1
|
Zheng L, Zhang Y, Hao S, Chen L, Sun Z, Yan C, Whitin JC, Jang T, Merchant M, McElhinney DB, Sylvester KG, Cohen HJ, Recht L, Yao X, Ling XB. A proteomic clock for malignant gliomas: The role of the environment in tumorigenesis at the presymptomatic stage. PLoS One 2019; 14:e0223558. [PMID: 31600288 PMCID: PMC6786640 DOI: 10.1371/journal.pone.0223558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/17/2019] [Indexed: 11/25/2022] Open
Abstract
Malignant gliomas remain incurable with a poor prognosis despite of aggressive treatment. We have been studying the development of brain tumors in a glioma rat model, where rats develop brain tumors after prenatal exposure to ethylnitrosourea (ENU), and there is a sizable interval between when the first pathological changes are noted and tumors become detectable with MRI. Our aim to define a molecular timeline through proteomic profiling of the cerebrospinal fluid (CSF) such that brain tumor commitment can be revealed earlier than at the presymptomatic stage. A comparative proteomic approach was applied to profile CSF collected serially either before, at and after the time MRI becomes positive. Elastic net (EN) based models were developed to infer the timeline of normal or tumor development respectively, mirroring a chronology of precisely timed, “clocked”, adaptations. These CSF changes were later quantified by longitudinal entropy analyses of the EN predictive metric. False discovery rates (FDR) were computed to control the expected proportion of the EN models that are due to multiple hypothesis testing. Our ENU rat brain tumor dating EN model indicated that protein content in CSF is programmed even before tumor MRI detection. The findings of the precisely timed CSF tumor microenvironment changes at presymptomatic stages, deviation from the normal development timeline, may provide the groundwork for the understanding of adaptation of the brain environment in tumorigenesis to devise effective brain tumor management strategies.
Collapse
Affiliation(s)
- Le Zheng
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, United States of America
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children’s Hospital, Palo Alto, California, United States of America
| | - Yan Zhang
- Department of Oncology, the First Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Shiying Hao
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, United States of America
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children’s Hospital, Palo Alto, California, United States of America
| | - Lin Chen
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Zhen Sun
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Chi Yan
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - John C. Whitin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Taichang Jang
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, California, United States of America
| | - Milton Merchant
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, California, United States of America
| | - Doff B. McElhinney
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, United States of America
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children’s Hospital, Palo Alto, California, United States of America
| | - Karl G. Sylvester
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Harvey J. Cohen
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lawrence Recht
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, California, United States of America
| | - Xiaoming Yao
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children’s Hospital, Palo Alto, California, United States of America
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Xuefeng B. Ling
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children’s Hospital, Palo Alto, California, United States of America
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
2
|
Habas K, Brinkworth MH, Anderson D. In vitro responses to known in vivo genotoxic agents in mouse germ cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:99-107. [PMID: 28205273 DOI: 10.1002/em.22075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/29/2017] [Indexed: 06/06/2023]
Abstract
Genotoxic compounds have induced DNA damage in male germ cells and have been associated with adverse clinical outcomes including enhanced risks for maternal, paternal and offspring health. DNA strand breaks represent a great threat to the genomic integrity of germ cells. Such integrity is essential to maintain spermatogenesis and prevent reproduction failure. The Comet assay results revealed that the incubation of isolated germ cells with n-ethyl-n-nitrosourea (ENU), 6-mercaptopurine (6-MP) and methyl methanesulphonate (MMS) led to increase in length of Olive tail moment and % tail DNA when compared with the untreated control cells and these effects were concentration-dependent. All compounds were significantly genotoxic in cultured germ cells. Exposure of isolated germ cells to ENU produced the highest concentration-related increase in both DNA damage and gene expression changes in spermatogonia. Spermatocytes were most sensitive to 6-MP, with DNA damage and gene expression changes while spermatids were particularly susceptible to MMS. Real-time PCR results showed that the mRNA level expression of p53 increased and bcl-2 decreased significantly with the increasing ENU, 6-MP and MMS concentrations in spermatogonia, spermatocytes and spermatids respectively for 24 hr. Both are gene targets for DNA damage response and apoptosis. These observations may help explain the cell alterations caused by ENU, 6-MP and MMS in spermatogonia, spermatocytes and spermatids. Taken together, ENU, 6-MP and MMS induced DNA damage and decreased apoptosis associated gene expression in the germ cells in vitro. Environ. Mol. Mutagen. 58:99-107, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Khaled Habas
- School of Medical Sciences, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - Martin H Brinkworth
- School of Medical Sciences, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - Diana Anderson
- School of Medical Sciences, University of Bradford, Bradford, BD7 1DP, United Kingdom
| |
Collapse
|
3
|
Habas K, Anderson D, Brinkworth M. Detection of phase specificity of in vivo germ cell mutagens in an in vitro germ cell system. Toxicology 2016; 353-354:1-10. [PMID: 27059372 DOI: 10.1016/j.tox.2016.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/24/2016] [Accepted: 04/04/2016] [Indexed: 10/22/2022]
Abstract
In vivo tests for male reproductive genotoxicity are time consuming, resource-intensive and their use should be minimised according to the principles of the 3Rs. Accordingly, we investigated the effects in vitro, of a variety of known, phase-specific germ cell mutagens, i.e., pre-meiotic, meiotic, and post-meiotic genotoxins, on rat spermatogenic cell types separated using Staput unit-gravity velocity sedimentation, evaluating DNA damage using the Comet assay. N-ethyl-N-nitrosourea (ENU), N-methyl-N-nitrosourea (MNU) (spermatogenic phase), 6-mercaptopurine (6-MP) and 5-bromo-2'-deoxy-uridine (5-BrdU) (meiotic phase), methyl methanesulphonate (MMS) and ethyl methanesulphonate (EMS) (post-meiotic phase) were selected for use as they are potent male rodent, germ cell mutagens in vivo. DNA damage was detected directly using the Comet assay and indirectly using the TUNEL assay. Treatment of the isolated cells with ENU and MNU produced the greatest concentration-related increase in DNA damage in spermatogonia. Spermatocytes were most sensitive to 6-MP and 5-BrdU while spermatids were particularly susceptible to MMS and EMS. Increases were found when measuring both Olive tail moment (OTM) and% tail DNA, but the greatest changes were in OTM. Parallel results were found with the TUNEL assay, which showed highly significant, concentration dependent effects of all these genotoxins on spermatogonia, spermatocytes and spermatids in the same way as for DNA damage. The specific effects of these chemicals on different germ cell types matches those produced in vivo. This approach therefore shows potential for use in the detection of male germ cell genotoxicity and could contribute to the reduction of the use of animals in such toxicity assays.
Collapse
Affiliation(s)
- Khaled Habas
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, Richmond Road, West Yorkshire BD7 1DP, UK
| | - Diana Anderson
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, Richmond Road, West Yorkshire BD7 1DP, UK
| | - Martin Brinkworth
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, Richmond Road, West Yorkshire BD7 1DP, UK.
| |
Collapse
|
4
|
Kuroyanagi M, Katayama T, Imai T, Yamamoto Y, Chisada SI, Yoshiura Y, Ushijima T, Matsushita T, Fujita M, Nozawa A, Suzuki Y, Kikuchi K, Okamoto H. New approach for fish breeding by chemical mutagenesis: establishment of TILLING method in fugu (Takifugu rubripes) with ENU mutagenesis. BMC Genomics 2013; 14:786. [PMID: 24225309 PMCID: PMC3830513 DOI: 10.1186/1471-2164-14-786] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 11/04/2013] [Indexed: 11/26/2022] Open
Abstract
Background In fish breeding, it is essential to discover and generate fish exhibiting an effective phenotype for the aquaculture industry, but screening for natural mutants by only depending on natural spontaneous mutations is limited. Presently, reverse genetics has become an important tool to generate mutants, which exhibit the phenotype caused by inactivation of a gene. TILLING (Targeting Induced Local Lesions INGenomes) is a reverse genetics strategy that combines random chemical mutagenesis with high-throughput discovery technologies for screening the induced mutations in target genes. Although the chemical mutagenesis has been used widely in a variety of model species and also genetic breeding of microorganisms and crops, the application of the mutagenesis in fish breeding has been only rarely reported. Results In this study, we developed the TILLING method in fugu with ENU mutagenesis and high-resolution melting (HRM) analysis to detect base pair changes in target sequences. Fugu males were treated 3 times at weekly intervals with various ENU concentrations, and then the collected sperm after the treatment was used to fertilize normal female for generating the mutagenized population (F1). The fertilization and the hatching ratios were similar to those of the control and did not reveal a dose dependency of ENU. Genomic DNA from the harvested F1 offspring was used for the HRM analysis. To obtain a fish exhibiting a useful phenotype (e.g. high meat production and rapid growth), fugu myostatin (Mstn) gene was examined as a target gene, because it has been clarified that the mstn deficient medaka exhibited double-muscle phenotype in common with MSTN knockout mice and bovine MSTN mutant. As a result, ten types of ENU-induced mutations were identified including a nonsense mutation in the investigated region with HRM analysis. In addition, the average mutation frequency in fugu Mstn gene was 1 mutant per 297 kb, which is similar to values calculated for zebrafish and medaka TILLING libraries. Conclusions These results demonstrate that the TILLING method in fugu was established. We anticipate that this TILLING approach can be used to generate a wide range of mutant alleles, and be applicable to many farmed fish that can be chemically mutagenized.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Kiyoshi Kikuchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Hamamatsu, Shizuoka 431-0214, Japan.
| | | |
Collapse
|
5
|
New approach for fish breeding by chemical mutagenesis: establishment of TILLING method in fugu (Takifugu rubripes) with ENU mutagenesis. BMC Genomics 2013. [PMID: 24225309 DOI: 10.1186/1471-2164-14-786.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In fish breeding, it is essential to discover and generate fish exhibiting an effective phenotype for the aquaculture industry, but screening for natural mutants by only depending on natural spontaneous mutations is limited. Presently, reverse genetics has become an important tool to generate mutants, which exhibit the phenotype caused by inactivation of a gene. TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse genetics strategy that combines random chemical mutagenesis with high-throughput discovery technologies for screening the induced mutations in target genes. Although the chemical mutagenesis has been used widely in a variety of model species and also genetic breeding of microorganisms and crops, the application of the mutagenesis in fish breeding has been only rarely reported. RESULTS In this study, we developed the TILLING method in fugu with ENU mutagenesis and high-resolution melting (HRM) analysis to detect base pair changes in target sequences. Fugu males were treated 3 times at weekly intervals with various ENU concentrations, and then the collected sperm after the treatment was used to fertilize normal female for generating the mutagenized population (F1). The fertilization and the hatching ratios were similar to those of the control and did not reveal a dose dependency of ENU. Genomic DNA from the harvested F1 offspring was used for the HRM analysis. To obtain a fish exhibiting a useful phenotype (e.g. high meat production and rapid growth), fugu myostatin (Mstn) gene was examined as a target gene, because it has been clarified that the mstn deficient medaka exhibited double-muscle phenotype in common with MSTN knockout mice and bovine MSTN mutant. As a result, ten types of ENU-induced mutations were identified including a nonsense mutation in the investigated region with HRM analysis. In addition, the average mutation frequency in fugu Mstn gene was 1 mutant per 297 kb, which is similar to values calculated for zebrafish and medaka TILLING libraries. CONCLUSIONS These results demonstrate that the TILLING method in fugu was established. We anticipate that this TILLING approach can be used to generate a wide range of mutant alleles, and be applicable to many farmed fish that can be chemically mutagenized.
Collapse
|
6
|
Lim S, Wang Y, Yu X, Huang Y, Featherstone MS, Sampath K. A simple strategy for heritable chromosomal deletions in zebrafish via the combinatorial action of targeting nucleases. Genome Biol 2013; 14:R69. [PMID: 23815890 PMCID: PMC4054832 DOI: 10.1186/gb-2013-14-7-r69] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022] Open
Abstract
Precise and effective genome-editing tools are essential for functional genomics and gene therapy. Targeting nucleases have been successfully used to edit genomes. However, whole-locus or element-specific deletions abolishing transcript expression have not previously been reported. Here, we show heritable targeting of locus-specific deletions in the zebrafish nodal-related genes squint (sqt) and cyclops (cyc). Our strategy of heritable chromosomal editing can be used for disease modeling, analyzing gene clusters, regulatory regions, and determining the functions of non-coding RNAs in genomes.
Collapse
|
7
|
Hosoya S, Kai W, Fujita M, Miyaki K, Suetake H, Suzuki Y, Kikuchi K. The genetic architecture of growth rate in juvenile Takifugu species. Evolution 2012; 67:590-8. [PMID: 23356630 DOI: 10.1111/j.1558-5646.2012.01781.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Closely related species have often evolved dramatic differences in body size. Takifugu rubripes (fugu) is a large marine pufferfish whose genome has been sequenced, whereas T. niphobles is the smallest species among Takifugu. We show that, unsurprisingly, the juvenile growth rate of T. rubripes is higher than that of T. niphobles in a laboratory setting. We produced F(2) progenies of their F(1) hybrids and found one quantitative trait locus (QTL) significantly associated with variation in juvenile body size. This QTL region (3.5 Mb) contains no known genes directly related to growth phenotype (such as IGFs) except Fgf21, which inhibits growth hormone signaling in mouse. The QTL in Takifugu spp. is distinct from the region previously known to control body size variations in stickleback or tilapia. Our results suggest that in the fish tested herein, genomic regions underlying body size evolution might have different genetic origins. They also suggest that many diverse traits in Takifugu spp. are amenable to genetic mapping.
Collapse
Affiliation(s)
- Sho Hosoya
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Maisaka, Shizuoka 431-0214, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Techniques for optimizing the creation of mutations in zebrafish using N-ethyl-N-nitrosourea. Lab Anim (NY) 2011; 40:353-61. [PMID: 22012195 DOI: 10.1038/laban1111-353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/12/2011] [Indexed: 11/08/2022]
Abstract
A safe and successful mutagenesis of zebrafish (Danio rerio) with N-ethyl-N-nitrosourea (ENU) involves balancing several factors. In addition to keeping the fish alive and the humans safe, labor, tank numbers and the process of finding and isolating new mutants should be considered. The author details useful techniques for optimizing zebrafish mutagenesis using ENU.
Collapse
|
9
|
Jiang XY, Sun CF, Zhang QG, Zou SM. ENU-induced mutagenesis in grass carp (Ctenopharyngodon idellus) by treating mature sperm. PLoS One 2011; 6:e26475. [PMID: 22022617 PMCID: PMC3195716 DOI: 10.1371/journal.pone.0026475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/27/2011] [Indexed: 11/18/2022] Open
Abstract
N-ethyl-N-nitrosourea (ENU) mutagenesis is a useful approach for genetic improvement of plants, as well as for inducing functional mutants in animal models including mice and zebrafish. In the present study, mature sperm of grass carp (Ctenopharyngodon idellus) were treated with a range of ENU concentrations for 45 min, and then wild-type eggs were fertilized. The results indicated that the proportion of embryos with morphological abnormalities at segmentation stage or dead fry at hatching stage increased with increasing ENU dose up to 10 mM. Choosing a dose that was mutagenic, but provided adequate numbers of viable fry, an F1 population was generated from 1 mM ENU-treated sperm for screening purposes. The ENU-treated F1 population showed large variations in growth during the first year. A few bigger mutants with morphologically normal were generated, as compared to the controls. Analysis of DNA from 15 F1 ENU-treated individuals for mutations in partial coding regions of igf-2a, igf-2b, mstn-1, mstn-2, fst-1and fst-2 loci revealed that most ENU-treated point mutations were GC to AT or AT to GC substitution, which led to nonsense, nonsynonymous and synonymous mutations. The average mutation rate at the examined loci was 0.41%. These results indicate that ENU treatment of mature sperm can efficiently induce point mutations in grass carp, which is a potentially useful approach for genetic improvement of these fish.
Collapse
Affiliation(s)
- Xia-Yun Jiang
- Key Laboratory of Aquatic Genetic Resources and Utilization, Shanghai Ocean University, Shanghai, China
| | - Cheng-Fei Sun
- Key Laboratory of Aquatic Genetic Resources and Utilization, Shanghai Ocean University, Shanghai, China
| | - Quan-Gen Zhang
- Key Laboratory of Aquatic Genetic Resources and Utilization, Shanghai Ocean University, Shanghai, China
| | - Shu-Ming Zou
- Key Laboratory of Aquatic Genetic Resources and Utilization, Shanghai Ocean University, Shanghai, China
- * E-mail:
| |
Collapse
|
10
|
Bontems F, Baerlocher L, Mehenni S, Bahechar I, Farinelli L, Dosch R. Efficient mutation identification in zebrafish by microarray capturing and next generation sequencing. Biochem Biophys Res Commun 2011; 405:373-6. [DOI: 10.1016/j.bbrc.2011.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
|
11
|
Liao HK, Essner JJ. Use of RecA fusion proteins to induce genomic modifications in zebrafish. Nucleic Acids Res 2011; 39:4166-79. [PMID: 21266475 PMCID: PMC3105420 DOI: 10.1093/nar/gkq1363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The bacterial recombinase RecA forms a nucleic acid-protein filament on single-stranded (ss) DNA during the repair of double-strand breaks (DSBs) that efficiently undergoes a homology search and engages in pairing with the complementary DNA sequence. We utilized the pairing activity of RecA–DNA filaments to tether biochemical activities to specific chromosomal sites. Different filaments with chimeric RecA proteins were tested for the ability to induce loss of heterozygosity at the golden locus in zebrafish after injection at the one-cell stage. A fusion protein between RecA containing a nuclear localization signal (NLS) and the DNA-binding domain of Gal4 (NLS-RecA-Gal4) displayed the most activity. Our results demonstrate that complementary ssDNA filaments as short as 60 nucleotides coated with NLS-RecA-Gal4 protein are able to cause loss of heterozygosity in ∼3% of the injected embryos. We demonstrate that lesions in ∼9% of the F0 zebrafish are transmitted to subsequent generations as large chromosomal deletions. Co-injection of linear DNA with the NLS-RecA-Gal4 DNA filaments promotes the insertion of the DNA into targeted genomic locations. Our data support a model whereby NLS-RecA-Gal4 DNA filaments bind to complementary target sites on chromatin and stall DNA replication forks, resulting in a DNA DSB.
Collapse
Affiliation(s)
- Hsin-Kai Liao
- Department of Genetics, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
12
|
Covassin LD, Siekmann AF, Kacergis MC, Laver E, Moore JC, Villefranc JA, Weinstein BM, Lawson ND. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development. Dev Biol 2009; 329:212-26. [PMID: 19269286 PMCID: PMC2791107 DOI: 10.1016/j.ydbio.2009.02.031] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 01/13/2009] [Accepted: 02/18/2009] [Indexed: 01/08/2023]
Abstract
In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development.
Collapse
Affiliation(s)
- L. D. Covassin
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA
| | - A. F. Siekmann
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA
| | - M. C. Kacergis
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA
| | - E. Laver
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA
| | - J. C. Moore
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA
| | - J. A. Villefranc
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA
| | | | - N. D. Lawson
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
13
|
Abstract
Chemical mutagenesis using N-ethyl-N-nitrosourea is the current method of choice for dense mutagenesis in zebrafish. Methods are available for both pre-meiotic and post-meiotic sperm mutagenesis; in this chapter, pre-meiotic mutagenesis is described. Mutated males are crossed with untreated females to create an F1 generation that is heterozygous for the mutations. The F1 females can be screened directly by making haploid embryos using in vitro fertilization (IVF) with ultraviolet (UV)-irradiated sperm. This approach requires substantially fewer fish and less aquarium space than the classical F2 generation screen and is feasible for a small research group. Production of haploid embryos is described in detail.
Collapse
Affiliation(s)
- Judith E Layton
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3050, Australia.
| |
Collapse
|
14
|
Feitsma H, Akay A, Cuppen E. Alkylation damage causes MMR-dependent chromosomal instability in vertebrate embryos. Nucleic Acids Res 2008; 36:4047-56. [PMID: 18522974 PMCID: PMC2475609 DOI: 10.1093/nar/gkn341] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SN1-type alkylating agents, like N-methyl-N-nitrosourea (MNU) and N-ethyl-N-nitrosourea (ENU), are potent mutagens. Exposure to alkylating agents gives rise to O6-alkylguanine, a modified base that is recognized by DNA mismatch repair (MMR) proteins but is not repairable, resulting in replication fork stalling and cell death. We used a somatic mutation detection assay to study the in vivo effects of alkylation damage on lethality and mutation frequency in developing zebrafish embryos. Consistent with the damage-sensing role of the MMR system, mutant embryos lacking the MMR enzyme MSH6 displayed lower lethality than wild-type embryos after exposure to ENU and MNU. In line with this, alkylation-induced somatic mutation frequencies were found to be higher in wild-type embryos than in the msh6 loss-of-function mutants. These mutations were found to be chromosomal aberrations that may be caused by chromosomal breaks that arise from stalled replication forks. As these chromosomal breaks arise at replication, they are not expected to be repaired by non-homologous end joining. Indeed, Ku70 loss-of-function mutants were found to be equally sensitive to ENU as wild-type embryos. Taken together, our results suggest that in vivo alkylation damage results in chromosomal instability and cell death due to aberrantly processed MMR-induced stalled replication forks.
Collapse
Affiliation(s)
| | | | - Edwin Cuppen
- *To whom correspondence should be addressed. +31 30 2121969+31 30 2516554
| |
Collapse
|
15
|
Jang T, Sathy B, Hsu YH, Merchant M, Recht B, Chang C, Recht L. A distinct phenotypic change in gliomas at the time of magnetic resonance imaging detection. J Neurosurg 2008; 108:782-90. [DOI: 10.3171/jns/2008/108/4/0782] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Although gliomas remain refractory to treatment, it is not clear whether this characteristic is fixed at the time of its origin or develops later. The authors have been using a model of neurocarcinogenesis to determine whether a time exists during a glioma's evolution during which it is detectable but still curable, thus providing a justification for exploring the clinical merits of an early detection and treatment strategy. The authors recently reported the presence of 2 distinct cellular subsets, 1 expressing nestin and the other both glial fibrillary acidic protein (GFAP) and osteopontin (OPN), within all examined gliomas that developed after in utero exposure to ethylnitrosourea.
Methods
In this study, the authors used magnetic resonance (MR) imaging to assess when these 2 subpopulations appeared during glioma evolution.
Results
Using T2-weighted and diffusion-weighted MR imaging, the authors observed that gliomas grew exponentially once detected at rates that were location-dependent. Despite large differences in growth rates, however, they determined by correlating histochemistry with imaging in a second series of animals, that all lesions initially detected on T2-weighted images contained both subsets of cells. In contrast, lesions containing only nestin-positive cells, which appeared on average 40 days before detection on MR images, were not detected.
Conclusions
The sequential appearance of first the nestin-positive cells followed several weeks later by those expressing GFAP/OPN suggests that all gliomas arise through common early steps in this model. Furthermore, the authors hypothesize that the expression of OPN, a molecule associated with cancer aggressiveness, at the time of T2-weighted detection signals a time during glioma development when the lesion becomes refractory to treatment.
Collapse
Affiliation(s)
- Taichang Jang
- 1Department of Neurology, Stanford University Medical School, Stanford, California
| | - Binulal Sathy
- 2Institute of Biomedical Science, Academia Sinica, Nan-Kan, Taipei, Taiwan; and
| | - Yi-Hua Hsu
- 2Institute of Biomedical Science, Academia Sinica, Nan-Kan, Taipei, Taiwan; and
| | - Milton Merchant
- 1Department of Neurology, Stanford University Medical School, Stanford, California
| | - Benjamin Recht
- 3Media Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Chen Chang
- 2Institute of Biomedical Science, Academia Sinica, Nan-Kan, Taipei, Taiwan; and
| | - Lawrence Recht
- 1Department of Neurology, Stanford University Medical School, Stanford, California
| |
Collapse
|
16
|
Stickney HL, Imai Y, Draper B, Moens C, Talbot WS. Zebrafish bmp4 functions during late gastrulation to specify ventroposterior cell fates. Dev Biol 2007; 310:71-84. [PMID: 17727832 PMCID: PMC2683675 DOI: 10.1016/j.ydbio.2007.07.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 07/03/2007] [Accepted: 07/19/2007] [Indexed: 11/16/2022]
Abstract
Bone morphogenetic proteins (BMPs) are key mediators of dorsoventral patterning in vertebrates and are required for the induction of ventral fates in fish and frogs. A widely accepted model of dorsoventral patterning postulates that a morphogenetic BMP activity gradient patterns cell fates along the dorsoventral axis. Recent work in zebrafish suggests that the role of BMP signaling changes over time, with BMPs required for global dorsoventral patterning during early gastrulation and for tail patterning during late gastrulation and early somitogenesis. Key questions remain about the late phase, including which BMP ligands are required and how the functions of BMPs differ during the early and late gastrula stages. In a screen for dominant enhancers of mutations in the homeobox genes vox and vent, which function in parallel to bmp signaling, we identified an insertion mutation in bmp4. We then performed a reverse genetic screen to isolate a null allele of bmp4. We report the characterization of these two alleles and demonstrate that BMP4 is required during the later phase of BMP signaling for the specification of ventroposterior cell fates. Our results indicate that different bmp genes are essential at different stages. In addition, we present genetic evidence supporting a role for a morphogenetic BMP gradient in establishing mesodermal fates during the later phase of BMP signaling.
Collapse
Affiliation(s)
- Heather L Stickney
- Stanford University School of Medicine, Department of Developmental Biology, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
17
|
Goda T, Abu-Daya A, Carruthers S, Clark MD, Stemple DL, Zimmerman LB. Genetic screens for mutations affecting development of Xenopus tropicalis. PLoS Genet 2006; 2:e91. [PMID: 16789825 PMCID: PMC1475704 DOI: 10.1371/journal.pgen.0020091] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 04/28/2006] [Indexed: 11/18/2022] Open
Abstract
We present here the results of forward and reverse genetic screens for chemically-induced mutations in Xenopus tropicalis. In our forward genetic screen, we have uncovered 77 candidate phenotypes in diverse organogenesis and differentiation processes. Using a gynogenetic screen design, which minimizes time and husbandry space expenditures, we find that if a phenotype is detected in the gynogenetic F2 of a given F1 female twice, it is highly likely to be a heritable abnormality (29/29 cases). We have also demonstrated the feasibility of reverse genetic approaches for obtaining carriers of mutations in specific genes, and have directly determined an induced mutation rate by sequencing specific exons from a mutagenized population. The Xenopus system, with its well-understood embryology, fate map, and gain-of-function approaches, can now be coupled with efficient loss-of-function genetic strategies for vertebrate functional genomics and developmental genetics.
Collapse
Affiliation(s)
- Tadahiro Goda
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Anita Abu-Daya
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Samantha Carruthers
- Vertebrate Development and Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Matthew D Clark
- Vertebrate Development and Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Derek L Stemple
- Vertebrate Development and Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Lyle B Zimmerman
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| |
Collapse
|
18
|
Affiliation(s)
- Derek L Stemple
- Vertebrate Development and Genetics (Team 31), Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
19
|
Draper BW, McCallum CM, Stout JL, Slade AJ, Moens CB. A high-throughput method for identifying N-ethyl-N-nitrosourea (ENU)-induced point mutations in zebrafish. Methods Cell Biol 2004; 77:91-112. [PMID: 15602907 DOI: 10.1016/s0091-679x(04)77005-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Bruce W Draper
- Howard Hughes Medical Institute, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
20
|
Lee JS, Chang SY, Kim IC, Han MS, Lee YS, Lee YS. Teratogenic effects of N-ethyl-N-nitrosourea (ENU) on larvae of the self-fertilizing fish Rivulus marmoratus (Cyprinodontiformes, Rivulidae). TERATOGENESIS, CARCINOGENESIS, AND MUTAGENESIS 2002; 22:363-7. [PMID: 12210499 DOI: 10.1002/tcm.10031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We showed that N-Ethyl-N-Nitrosourea (ENU) induces teratogenesis in larvae of the self-fertilizing fish Rivulus marmoratus. We discuss this and the issue of carcinogenesis caused by ENU.
Collapse
Affiliation(s)
- Jae-Seong Lee
- Department of Environmental Science, Graduate School, Hanyang University, Seoul, South Korea.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
A large collection of mutations affecting zebrafish embryogenesis was described in 1996. The cloning of the affected genes has now provided novel insights into the role and regulation of signaling by BMP, Nodal, Wnt, FGF, Hedgehog, Delta, Slit, retinoic acid and lipids. Detailed analyses have revealed a complex genetic network that patterns the early embryo.
Collapse
Affiliation(s)
- A F Schier
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York 10016, New York, USA.
| |
Collapse
|
22
|
Affiliation(s)
- Y Imai
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA.
| | | |
Collapse
|
23
|
Imai Y, Gates MA, Melby AE, Kimelman D, Schier AF, Talbot WS. The homeobox genesvoxandventare redundant repressors of dorsal fates in zebrafish. Development 2001; 128:2407-20. [PMID: 11493559 DOI: 10.1242/dev.128.12.2407] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ventralizing transcriptional repressors in the Vox/Vent family have been proposed to be important regulators of dorsoventral patterning in the early embryo. While the zebrafish genes vox (vega1) and vent (vega2) both have ventralizing activity in overexpression assays, loss-of-function studies are needed to determine whether these genes have distinct or redundant functions in dorsoventral patterning and to provide critical tests of the proposed regulatory interactions among vox, vent and other genes that act to establish the dorsoventral axis. We show that vox and vent are redundant repressors of dorsal fates in zebrafish. Mutants that lack vox function have little or no dorsoventral patterning defect, and inactivation of either vox or vent by injection of antisense morpholino oligonucleotides has little or no effect on the embryo. In contrast, embryos that lack both vox and vent function have a dorsalized phenotype. Expression of dorsal mesodermal genes, including chordin, goosecoid and bozozok, is strongly expanded in embryos that lack vox and vent function, indicating that the redundant action of vox and vent is required to restrict dorsal genes to their appropriate territories. Our genetic analysis indicates that the dorsalizing transcription factor Bozozok promotes dorsal fates indirectly, by antagonizing the expression of vox and vent. In turn, vox and vent repress chordin expression, restricting its function as an antagonist of ventral fates to the dorsal side of the embryo. Our results support a model in which BMP signaling induces the expression of ventral genes, while vox and vent act redundantly to prevent the expression of chordin, goosecoid and other dorsal genes in the lateral and ventral mesendoderm.
Collapse
Affiliation(s)
- Y Imai
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
24
|
Talbot WS, Hopkins N. Zebrafish mutations and functional analysis of the vertebrate genome: Table 1. Genes Dev 2000. [DOI: 10.1101/gad.14.7.755] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|