We argue that if there is a category of slightly deleterious mutations, then there should be a category of slightly advantageous back-mutations. We show that when there are both slightly deleterious and advantageous back-mutations, there is likely to be an increase in the rate of evolution after a population size expansion. This increase in the rate of evolution is short-lived. However, we show how its signature can be captured by comparing the rate of evolution in species that have undergone population size expansion versus contraction. We test our model by comparing the pattern of evolution in pairs of island and mainland species in which the colonization event was either island-to-mainland (population size expansion) or mainland-to-island (contraction). We show that the predicted pattern of evolution is observed.
Collapse
Affiliation(s)
- Jane Charlesworth
- Centre for the Study of Evolution, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Adam Eyre-Walker
- Centre for the Study of Evolution, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| |
Collapse
|
15
|
Díaz-Castillo C, Golic KG. Evolution of gene sequence in response to chromosomal location. Genetics 2007; 177:359-74. [PMID: 17890366 PMCID: PMC2013720 DOI: 10.1534/genetics.107.077081] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 06/06/2007] [Indexed: 12/26/2022] Open
Abstract
Evolutionary forces acting on the repetitive DNA of heterochromatin are not constrained by the same considerations that apply to protein-coding genes. Consequently, such sequences are subject to rapid evolutionary change. By examining the Troponin C gene family of Drosophila melanogaster, which has euchromatic and heterochromatic members, we find that protein-coding genes also evolve in response to their chromosomal location. The heterochromatic members of the family show a reduced CG content and increased variation in DNA sequence. We show that the CG reduction applies broadly to the protein-coding sequences of genes located at the heterochromatin:euchromatin interface, with a very strong correlation between CG content and the distance from centric heterochromatin. We also observe a similar trend in the transition from telomeric heterochromatin to euchromatin. We propose that the methylation of DNA is one of the forces driving this sequence evolution.
Collapse
|
16
|
Haddrill PR, Halligan DL, Tomaras D, Charlesworth B. Reduced efficacy of selection in regions of the Drosophila genome that lack crossing over. Genome Biol 2007; 8:R18. [PMID: 17284312 PMCID: PMC1852418 DOI: 10.1186/gb-2007-8-2-r18] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/18/2006] [Accepted: 02/06/2007] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The recombinational environment is predicted to influence patterns of protein sequence evolution through the effects of Hill-Robertson interference among linked sites subject to selection. In freely recombining regions of the genome, selection should more effectively incorporate new beneficial mutations, and eliminate deleterious ones, than in regions with low rates of genetic recombination. RESULTS We examined the effects of recombinational environment on patterns of evolution using a genome-wide comparison of Drosophila melanogaster and D. yakuba. In regions of the genome with no crossing over, we find elevated divergence at nonsynonymous sites and in long introns, a virtual absence of codon usage bias, and an increase in gene length. However, we find little evidence for differences in patterns of evolution between regions with high, intermediate, and low crossover frequencies. In addition, genes on the fourth chromosome exhibit more extreme deviations from regions with crossing over than do other, no crossover genes outside the fourth chromosome. CONCLUSION All of the patterns observed are consistent with a severe reduction in the efficacy of selection in the absence of crossing over, resulting in the accumulation of deleterious mutations in these regions. Our results also suggest that even a very low frequency of crossing over may be enough to maintain the efficacy of selection.
Collapse
Affiliation(s)
- Penelope R Haddrill
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, UK
| | - Daniel L Halligan
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, UK
| | - Dimitris Tomaras
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, UK
- 15 Smirnis St, 15669, Papagou, Athens, Greece
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, UK
| |
Collapse
|
17
|
Cirulli ET, Kliman RM, Noor MAF. Fine-scale crossover rate heterogeneity in Drosophila pseudoobscura. J Mol Evol 2006; 64:129-35. [PMID: 17160365 DOI: 10.1007/s00239-006-0142-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 10/03/2006] [Indexed: 12/26/2022]
Abstract
Broad-scale differences in crossover rate across the genome have been characterized in most genomes studied. Fine-scale differences, however, have only been examined in a few taxa, such as Arabidopsis, yeast, humans, and mice. No prior studies have directly looked for fine-scale recombination rate heterogeneity in Drosophila. We produced 370 Drosophila pseudoobscura containing a crossover event within the 2-megabase (MB) region between the genes yellow and white. We then examined 19 intervals within this region and determined where the crossovers occurred. We found that recombination events occur nonrandomly on a small scale and that mild "hotspots" of a few kilobases exist in Drosophila. Among the regions studied, recombination rates varied from 1.4 to 52 cM/MB. We also observed a trend toward high codon bias in regions of high recombination. Finally, we identified a significantly positive correlation between recombination rate and simple repeats, as well as the motif CACAC. These sequence features may contribute to broad-scale variation in crossover rate and, thus, shed light on features associated with crossover rate heterogeneity at a genome-wide scale.
Collapse
|
18
|
Ko WY, Piao S, Akashi H. Strong regional heterogeneity in base composition evolution on the Drosophila X chromosome. Genetics 2006; 174:349-62. [PMID: 16547109 PMCID: PMC1569809 DOI: 10.1534/genetics.105.054346] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 05/08/2006] [Indexed: 11/18/2022] Open
Abstract
Fluctuations in base composition appear to be prevalent in Drosophila and mammal genome evolution, but their timescale, genomic breadth, and causes remain obscure. Here, we study base composition evolution within the X chromosomes of Drosophila melanogaster and five of its close relatives. Substitutions were inferred on six extant and two ancestral lineages for 14 near-telomeric and 9 nontelomeric genes. GC content evolution is highly variable both within the genome and within the phylogenetic tree. In the lineages leading to D. yakuba and D. orena, GC content at silent sites has increased rapidly near telomeres, but has decreased in more proximal (nontelomeric) regions. D. orena shows a 17-fold excess of GC-increasing vs. AT-increasing synonymous changes within a small (approximately 130-kb) region close to the telomeric end. Base composition changes within introns are consistent with changes in mutation patterns, but stronger GC elevation at synonymous sites suggests contributions of natural selection or biased gene conversion. The Drosophila yakuba lineage shows a less extreme elevation of GC content distributed over a wider genetic region (approximately 1.2 Mb). A lack of change in GC content for most introns within this region suggests a role of natural selection in localized base composition fluctuations.
Collapse
Affiliation(s)
- Wen-Ya Ko
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
19
|
Akashi H, Ko WY, Piao S, John A, Goel P, Lin CF, Vitins AP. Molecular evolution in the Drosophila melanogaster species subgroup: frequent parameter fluctuations on the timescale of molecular divergence. Genetics 2005; 172:1711-26. [PMID: 16387879 PMCID: PMC1456288 DOI: 10.1534/genetics.105.049676] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although mutation, genetic drift, and natural selection are well established as determinants of genome evolution, the importance (frequency and magnitude) of parameter fluctuations in molecular evolution is less understood. DNA sequence comparisons among closely related species allow specific substitutions to be assigned to lineages on a phylogenetic tree. In this study, we compare patterns of codon usage and protein evolution in 22 genes (>11,000 codons) among Drosophila melanogaster and five relatives within the D. melanogaster subgroup. We assign changes to eight lineages using a maximum-likelihood approach to infer ancestral states. Uncertainty in ancestral reconstructions is taken into account, at least to some extent, by weighting reconstructions by their posterior probabilities. Four of the eight lineages show potentially genomewide departures from equilibrium synonymous codon usage; three are decreasing and one is increasing in major codon usage. Several of these departures are consistent with lineage-specific changes in selection intensity (selection coefficients scaled to effective population size) at silent sites. Intron base composition and rates and patterns of protein evolution are also heterogeneous among these lineages. The magnitude of forces governing silent, intron, and protein evolution appears to have varied frequently, and in a lineage-specific manner, within the D. melanogaster subgroup.
Collapse
Affiliation(s)
- Hiroshi Akashi
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Drapeau MD, Cyran SA, Viering MM, Geyer PK, Long AD. A cis-regulatory sequence within the yellow locus of Drosophila melanogaster required for normal male mating success. Genetics 2005; 172:1009-30. [PMID: 16272418 PMCID: PMC1456202 DOI: 10.1534/genetics.105.045666] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster males perform a courtship ritual consisting of a series of dependent fixed-action patterns. The yellow (y) gene is required for normal male courtship behavior and subsequent mating success. To better characterize the requirement for y in the manifestation of innate male sexual behavior, we measured the male mating success (MMS) of 12 hypomorphic y mutants and matched-outbred-background controls using a y+ rescue element on a freely segregating minichromosome. We found that 4 hypomorphs significantly reduced MMS to varying degrees. Reduced MMS was largely independent of adult pigmentation patterns. These mutations defined a 300-bp regulatory region upstream of the transcription start, the mating-success regulatory sequence (MRS), whose function is required for normal MMS. Visualization of gene action via GFP and a Yellow antibody suggests that the MRS directs y transcription in a small number of cells in the third instar CNS, the developmental stage previously implicated in the role of y with regard to male courtship behavior. The presence of Yellow protein in these cells positively correlates with MMS in a subset of mutants. The MRS contains a regulatory sequence controlling larval pigmentation and a 35-bp sequence that is highly conserved within the genus Drosophila and is predicted to bind known transcription factors.
Collapse
Affiliation(s)
- Mark David Drapeau
- Department of Ecology and Evolutionary Biology, University of California, Irvine 92697, USA.
| | | | | | | | | |
Collapse
|
21
|
Singh ND, Davis JC, Petrov DA. Codon Bias and Noncoding GC Content Correlate Negatively with Recombination Rate on the Drosophila X Chromosome. J Mol Evol 2005; 61:315-24. [PMID: 16044248 DOI: 10.1007/s00239-004-0287-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Accepted: 03/10/2005] [Indexed: 11/28/2022]
Abstract
The patterns and processes of molecular evolution may differ between the X chromosome and the autosomes in Drosophila melanogaster. This may in part be due to differences in the effective population size between the two chromosome sets and in part to the hemizygosity of the X chromosome in Drosophila males. These and other factors may lead to differences both in the gene complements of the X and the autosomes and in the properties of the genes residing on those chromosomes. Here we show that codon bias and recombination rate are correlated strongly and negatively on the X chromosome, and that this correlation cannot be explained by indirect relationships with other known determinants of codon bias. This is in dramatic contrast to the weak positive correlation found on the autosomes. We explored possible explanations for these patterns, which required a comprehensive analysis of the relationships among multiple genetic properties such as protein length and expression level. This analysis highlights conserved features of coding sequence evolution on the X and the autosomes and illuminates interesting differences between these two chromosome sets.
Collapse
Affiliation(s)
- Nadia D Singh
- Department of Biological Sciences, Stanford University, 371 Serra Mall, Stanford, California, 90305-5020, USA.
| | | | | |
Collapse
|
22
|
Llopart A, Lachaise D, Coyne JA. Multilocus analysis of introgression between two sympatric sister species of Drosophila: Drosophila yakuba and D. santomea. Genetics 2005; 171:197-210. [PMID: 15965264 PMCID: PMC1456511 DOI: 10.1534/genetics.104.033597] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila yakuba is widely distributed in sub-Saharan Africa, while D. santomea is endemic to the volcanic island of São Tomé in the Atlantic Ocean, 280 km west of Gabon. On São Tomé, D. yakuba is found mainly in open lowland forests, and D. santomea is restricted to the wet misty forests at higher elevations. At intermediate elevations, the species form a hybrid zone where hybrids occur at a frequency of approximately 1%. To determine the extent of gene flow between these species we studied polymorphism and divergence patterns in 29 regions distributed throughout the genome, including mtDNA and three genes on the Y chromosome. This multilocus approach, together with the comparison to the two allopatric species D. mauritiana and D. sechellia, allowed us to distinguish between forces that should affect all genes and forces that should act on some genes (e.g., introgression). Our results show that D. yakuba mtDNA has replaced that of D. santomea and that there is also significant introgression for two nuclear genes, yellow and salr. The majority of genes, however, has remained distinct. These two species therefore do not form a "hybrid swarm" in which much of the genome shows substantial introgression while disruptive selection maintains distinctness for only a few traits (e.g., pigmentation and male genitalia).
Collapse
Affiliation(s)
- Ana Llopart
- Department of Ecology and Evolution, University of Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
23
|
DuMont VB, Fay JC, Calabrese PP, Aquadro CF. DNA variability and divergence at the notch locus in Drosophila melanogaster and D. simulans: a case of accelerated synonymous site divergence. Genetics 2005; 167:171-85. [PMID: 15166145 PMCID: PMC1470868 DOI: 10.1534/genetics.167.1.171] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA diversity in two segments of the Notch locus was surveyed in four populations of Drosophila melanogaster and two of D. simulans. In both species we observed evidence of non-steady-state evolution. In D. simulans we observed a significant excess of intermediate frequency variants in a non-African population. In D. melanogaster we observed a disparity between levels of sequence polymorphism and divergence between one of the Notch regions sequenced and other neutral X chromosome loci. The striking feature of the data is the high level of synonymous site divergence at Notch, which is the highest reported to date. To more thoroughly investigate the pattern of synonymous site evolution between these species, we developed a method for calibrating preferred, unpreferred, and equal synonymous substitutions by the effective (potential) number of such changes. In D. simulans, we find that preferred changes per "site" are evolving significantly faster than unpreferred changes at Notch. In contrast we observe a significantly faster per site substitution rate of unpreferred changes in D. melanogaster at this locus. These results suggest that positive selection, and not simply relaxation of constraint on codon bias, has contributed to the higher levels of unpreferred divergence along the D. melanogaster lineage at Notch.
Collapse
Affiliation(s)
- Vanessa Bauer DuMont
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
24
|
Zhang Z, Kishino H. Genomic background predicts the fate of duplicated genes: evidence from the yeast genome. Genetics 2005; 166:1995-9. [PMID: 15126414 PMCID: PMC1470803 DOI: 10.1534/genetics.166.4.1995] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene duplication with subsequent divergence plays a central role in the acquisition of genes with novel function and complexity during the course of evolution. With reduced functional constraints or through positive selection, these duplicated genes may experience accelerated evolution. Under the model of subfunctionalization, loss of subfunctions leads to complementary acceleration at sites with two copies, and the difference in average rate between the sequences may not be obvious. On the other hand, the classical model of neofunctionalization predicts that the evolutionary rate in one of the two duplicates is accelerated. However, the classical model does not tell which of the duplicates experiences the acceleration in evolutionary rate. Here, we present evidence from the Saccharomyces cerevisiae genome that a duplicate located in a genomic region with a low-recombination rate is likely to evolve faster than a duplicate in an area of high recombination. This observation is consistent with population genetics theory that predicts that purifying selection is less effective in genomic regions of low recombination (Hill-Robertson effect). Together with previous studies, our results suggest the genomic background (e.g., local recombination rate) as a potential force to drive the divergence between nontandemly duplicated genes. This implies the importance of structure and complexity of genomes in the diversification of organisms via gene duplications.
Collapse
Affiliation(s)
- Ze Zhang
- Laboratory of Biometrics and Bioinformatics, Graduate School of Agriculture and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | | |
Collapse
|
25
|
Bartolomé C, Maside X, Yi S, Grant AL, Charlesworth B. Patterns of selection on synonymous and nonsynonymous variants in Drosophila miranda. Genetics 2004; 169:1495-507. [PMID: 15545653 PMCID: PMC1449532 DOI: 10.1534/genetics.104.033068] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have investigated patterns of within-species polymorphism and between-species divergence for synonymous and nonsynonymous variants at a set of autosomal and X-linked loci of Drosophila miranda. D. pseudoobscura and D. affinis were used for the between-species comparisons. The results suggest the action of purifying selection on nonsynonymous, polymorphic variants. Among synonymous polymorphisms, there is a significant excess of synonymous mutations from preferred to unpreferred codons and of GC to AT mutations. There was no excess of GC to AT mutations among polymorphisms at noncoding sites. This suggests that selection is acting to maintain the use of preferred codons. Indirect evidence suggests that biased gene conversion in favor of GC base pairs may also be operating. The joint intensity of selection and biased gene conversion, in terms of the product of effective population size and the sum of the selection and conversion coefficients, was estimated to be approximately 0.65.
Collapse
Affiliation(s)
- Carolina Bartolomé
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, UK.
| | | | | | | | | |
Collapse
|
26
|
Singh ND, Arndt PF, Petrov DA. Genomic heterogeneity of background substitutional patterns in Drosophila melanogaster. Genetics 2004; 169:709-22. [PMID: 15520267 PMCID: PMC1449091 DOI: 10.1534/genetics.104.032250] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutation is the underlying force that provides the variation upon which evolutionary forces can act. It is important to understand how mutation rates vary within genomes and how the probabilities of fixation of new mutations vary as well. If substitutional processes across the genome are heterogeneous, then examining patterns of coding sequence evolution without taking these underlying variations into account may be misleading. Here we present the first rigorous test of substitution rate heterogeneity in the Drosophila melanogaster genome using almost 1500 nonfunctional fragments of the transposable element DNAREP1_DM. Not only do our analyses suggest that substitutional patterns in heterochromatic and euchromatic sequences are different, but also they provide support in favor of a recombination-associated substitutional bias toward G and C in this species. The magnitude of this bias is entirely sufficient to explain recombination-associated patterns of codon usage on the autosomes of the D. melanogaster genome. We also document a bias toward lower GC content in the pattern of small insertions and deletions (indels). In addition, the GC content of noncoding DNA in Drosophila is higher than would be predicted on the basis of the pattern of nucleotide substitutions and small indels. However, we argue that the fast turnover of noncoding sequences in Drosophila makes it difficult to assess the importance of the GC biases in nucleotide substitutions and small indels in shaping the base composition of noncoding sequences.
Collapse
Affiliation(s)
- Nadia D Singh
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.
| | | | | |
Collapse
|
27
|
Ko WY, David RM, Akashi H. Molecular phylogeny of the Drosophila melanogaster species subgroup. J Mol Evol 2004; 57:562-73. [PMID: 14738315 DOI: 10.1007/s00239-003-2510-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2002] [Accepted: 06/02/2003] [Indexed: 11/30/2022]
Abstract
Although molecular and phenotypic evolution have been studied extensively in Drosophila melanogaster and its close relatives, phylogenetic relationships within the D. melanogaster species subgroup remain unresolved. In particular, recent molecular studies have not converged on the branching orders of the D. yakuba-D. teissieri and D. erecta-D. orena species pairs relative to the D. melanogaster-D. simulans-D. mauritiana-D. sechellia species complex. Here, we reconstruct the phylogeny of the melanogaster species subgroup using DNA sequence data from four nuclear genes. We have employed "vectorette PCR" to obtain sequence data for orthologous regions of the Alcohol dehydrogenase (Adh), Alcohol dehydrogenase related (Adhr), Glucose dehydrogenase (Gld), and rosy (ry) genes (totaling 7164 bp) from six melanogaster subgroup species (D. melanogaster, D. simulans, D. teissieri, D. yakuba, D. erecta, and D. orena) and three species from subgroups outside the melanogaster species subgroup [D. eugracilis (eugracilis subgroup), D. mimetica (suzukii subgroup), and D. lutescens (takahashii subgroup)]. Relationships within the D. simulans complex are not addressed. Phylogenetic analyses employing maximum parsimony, neighbor-joining, and maximum likelihood methods strongly support a D. yakuba-D. teissieri and D. erecta-D. orena clade within the melanogaster species subgroup. D. eugracilis is grouped closer to the melanogaster subgroup than a D. mimetica-D. lutescens clade. This tree topology is supported by reconstructions employing simple (single parameter) and more complex (nonreversible) substitution models.
Collapse
Affiliation(s)
- Wen-Ya Ko
- Institute of Molecular Evolutionary Genetics and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
28
|
Zhang Z, Kishino H. Genomic Background Predicts the Fate of Duplicated Genes: Evidence From the Yeast Genome. Genetics 2004. [DOI: 10.1093/genetics/166.4.1995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Gene duplication with subsequent divergence plays a central role in the acquisition of genes with novel function and complexity during the course of evolution. With reduced functional constraints or through positive selection, these duplicated genes may experience accelerated evolution. Under the model of subfunctionalization, loss of subfunctions leads to complementary acceleration at sites with two copies, and the difference in average rate between the sequences may not be obvious. On the other hand, the classical model of neofunctionalization predicts that the evolutionary rate in one of the two duplicates is accelerated. However, the classical model does not tell which of the duplicates experiences the acceleration in evolutionary rate. Here, we present evidence from the Saccharomyces cerevisiae genome that a duplicate located in a genomic region with a low-recombination rate is likely to evolve faster than a duplicate in an area of high recombination. This observation is consistent with population genetics theory that predicts that purifying selection is less effective in genomic regions of low recombination (Hill-Robertson effect). Together with previous studies, our results suggest the genomic background (e.g., local recombination rate) as a potential force to drive the divergence between nontandemly duplicated genes. This implies the importance of structure and complexity of genomes in the diversification of organisms via gene duplications.
Collapse
Affiliation(s)
- Ze Zhang
- Laboratory of Biometrics and Bioinformatics, Graduate School of Agriculture and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
- Institute for Bioinformatics Research and Development, Japan Science and Technology Agency, Tokyo 102-0081, Japan
| | - Hirohisa Kishino
- Laboratory of Biometrics and Bioinformatics, Graduate School of Agriculture and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
29
|
Wall JD, Andolfatto P, Przeworski M. Testing Models of Selection and Demography inDrosophila simulans. Genetics 2002; 162:203-16. [PMID: 12242234 PMCID: PMC1462246 DOI: 10.1093/genetics/162.1.203] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractWe analyze patterns of nucleotide variability at 15 X-linked loci and 14 autosomal loci from a North American population of Drosophila simulans. We show that there is significantly more linkage disequilibrium on the X chromosome than on chromosome arm 3R and much more linkage disequilibrium on both chromosomes than expected from estimates of recombination rates, mutation rates, and levels of diversity. To explore what types of evolutionary models might explain this observation, we examine a model of recurrent, nonoverlapping selective sweeps and a model of a recent drastic bottleneck (e.g., founder event) in the demographic history of North American populations of D. simulans. The simple sweep model is not consistent with the observed patterns of linkage disequilibrium nor with the observed frequencies of segregating mutations. Under a restricted range of parameter values, a simple bottleneck model is consistent with multiple facets of the data. While our results do not exclude some influence of selection on X vs. autosome variability levels, they suggest that demography alone may account for patterns of linkage disequilibrium and the frequency spectrum of segregating mutations in this population of D. simulans.
Collapse
Affiliation(s)
- Jeffrey D Wall
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
30
|
Wright SI, Lauga B, Charlesworth D. Rates and patterns of molecular evolution in inbred and outbred Arabidopsis. Mol Biol Evol 2002; 19:1407-20. [PMID: 12200469 DOI: 10.1093/oxfordjournals.molbev.a004204] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evolution of self-fertilization is associated with a large reduction in the effective rate of recombination and a corresponding decline in effective population size. If many spontaneous mutations are slightly deleterious, this shift in the breeding system is expected to lead to a reduced efficacy of natural selection and genome-wide changes in the rates of molecular evolution. Here, we investigate the effects of the breeding system on molecular evolution in the highly self-fertilizing plant Arabidopsis thaliana by comparing its coding and noncoding genomic regions with those of its close outcrossing relative, the self-incompatible A. lyrata. More distantly related species in the Brassicaceae are used as outgroups to polarize the substitutions along each lineage. In contrast to expectations, no significant difference in the rates of protein evolution is observed between selfing and outcrossing Arabidopsis species. Similarly, no consistent overall difference in codon bias is observed between the species, although for low-biased genes A. lyrata shows significantly higher major codon usage. There is also evidence of intron size evolution in A. thaliana, which has consistently smaller introns than its outcrossing congener, potentially reflecting directional selection on intron size. The results are discussed in the context of heterogeneity in selection coefficients across loci and the effects of life history and population structure on rates of molecular evolution. Using estimates of substitution rates in coding regions and approximate estimates of divergence and generation times, the genomic deleterious mutation rate (U) for amino acid substitutions in Arabidopsis is estimated to be approximately 0.2-0.6 per generation.
Collapse
Affiliation(s)
- Stephen I Wright
- Institute of Cell, Animal, and Population Biology, Ashworth Laboratories, University of Edinburgh.
| | | | | |
Collapse
|
31
|
Zhang Z, Inomata N, Ohba T, Cariou ML, Yamazaki T. Codon bias differentiates between the duplicated amylase loci following gene duplication in Drosophila. Genetics 2002; 161:1187-96. [PMID: 12136021 PMCID: PMC1462165 DOI: 10.1093/genetics/161.3.1187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We examined the pattern of synonymous substitutions in the duplicated Amylase (Amy) genes (called the Amy1- and Amy3-type genes, respectively) in the Drosophila montium species subgroup. The GC content at the third synonymous codon sites of the Amy1-type genes was higher than that of the Amy3-type genes, while the GC content in the 5'-flanking region was the same in both genes. This suggests that the difference in the GC content at third synonymous sites between the duplicated genes is not due to the temporal or regional changes in mutation bias. We inferred the direction of synonymous substitutions along branches of a phylogeny. In most lineages, there were more synonymous substitutions from G/C (G or C) to A/T (A or T) than from A/T to G/C. However, in one lineage leading to the Amy1-type genes, which is immediately after gene duplication but before speciation of the montium species, synonymous substitutions from A/T to G/C were predominant. According to a simple model of synonymous DNA evolution in which major codons are selectively advantageous within each codon family, we estimated the selection intensity for specific lineages in a phylogeny on the basis of inferred patterns of synonymous substitutions. Our result suggested that the difference in GC content at synonymous sites between the two Amy-type genes was due to the change of selection intensity immediately after gene duplication but before speciation of the montium species.
Collapse
Affiliation(s)
- Ze Zhang
- Laboratory of Molecular Population Genetics, Department of Biology, Graduate School of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
32
|
Abstract
Weakly selected mutations are most likely to be physically clustered across genomes and, when sufficiently linked, they alter each others' fixation probability, a process we call interference selection (IS). Here we study population genetics and evolutionary consequences of IS on the selected mutations themselves and on adjacent selectively neutral variation. We show that IS reduces levels of polymorphism and increases low-frequency variants and linkage disequilibrium, in both selected and adjacent neutral mutations. IS can account for several well-documented patterns of variation and composition in genomic regions with low rates of crossing over in Drosophila. IS cannot be described simply as a reduction in the efficacy of selection and effective population size in standard models of selection and drift. Rather, IS can be better understood with models that incorporate a constant "traffic" of competing alleles. Our simulations also allow us to make genome-wide predictions that are specific to IS. We show that IS will be more severe at sites in the center of a region containing weakly selected mutations than at sites located close to the edge of the region. Drosophila melanogaster genomic data strongly support this prediction, with genes without introns showing significantly reduced codon bias in the center of coding regions. As expected, if introns relieve IS, genes with centrally located introns do not show reduced codon bias in the center of the coding region. We also show that reasonably small differences in the length of intermediate "neutral" sequences embedded in a region under selection increase the effectiveness of selection on the adjacent selected sequences. Hence, the presence and length of sequences such as introns or intergenic regions can be a trait subject to selection in recombining genomes. In support of this prediction, intron presence is positively correlated with a gene's codon bias in D. melanogaster. Finally, the study of temporal dynamics of IS after a change of recombination rate shows that nonequilibrium codon usage may be the norm rather than the exception.
Collapse
Affiliation(s)
- Josep M Comeron
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
33
|
Munte A, Aguade M, Segarra C. Changes in the recombinational environment affect divergence in the yellow gene of Drosophila. Mol Biol Evol 2001; 18:1045-56. [PMID: 11371593 DOI: 10.1093/oxfordjournals.molbev.a003876] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The complete coding region of the yellow (y) gene was sequenced in different Drosophila species. In the species of the melanogaster subgroup (D. melanogaster, D. simulans, D. mauritiana, D. yakuba, and D. erecta), this gene is located at the tip of the X chromosome in a region with a strong reduction in recombination rate. In contrast, in D. ananassae (included in the ananassae subgroup of the melanogaster group) and in the obscura group species (D. subobscura, D. madeirensis, D. guanche, and D. pseudoobscura), the y gene is located in regions with normal recombination rates. As predicted by the hitchhiking and background selection models, this change in the recombinational environment affected synonymous divergence in the y-gene-coding region. Estimates of the number of synonymous substitutions per site were much lower between the obscura group species and D. ananassae than between the species of the obscura group and the melanogaster subgroup. In fact, a highly significant increase in the rate of synonymous substitution was detected in all lineages leading to the species of the melanogaster subgroup relative to the D. ananassae lineage. This increase can be explained by a higher fixation rate of mutations from preferred to unpreferred codons (slightly deleterious mutations). The lower codon bias detected in all species of the melanogaster subgroup relative to D. ananassae (or to the obscura group species) would be consistent with this proposal. Therefore, at least in Drosophila, changes in the recombination rate in different lineages might cause deviations of the molecular-clock hypothesis and contribute to the overdispersion of the rate of synonymous substitution. In contrast, the change in the recombinational environment of the y gene has no detectable effect on the rate of amino acid replacement in the Yellow protein.
Collapse
Affiliation(s)
- A Munte
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | |
Collapse
|
34
|
Abstract
Patterns of codon bias in Drosophila suggest that silent mutations can be classified into two types: unpreferred (slightly deleterious) and preferred (slightly beneficial). Results of previous analyses of polymorphism and divergence in Drosophila simulans were interpreted as supporting a mutation-selection-drift model in which slightly deleterious, silent mutants make significantly greater contributions to polymorphism than to divergence. Frequencies of unpreferred polymorphisms were inferred to be lower than frequencies of other silent polymorphisms. Here, I analyzed additional D. simulans data to reevaluate the support for these ideas. I found that D. simulans has fixed more unpreferred than preferred mutations, suggesting that this lineage has not been at mutation-selection-drift equilibrium at silent sites. Frequencies of polarized unpreferred polymorphisms are not skewed toward rare alleles. However, frequencies of unpolarized unpreferred codons are lower in high-bias genes than in low-bias genes. This supports the idea that unpreferred codons are borderline deleterious mutations. Purifying selection on silent sites appears to be stronger at twofold-degenerate codons than at fourfold-degenerate codons. Finally, I found that X-linked polymorphisms occur at a higher average frequency than polymorphisms on chromosome arm 3R, even though an average X-linked site is significantly less likely to be polymorphic than an average site on 3R. This result supports a previous analysis of D. simulans indicating different population genetics of X-linked versus autosomal mutations.
Collapse
Affiliation(s)
- D J Begun
- Section of Evolution and Ecology, University of California at Davis, 95616, USA.
| |
Collapse
|
35
|
Andolfatto P, Przeworski M. Regions of lower crossing over harbor more rare variants in African populations of Drosophila melanogaster. Genetics 2001; 158:657-65. [PMID: 11404330 PMCID: PMC1461661 DOI: 10.1093/genetics/158.2.657] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A correlation between diversity levels and rates of recombination is predicted both by models of positive selection, such as hitchhiking associated with the rapid fixation of advantageous mutations, and by models of purifying selection against strongly deleterious mutations (commonly referred to as "background selection"). With parameter values appropriate for Drosophila populations, only the first class of models predicts a marked skew in the frequency spectrum of linked neutral variants, relative to a neutral model. Here, we consider 29 loci scattered throughout the Drosophila melanogaster genome. We show that, in African populations, a summary of the frequency spectrum of polymorphic mutations is positively correlated with the meiotic rate of crossing over. This pattern is demonstrated to be unlikely under a model of background selection. Models of weakly deleterious selection are not expected to produce both the observed correlation and the extent to which nucleotide diversity is reduced in regions of low (but nonzero) recombination. Thus, of existing models, hitchhiking due to the recurrent fixation of advantageous variants is the most plausible explanation for the data.
Collapse
Affiliation(s)
- P Andolfatto
- Institute of Cell and Animal Population Biology, Ashworth Labs, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom.
| | | |
Collapse
|
36
|
Takano-Shimizu T. Local changes in GC/AT substitution biases and in crossover frequencies on Drosophila chromosomes. Mol Biol Evol 2001; 18:606-19. [PMID: 11264413 DOI: 10.1093/oxfordjournals.molbev.a003841] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
I present here evidence of remarkable local changes in GC/AT substitution biases and in crossover frequencies on Drosophila chromosomes. The substitution pattern at 10 loci in the telomeric region of the X chromosome was studied for four species of the Drosophila melanogaster species subgroup. Drosophila orena and Drosophila erecta are clearly the most closely related species pair (the erecta complex) among the four species studied; however, the overall data at the 10 loci revealed a clear dichotomy in the silent substitution patterns between the AT-biased- substitution melanogaster and erecta lineages and the GC-biased-substitution yakuba and orena lineages, suggesting two or more independent changes in GC/AT substitution biases. More importantly, the results indicated a between- loci heterogeneity in GC/AT substitution bias in this small region independently in the yakuba and orena lineages. Indeed, silent substitutions in the orena lineage were significantly biased toward G and C at the consecutive yellow, lethal of scute, and asense loci, but they were significantly biased toward A and T at sta. The substitution bias toward G and C was centered in different areas in yakuba (significantly biased at EG:165H7.3, EG:171D11.2, and suppressor of sable). The similar silent substitution patterns in coding and noncoding regions, furthermore, suggested mutational biases as a cause of the substitution biases. On the other hand, previous study reveals that Drosophila yakuba has about 20-fold higher crossover frequencies in the telomeric region of the X chromosome than does D. melanogaster; this study revealed that the total genetic map length of the yakuba X chromosome was only about 1.5 times as large as that of melanogaster and that the map length of the X-telomeric y-sta region did not differ between Drosophila yakuba and D. erecta. Taken together, the data strongly suggested that an approximately 20- fold reduction in the X-telomeric crossover frequencies occurred in the ancestral population of D. melanogaster after the melanogaster-yakuba divergence but before the melanogaster-simulans divergence.
Collapse
Affiliation(s)
- T Takano-Shimizu
- Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka-ken, Japan.
| |
Collapse
|
37
|
McVean GA, Vieira J. Inferring parameters of mutation, selection and demography from patterns of synonymous site evolution in Drosophila. Genetics 2001; 157:245-57. [PMID: 11139506 PMCID: PMC1461462 DOI: 10.1093/genetics/157.1.245] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Selection acting on codon usage can cause patterns of synonymous evolution to deviate considerably from those expected under neutrality. To investigate the quantitative relationship between parameters of mutation, selection, and demography, and patterns of synonymous site divergence, we have developed a novel combination of population genetic models and likelihood methods of phylogenetic sequence analysis. Comparing 50 orthologous gene pairs from Drosophila melanogaster and D. virilis and 27 from D. melanogaster and D. simulans, we show considerable variation between amino acids and genes in the strength of selection acting on codon usage and find evidence for both long-term and short-term changes in the strength of selection between species. Remarkably, D. melanogaster shows no evidence of current selection on codon usage, while its sister species D. simulans experiences only half the selection pressure for codon usage of their common ancestor. We also find evidence for considerable base asymmetries in the rate of mutation, such that the average synonymous mutation rate is 20-30% higher than in noncoding regions. A Bayesian approach is adopted to investigate how accounting for selection on codon usage influences estimates of the parameters of mutation.
Collapse
Affiliation(s)
- G A McVean
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.
| | | |
Collapse
|
38
|
Abstract
Both drift and selection are important for nucleotide substitutions in evolution. The nearly neutral theory was developed to clarify the effects of these processes. In this article, the nearly neutral theory is presented with special reference to the nature of weak selection. The mean selection coefficient is negative, and the variance is dependent on the environmental diversity. Some facts relating to the theory are reviewed. As well as nucleotide substitutions, illegitimate recombination events such as duplications, deletions and gene conversions leave indelible marks on molecular evolution. Gene duplication and conversion are sources of the evolution of new gene functions. Positive selection is necessary for the evolution of novel functions. However, many examples of current gene families suggest that both drift and selection are at work on their evolution.
Collapse
Affiliation(s)
- T Ohta
- National Institute of Genetics, Mishima, Japan.
| |
Collapse
|
39
|
Takano-Shimizu T. Genetic screens for factors involved in the notum bristle loss of interspecific hybrids between Drosophila melanogaster and D. simulans. Genetics 2000; 156:269-82. [PMID: 10978291 PMCID: PMC1461231 DOI: 10.1093/genetics/156.1.269] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interspecific cross is a powerful means to uncover hidden within- and between-species variation in populations. One example is a bristle loss phenotype of hybrids between Drosophila melanogaster and D. simulans, although both the pure species have exactly the same pattern of bristle formation on the notum. There exists a large amount of genetic variability in the simulans populations with respect to the number of missing bristles in hybrids, and the variation is largely attributable to simulans X chromosomes. Using nine molecular markers, I screened the simulans X chromosome for genetic factors that were responsible for the differences between a pair of simulans lines with high (H) and low (L) missing bristle numbers. Together with duplication-rescue experiments, a single major quantitative locus was mapped to a 13F-14F region. Importantly, this region accounted for most of the differences between H and L lines in three other independent pairs, suggesting segregation of H and L alleles at the single locus in different populations. Moreover, a deficiency screening uncovered several regions with factors that potentially cause the hybrid bristle loss due to epistatic interactions with the other factors.
Collapse
Affiliation(s)
- T Takano-Shimizu
- Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka-ken 411-8540, Japan.
| |
Collapse
|