1
|
Xie S, Xie X, Zhao X, Liu F, Wang Y, Ping J, Ji Z. HNSPPI: a hybrid computational model combing network and sequence information for predicting protein-protein interaction. Brief Bioinform 2023; 24:bbad261. [PMID: 37480553 DOI: 10.1093/bib/bbad261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/24/2023] Open
Abstract
Most life activities in organisms are regulated through protein complexes, which are mainly controlled via Protein-Protein Interactions (PPIs). Discovering new interactions between proteins and revealing their biological functions are of great significance for understanding the molecular mechanisms of biological processes and identifying the potential targets in drug discovery. Current experimental methods only capture stable protein interactions, which lead to limited coverage. In addition, expensive cost and time consuming are also the obvious shortcomings. In recent years, various computational methods have been successfully developed for predicting PPIs based only on protein homology, primary sequences of protein or gene ontology information. Computational efficiency and data complexity are still the main bottlenecks for the algorithm generalization. In this study, we proposed a novel computational framework, HNSPPI, to predict PPIs. As a hybrid supervised learning model, HNSPPI comprehensively characterizes the intrinsic relationship between two proteins by integrating amino acid sequence information and connection properties of PPI network. The experimental results show that HNSPPI works very well on six benchmark datasets. Moreover, the comparison analysis proved that our model significantly outperforms other five existing algorithms. Finally, we used the HNSPPI model to explore the SARS-CoV-2-Human interaction system and found several potential regulations. In summary, HNSPPI is a promising model for predicting new protein interactions from known PPI data.
Collapse
Affiliation(s)
- Shijie Xie
- College of Artificial Intelligence, Nanjing Agricultural University, No. 1 Weigang Rd, Nanjing, Jiangsu 210095, China
| | - Xiaojun Xie
- College of Artificial Intelligence, Nanjing Agricultural University, No. 1 Weigang Rd, Nanjing, Jiangsu 210095, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yiming Wang
- Key Laboratory of Biological Interactions and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jihui Ping
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhiwei Ji
- College of Artificial Intelligence, Nanjing Agricultural University, No. 1 Weigang Rd, Nanjing, Jiangsu 210095, China
| |
Collapse
|
2
|
Characterization of East-Asian Helicobacter pylori encoding Western EPIYA-ABC CagA. J Microbiol 2021; 60:207-214. [PMID: 34757586 DOI: 10.1007/s12275-022-1483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022]
Abstract
The polymorphic bacterial oncoprotein, CagA shows geography-dependent variation in the C-terminal Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs; East-Asian H. pylori isolates carry the ABD type while Western isolates carry the ABC type. In Western isolates, the EPIYA-C motif is sometimes found in multi-copy and this genotype is associated with disease severity. Interestingly, a small number of East-Asian H. pylori isolates have been found to carry Western ABC-type CagA. To gain a better understanding of these unusual isolates, the genomes of four Korean H. pylori clinical isolates carrying ABC-type CagA were sequenced via third generation (Pac-Bio SMRT) sequencing technology. The obtained data were utilized for phylogenetic analysis as well as comparison of additional virulence factors that are known to show geographic-dependent polymorphisms. Three of four isolates indeed belonged to the hpEastAsia group and showed typical East-Asian polymorphism in virulence factors such as homA/B/C, babA/B/C, and oipA. One isolate grouped to HpAfrica and showed typical Western polymorphism of virulence factors such as cagA, homA/B/C, and oipA. To understand the occurrence of the multi-copy EPIYA-C motif genotype in an East-Asian H. pylori background, the Korean clinical isolate, K154 was analyzed; this strain belonged to hpEastAsia but encoded CagA EPIYA-ABCCCC. Based on DNA sequence homology within the CagA multimerization (CM) sequence that flanked the EPIYA-C motifs, we predicted that the number of C motifs might change via homologous recombination. To test this hypothesis, K154 was cultured for one generation and 287 single colonies were analyzed for the number of EPIYA-C motifs using PCR-based screening and DNA sequencing verification. Three out of 284 (1%) single colony isolates showed changes in the number of EPIYA-C motifs in vitro; one isolate increased to five EPIYA-C motifs, one decreased to three EPIYA-C motifs, and one completely deleted the EPIYA-C motifs. The capacity for dynamic changes in the number of EPIYA-C repeats of CagA may play a role in generating important intraspecies diversity in East-Asian H. pylori.
Collapse
|
3
|
Jeffries DL, Gerchen JF, Scharmann M, Pannell JR. A neutral model for the loss of recombination on sex chromosomes. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200096. [PMID: 34247504 PMCID: PMC8273504 DOI: 10.1098/rstb.2020.0096] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2021] [Indexed: 01/10/2023] Open
Abstract
The loss of recombination between sex chromosomes has occurred repeatedly throughout nature, with important implications for their subsequent evolution. Explanations for this remarkable convergence have generally invoked only adaptive processes (e.g. sexually antagonistic selection); however, there is still little evidence for these hypotheses. Here we propose a model in which recombination on sex chromosomes is lost due to the neutral accumulation of sequence divergence adjacent to (and thus, in linkage disequilibrium with) the sex determiner. Importantly, we include in our model the fact that sequence divergence, in any form, reduces the probability of recombination between any two sequences. Using simulations, we show that, under certain conditions, a region of suppressed recombination arises and expands outwards from the sex-determining locus, under purely neutral processes. Further, we show that the rate and pattern of recombination loss are sensitive to the pre-existing recombination landscape of the genome and to sex differences in recombination rates, with patterns consistent with evolutionary strata emerging under some conditions. We discuss the applicability of these results to natural systems. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Daniel L. Jeffries
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jörn F. Gerchen
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Mathias Scharmann
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - John R. Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Genetic and Phenotypic Diversities in Experimental Populations of Diploid Inter-Lineage Hybrids in the Human Pathogenic Cryptococcus. Microorganisms 2021; 9:microorganisms9081579. [PMID: 34442658 PMCID: PMC8398696 DOI: 10.3390/microorganisms9081579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 11/29/2022] Open
Abstract
To better understand the potential factors contributing to genome instability and phenotypic diversity, we conducted mutation accumulation (MA) experiments for 120 days for 7 diploid cryptococcal hybrids under fluconazole (10 MA lines each) and non-fluconazole conditions (10 MA lines each). The genomic DNA content, loss of heterozygosity (LOH) rate, growth ability, and fluconazole susceptibility were determined for all 140 evolved cultures. Compared to that of their ancestral clones, the evolved clones showed: (i) genomic DNA content changes ranging from ~22% less to ~27% more, and (ii) reduced, similar, and increased phenotypic values for each tested trait, with most evolved clones displaying increased growth at 40 °C and increased fluconazole resistance. Aside from the ancestral multi-locus genotypes (MLGs) and heterozygosity patterns (MHPs), 77 unique MLGs and 70 unique MPHs were identified among the 140 evolved cultures at day 120. The average LOH rates of the MA lines in the absence and presence of fluconazole were similar at 1.27 × 10−4 and 1.38 × 10−4 LOH events per MA line per mitotic division, respectively. While LOH rates varied among MA lines from different ancestors, there was no apparent correlation between the genetic divergence of the parental haploid genomes within ancestral clones and LOH rates. Together, our results suggest that hybrids between diverse lineages of the human pathogenic Cryptococcus can generate significant genotypic and phenotypic diversities during asexual reproduction.
Collapse
|
5
|
Yahara K, Kawai M, Furuta Y, Takahashi N, Handa N, Tsuru T, Oshima K, Yoshida M, Azuma T, Hattori M, Uchiyama I, Kobayashi I. Genome-wide survey of mutual homologous recombination in a highly sexual bacterial species. Genome Biol Evol 2012; 4:628-40. [PMID: 22534164 PMCID: PMC3381677 DOI: 10.1093/gbe/evs043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2012] [Indexed: 12/11/2022] Open
Abstract
The nature of a species remains a fundamental and controversial question. The era of genome/metagenome sequencing has intensified the debate in prokaryotes because of extensive horizontal gene transfer. In this study, we conducted a genome-wide survey of outcrossing homologous recombination in the highly sexual bacterial species Helicobacter pylori. We conducted multiple genome alignment and analyzed the entire data set of one-to-one orthologous genes for its global strains. We detected mosaic structures due to repeated recombination events and discordant phylogenies throughout the genomes of this species. Most of these genes including the "core" set of genes and horizontally transferred genes showed at least one recombination event. Taking into account the relationship between the nucleotide diversity and the minimum number of recombination events per nucleotide, we evaluated the recombination rate in every gene. The rate appears constant across the genome, but genes with a particularly high or low recombination rate were detected. Interestingly, genes with high recombination included those for DNA transformation and for basic cellular functions, such as biosynthesis and metabolism. Several highly divergent genes with a high recombination rate included those for host interaction, such as outer membrane proteins and lipopolysaccharide synthesis. These results provide a global picture of genome-wide distribution of outcrossing homologous recombination in a bacterial species for the first time, to our knowledge, and illustrate how a species can be shaped by mutual homologous recombination.
Collapse
Affiliation(s)
- Koji Yahara
- Division of Biostatistics, Graduate School of Medicine, Kurume University, Fukuoka, Japan
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - Mikihiko Kawai
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
- Laboratory of Genome Informatics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Yoshikazu Furuta
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - Noriko Takahashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - Naofumi Handa
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - Takeshi Tsuru
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - Kenshiro Oshima
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Masaru Yoshida
- Department of Gastroenterology, Graduate School of Medicine, Kobe University, Chuo-ku, Hyogo, Japan
| | - Takeshi Azuma
- Department of Gastroenterology, Graduate School of Medicine, Kobe University, Chuo-ku, Hyogo, Japan
| | - Masahira Hattori
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Ikuo Uchiyama
- Laboratory of Genome Informatics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Ichizo Kobayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function. BMC Evol Biol 2011; 11:298. [PMID: 21988730 PMCID: PMC3214919 DOI: 10.1186/1471-2148-11-298] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 10/12/2011] [Indexed: 11/30/2022] Open
Abstract
Background Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. Results We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV) sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. Conclusions RHOXF2 is a fast-evolving homeobox gene in primates. The rapid evolution and copy number changes of RHOXF2 had been driven by Darwinian positive selection acting on the male reproductive system and possibly also on the central nervous system, which sheds light on understanding the role of homeobox genes in adaptive evolution.
Collapse
|
7
|
Furuta Y, Yahara K, Hatakeyama M, Kobayashi I. Evolution of cagA oncogene of Helicobacter pylori through recombination. PLoS One 2011; 6:e23499. [PMID: 21853141 PMCID: PMC3154945 DOI: 10.1371/journal.pone.0023499] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 07/19/2011] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a gastric pathogen that infects half the human population and causes gastritis, ulcers, and cancer. The cagA gene product is a major virulence factor associated with gastric cancer. It is injected into epithelial cells, undergoes phosphorylation by host cell kinases, and perturbs host signaling pathways. CagA is known for its geographical, structural, and functional diversity in the C-terminal half, where an EPIYA host-interacting motif is repeated. The Western version of CagA carries the EPIYA segment types A, B, and C, while the East Asian CagA carries types A, B, and D and shows higher virulence. Many structural variants such as duplications and deletions are reported. In this study, we gained insight into the relationships of CagA variants through various modes of recombination, by analyzing all known cagA variants at the DNA sequence level with the single nucleotide resolution. Processes that occurred were: (i) homologous recombination between DNA sequences for CagA multimerization (CM) sequence; (ii) recombination between DNA sequences for the EPIYA motif; and (iii) recombination between short similar DNA sequences. The left half of the EPIYA-D segment characteristic of East Asian CagA was derived from Western type EPIYA, with Amerind type EPIYA as the intermediate, through rearrangements of specific sequences within the gene. Adaptive amino acid changes were detected in the variable region as well as in the conserved region at sites to which no specific function has yet been assigned. Each showed a unique evolutionary distribution. These results clarify recombination-mediated routes of cagA evolution and provide a solid basis for a deeper understanding of its function in pathogenesis.
Collapse
Affiliation(s)
- Yoshikazu Furuta
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Koji Yahara
- Graduate School of Medicine, Kurume University, Kurume, Fukuoka, Japan
- Fujitsu Kyushu Systems LTD, Fukuoka, Fukuoka, Japan
| | - Masanori Hatakeyama
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ichizo Kobayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
8
|
Random-walk mechanism in the genetic recombination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011. [PMID: 20865510 DOI: 10.1007/978-1-4419-5913-3_31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We have explained some experimental data of the homologous recombination and the genetic interference in terms of one-dimensional random walk over discrete sites. We first review our previous results. Next, we modify our random-walk model for the homologous recombination into a continuous-site model, and discuss a possible explanation for the previous experimental data obtained by means of the plasmid having one-side homology. Finally, we show that a reaction between an intermediate and a product is indispensable in explaining the genetic interference in terms of our reaction-diffusion model.
Collapse
|
9
|
Abstract
The birth and death of genes is central to adaptive evolution, yet the underlying genome dynamics remain elusive. The availability of closely related complete genome sequences helps to follow changes in gene contents and clarify their relationship to overall genome organization. Helicobacter pylori, bacteria in our stomach, are known for their extreme genome plasticity through mutation and recombination and will make a good target for such an analysis. In comparing their complete genome sequences, we found that gain and loss of genes (loci) for outer membrane proteins, which mediate host interaction, occurred at breakpoints of chromosomal inversions. Sequence comparison there revealed a unique mechanism of DNA duplication: DNA duplication associated with inversion. In this process, a DNA segment at one chromosomal locus is copied and inserted, in an inverted orientation, into a distant locus on the same chromosome, while the entire region between these two loci is also inverted. Recognition of this and three more inversion modes, which occur through reciprocal recombination between long or short sequence similarity or adjacent to a mobile element, allowed reconstruction of synteny evolution through inversion events in this species. These results will guide the interpretation of extensive DNA sequencing results for understanding long- and short-term genome evolution in various organisms and in cancer cells.
Collapse
|
10
|
Cherstvy AG. DNA-DNA sequence homology recognition: physical mechanisms and open questions. J Mol Recognit 2010; 24:283-7. [DOI: 10.1002/jmr.1050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/07/2010] [Accepted: 04/10/2010] [Indexed: 11/11/2022]
|
11
|
Tsuru T, Kobayashi I. Multiple genome comparison within a bacterial species reveals a unit of evolution spanning two adjacent genes in a tandem paralog cluster. Mol Biol Evol 2008; 25:2457-73. [PMID: 18765438 PMCID: PMC2568036 DOI: 10.1093/molbev/msn192] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been assumed that an open reading frame (ORF) represents a unit of gene evolution as well as a unit of gene expression and function. In the present work, we report a case in which a unit comprising the 3' region of an ORF linked to a downstream intergenic region that is in turn linked to the 5' region of a downstream ORF has been conserved, and has served as the unit of gene evolution. The genes are tandem paralogous genes from the bacterium Staphylococcus aureus, for which more than ten entire genomes have been sequenced. We compared these multiple genome sequences at a locus for the lpl (lipoprotein-like) cluster (encoding lipoprotein homologs presumably related to their host interaction) in the genomic island termed nuSaalpha. A highly conserved nucleotide sequence found within every lpl ORF is likely to provide a site for homologous recombination. Comparison of phylogenies of the 5'-variable region and the 3'-variable region within the same ORF revealed significant incongruence. In contrast, pairs of the 3'-variable region of an ORF and the 5'-variable region of the next downstream ORF gave more congruent phylogenies, with distinct groups of conserved pairs. The intergenic region seemed to have coevolved with the flanking variable regions. Multiple recombination events at the central conserved region appear to have caused various types of rearrangements among strains, shuffling the two variable regions in one ORF, but maintaining a conserved unit comprising the 3'-variable region, the intergenic region, and the 5'-variable region spanning adjacent ORFs. This result has strong impact on our understanding of gene evolution because most gene lineages underwent tandem duplication and then diversified. This work also illustrates the use of multiple genome sequences for high-resolution evolutionary analysis within the same species.
Collapse
Affiliation(s)
- Takeshi Tsuru
- Laboratory of Social Genome Sciences, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
12
|
Recombination frequency in plasmid DNA containing direct repeats—predictive correlation with repeat and intervening sequence length. Plasmid 2008; 60:159-65. [DOI: 10.1016/j.plasmid.2008.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 06/09/2008] [Accepted: 06/24/2008] [Indexed: 11/19/2022]
|
13
|
Handa N, Kobayashi I. Type III restriction is alleviated by bacteriophage (RecE) homologous recombination function but enhanced by bacterial (RecBCD) function. J Bacteriol 2005; 187:7362-73. [PMID: 16237019 PMCID: PMC1272966 DOI: 10.1128/jb.187.21.7362-7373.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 08/18/2005] [Indexed: 11/20/2022] Open
Abstract
Previous works have demonstrated that DNA breaks generated by restriction enzymes stimulate, and are repaired by, homologous recombination with an intact, homologous DNA region through the function of lambdoid bacteriophages lambda and Rac. In the present work, we examined the effect of bacteriophage functions, expressed in bacterial cells, on restriction of an infecting tester phage in a simple plaque formation assay. The efficiency of plaque formation on an Escherichia coli host carrying EcoRI, a type II restriction system, is not increased by the presence of Rac prophage-presumably because, under the single-infection conditions of the plaque assay, a broken phage DNA cannot find a homologue with which to recombine. To our surprise, however, we found that the efficiency of plaque formation in the presence of a type III restriction system, EcoP1 or EcoP15, is increased by the bacteriophage-mediated homologous recombination functions recE and recT of Rac prophage. This type III restriction alleviation does not depend on lar on Rac, unlike type I restriction alleviation. On the other hand, bacterial RecBCD-homologous recombination function enhances type III restriction. These results led us to hypothesize that the action of type III restriction enzymes takes place on replicated or replicating DNA in vivo and leaves daughter DNAs with breaks at nonallelic sites, that bacteriophage-mediated homologous recombination reconstitutes an intact DNA from them, and that RecBCD exonuclease blocks this repair by degradation from the restriction breaks.
Collapse
Affiliation(s)
- Naofumi Handa
- Laboratory of Social Genome Sciences, Department of Medical Genome Sciences, Graduate School of Frontier Science and Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | |
Collapse
|
14
|
Opperman R, Emmanuel E, Levy AA. The effect of sequence divergence on recombination between direct repeats in Arabidopsis. Genetics 2005; 168:2207-15. [PMID: 15611187 PMCID: PMC1448723 DOI: 10.1534/genetics.104.032896] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is well established that sequence divergence has an inhibitory effect on homologous recombination. However, a detailed analysis of this relationship is missing for most higher eukaryotes. We have measured the rate of somatic recombination between direct repeats as a function of the number, type, and position of divergent nucleotides in Arabidopsis. We show that a minor divergence level of 0.16% (one mutation in otherwise identical 618 bp) has a profound effect, decreasing the recombination rate approximately threefold. A further increase in the divergence level affects the recombination rate to a smaller extent until a "divergence saturation" effect is reached at relatively low levels of divergence ( approximately 0.5%). The type of mismatched nucleotide does not affect recombination rates. The decrease in the rate of recombination caused by a single mismatch was not affected by the position of the mismatch along the repeat. This suggests that most recombination intermediate tracts contain a mismatch and thus are as long as the full length of the 618-bp repeats. Finally, we could deduce an antirecombination efficiency of approximately 66% for the first mismatch in the repeat. Altogether, this work shows some degree of conservation across kingdoms when compared to previous reports in yeast; it also provides new insight into the effect of sequence divergence on homologous recombination.
Collapse
Affiliation(s)
- Roy Opperman
- Plant Sciences Department, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | |
Collapse
|
15
|
Fujitani Y, Kobayashi I. Asymmetric random walk in a reaction intermediate of homologous recombination. J Theor Biol 2003; 220:359-70. [PMID: 12468285 DOI: 10.1006/jtbi.2003.3167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At an intermediate step of the homologous recombination between two double-stranded DNA molecules, a point (often called Holliday structure) connecting two strands coming from two recombining partners migrates along the homologous region. Assuming random walk of a connecting point, we previously explained the dependence of recombination frequency on the homology length observed in vivo. In this model, the random walk was assumed to be symmetric in that the forward transition rate equals the backward one. According to observations in vitro, however, catalysed migration appears unidirectional. Taking into account possible asymmetry, we thus reformulate our random walk model to reexamine the observations in vivo. We also derive some theoretical results to analyse dynamic processes observed in vitro.
Collapse
Affiliation(s)
- Youhei Fujitani
- Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku, Yokohama 223-8522, Japan.
| | | |
Collapse
|
16
|
Fujitani Y, Mori S, Kobayashi I. A reaction-diffusion model for interference in meiotic crossing over. Genetics 2002; 161:365-72. [PMID: 12019250 PMCID: PMC1462095 DOI: 10.1093/genetics/161.1.365] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One crossover point between a pair of homologous chromosomes in meiosis appears to interfere with occurrence of another in the neighborhood. It has been revealed that Drosophila and Neurospora, in spite of their large difference in the frequency of crossover points, show very similar plots of coincidence-a measure of the interference-against the genetic distance of the interval, defined as one-half the average number of crossover points within the interval. We here propose a simple reaction-diffusion model, where a "randomly walking" precursor becomes immobilized and matures into a crossover point. The interference is caused by pair-annihilation of the random walkers due to their collision and by annihilation of a random walker due to its collision with an immobilized point. This model has two parameters-the initial density of the random walkers and the rate of its processing into a crossover point. We show numerically that, as the former increases and/or the latter decreases, plotted curves of the coincidence vs. the genetic distance converge on a unique curve. Thus, our model explains the similarity between Drosophila and Neurospora without parameter values adjusted finely, although it is not a "genetic model" but is a "physical model," specifying explicitly what happens physically.
Collapse
Affiliation(s)
- Youhei Fujitani
- Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.
| | | | | |
Collapse
|
17
|
Tu ZC, Ray KC, Thompson SA, Blaser MJ. Campylobacter fetus uses multiple loci for DNA inversion within the 5' conserved regions of sap homologs. J Bacteriol 2001; 183:6654-61. [PMID: 11673436 PMCID: PMC95497 DOI: 10.1128/jb.183.22.6654-6661.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter fetus cells possess multiple promoterless sap homologs, each capable of expressing a surface layer protein (SLP) by utilizing a unique promoter present on a 6.2-kb invertible element. Each sap homolog includes a 626-bp 5' conserved region (FCR) with 74 bp upstream and 552 bp within the open reading frame. After DNA inversion, the splice is seamless because the FCRs are identical. In mutant strain 23D:ACA2K101, in which sapA and sapA2 flanking the invertible element in opposite orientations were disrupted by promoterless chloramphenicol resistance (Cm(r)) and kanamycin resistance (Km(r)) cassettes, respectively, the frequency of DNA inversion is 100-fold lower than that of wild-type strain 23D. To define the roles of a 15-bp inverted repeat (IR) and a Chi-like site (CLS) in the FCR, we mutagenized each upstream of sapA2 in 23D:ACA2K101 by introducing NotI and KpnI sites to create strains 23D:ACA2K101N and 23D:ACA2K101K, respectively. Alternatively selecting colonies for Cm(r) or Km(r) showed that mutagenizing the IR or CLS had no apparent effect on the frequency of the DNA inversion. However, mapping the unique NotI or KpnI site in relation to the Cm(r) or Km(r) cassette in the cells that changed phenotype showed that splices occurred both upstream and downstream of the mutated sites. PCR and sequence analyses also showed that the splice could occur in the 425-bp portion of the FCR downstream of the cassettes. In total, these data indicate that C. fetus can use multiple sites within the FCR for its sap-related DNA inversion.
Collapse
Affiliation(s)
- Z C Tu
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
18
|
Belotserkovskii BP, Zarling DA. Duration time of a one-dimensional random walk as a function of the energies of the intermediate states: application for dissociation and relaxation processes in DNA hybrids. J Biomol Struct Dyn 2001; 19:315-32. [PMID: 11697736 DOI: 10.1080/07391102.2001.10506742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Kinetic parameters of macromolecular systems are important for their function in vitro and in vivo. These parameters describe how fast the system dissociates (the characteristic dissociation time), and how fast the system reaches equilibrium (characteristic relaxation time). For many macromolecular systems, the transitions within the systems are described as a random walk through a number of states with various free energies. The rate of transition between two given states within the system is characterized by the average time which passes between starting the movement from one state, and reaching the other state. This time is referred to as the mean first-passage time between two given states. The characteristic dissociation and relaxation times of the system depend on the first-passages times between the states within the system. Here, for a one-dimensional random walk we derived an equation, which connects the mean first-passage time between two states with the free energies of the states within the system. We also derived the general equation, which is not restricted to one-dimensional systems, connecting the relaxation time of the system with the first-passage times between states. The application of these equations to DNA branch migration, DNA structural transitions and other processes is discussed.
Collapse
|
19
|
Miller RD, Taillon-Miller P, Kwok PY. Regions of low single-nucleotide polymorphism incidence in human and orangutan xq: deserts and recent coalescences. Genomics 2001; 71:78-88. [PMID: 11161800 DOI: 10.1006/geno.2000.6417] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While scanning for single-nucleotide polymorphisms (SNPs) in the human Xq25-q28 region of CEPH families, we found six long "deserts" of low SNP incidence representing 28% of the investigated genome. One was 1.66 Mb in length. To determine whether these SNP deserts were due to reduced input of mutations or to recent coalescent events such as bottlenecks or selective sweeps, comparative sequence was determined from a female orangutan. The mean divergence was 2.9% and was not reduced in deserts compared with nondesert regions. Thus, the best explanation for the SNP deserts is recent coalescent events in humans. These events are the cause of substantial variation in human noncoding SNP incidence. In addition, the mutational spectrum in humans and orangutans was estimated as 63% AG (and CT), 17% AC (and GT), 8% CG, 4% AT, and 8% insertion/deletions. The average lifetime of a SNP destined to become fixed for a new allele between these species was estimated as 284,000 years.
Collapse
Affiliation(s)
- R D Miller
- Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
20
|
Affiliation(s)
- E Evans
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
21
|
Ray KC, Tu ZC, Grogono-Thomas R, Newell DG, Thompson SA, Blaser MJ. Campylobacter fetus sap inversion occurs in the absence of RecA function. Infect Immun 2000; 68:5663-7. [PMID: 10992468 PMCID: PMC101520 DOI: 10.1128/iai.68.10.5663-5667.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phase variation of Campylobacter fetus surface layer proteins (SLPs) occurs by inversion of a 6.2-kb DNA segment containing the unique sap promoter, permitting expression of a single SLP-encoding gene. Previous work has shown that the C. fetus sap inversion system is RecA dependent. When we challenged a pregnant ewe with a recA mutant of wild-type C. fetus (strain 97-211) that expressed the 97-kDa SLP, 15 of the 16 ovine-passaged isolates expressed the 97-kDa protein. However, one strain (97-209) expressed a 127-kDa SLP, suggesting that chromosomal rearrangement may have occurred to enable SLP switching. Lack of RecA function in strains 97-211 and 97-209 was confirmed by their sensitivity to the DNA-damaging agent methyl methanesulfonate. Southern hybridization and PCR of these strains indicated that the aphA insertion into recA was stably present. However, Southern hybridizations demonstrated that in strain 97-209 inversion had occurred in the sap locus. PCR data confirmed inversion of the 6.2-kb DNA element and indicated that in these recA mutants the sap inversion frequency is reduced by 2 to 3 log(10) units compared to that in the wild type. Thus, although the major sap inversion pathway in C. fetus is RecA dependent, alternative lower-frequency, RecA-independent inversion mechanisms exist.
Collapse
Affiliation(s)
- K C Ray
- Vanderbilt University School of Medicine and VA Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|