1
|
de Oliveira FS, Azambuja M, Schemberger MO, Nascimento VD, Oliveira JIN, Wolf IR, Nogaroto V, Martins C, Vicari MR. Characterization of hAT DNA transposon superfamily in the genome of Neotropical fish Apareiodon sp. Mol Genet Genomics 2024; 299:96. [PMID: 39382723 DOI: 10.1007/s00438-024-02190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
DNA transposons are diverse in fish genomes and have been described to generate genomic evolutionary novelties. hAT transposable element data are scarce in Teleostei genomes, making it challenging to conduct comparative genomic studies to understand their neutrality or function. This study aimed to perform a genomic and molecular characterization of hAT copies to assess the diversity of these elements and associate changes in these sequences to genomic and karyotypic novelties in Apareiodon sp. The data revealed that hAT TEs are highly abundant in the Apareiodon sp. genome, with few possibly autonomous copies. Highly conserved sequences with likely functional transposases were observed in nine hAT elements. A great diversity of hAT subgroups was observed, especially from Ac, Charlie, Blackjack, Tip100, hAT6, and hAT5, and a similar wave of hAT genomic invasion was identified in the genome for these six groups of hAT sequences. The data also revealed a distinct number of microsatellites within degenerated hAT copies. hAT sites were demonstrated to be dispersed in the Apareiodon sp. chromosomes and not involved in W chromosome-specific region differentiation. In conclusion, the genomic analysis revealed a great diversity of hAT elements, possible autonomous copies, and differentiation of degenerated transposable elements into tandem sequences.
Collapse
Affiliation(s)
- Fernanda Souza de Oliveira
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. Dos Santos, 100, Curitiba, Paraná, 81531-990, Brazil
| | - Matheus Azambuja
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. Dos Santos, 100, Curitiba, Paraná, 81531-990, Brazil
| | - Michelle Orane Schemberger
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. Dos Santos, 100, Curitiba, Paraná, 81531-990, Brazil
| | - Viviane Demetrio Nascimento
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. Dos Santos, 100, Curitiba, Paraná, 81531-990, Brazil
| | - Jordana Inácio Nascimento Oliveira
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Distrito de Rubião Júnior, S/N, Botucatu, São Paulo, 18618-689, Brazil
| | - Ivan Rodrigo Wolf
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Distrito de Rubião Júnior, S/N, Botucatu, São Paulo, 18618-689, Brazil
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Cesar Martins
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Distrito de Rubião Júnior, S/N, Botucatu, São Paulo, 18618-689, Brazil
| | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. Dos Santos, 100, Curitiba, Paraná, 81531-990, Brazil.
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil.
| |
Collapse
|
2
|
Hayashi S, Tsukiyama T, Iida A, Kinoshita M, Koga A. The medaka fish Tol2 transposable element is in an early stage of decay: identification of a nonautonomous copy. Genome 2021; 65:183-187. [PMID: 34529924 DOI: 10.1139/gen-2021-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The majority of DNA-based transposable elements comprise autonomous and nonautonomous copies, or only nonautonomous copies, where the autonomous copy contains an intact gene for a transposase protein and the nonautonomous copy does not. Even if autonomous copies coexist, they are generally less frequent. The Tol2 element of medaka fish is one of the few elements for which a nonautonomous copy has not yet been found. Here we report the presence of a nonautonomous Tol2 copy that was identified by surveying the medaka genome sequence database. This copy contained 3 local sequence alterations that affected the deduced amino acid sequence of the transposase: a deletion of 15 nucleotides resulting in a deletion of 5 amino acids, a base substitution causing a single amino acid change, and another base substitution giving rise to a stop codon. Transposition assays using cultured human cells revealed that the transposase activity was reduced by the 15-nucleotide deletion and abolished by the nonsense mutation. This is the first example of a nonautonomous Tol2 copy. Thus, Tol2 is in an early stage of decay in the medaka genome, and is therefore a unique element to observe an almost whole decay process that progresses in natural populations.
Collapse
Affiliation(s)
- Sakura Hayashi
- Kyoto University, 12918, Primate Research Institute, Inuyama, Japan;
| | | | - Atsuo Iida
- Nagoya University, 12965, Graduate School of Bioagricultural Sciences, Nagoya, Japan;
| | - Masato Kinoshita
- Kyoto University, 12918, Graduate School of Agriculture, Kyoto, Japan;
| | - Akihiko Koga
- Kyoto University, 12918, Primate Research Institute, Inuyama, Japan;
| |
Collapse
|
3
|
Ishiyama S, Yamazaki K, Kurihara F, Yamashita D, Sao K, Hattori A, Koga A. DNA-based transposable elements with nucleotide sequence similar to Tol2 from medaka fish are prevalent in cyprinid fishes. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Suzuki Y, Korlach J, Turner SW, Tsukahara T, Taniguchi J, Qu W, Ichikawa K, Yoshimura J, Yurino H, Takahashi Y, Mitsui J, Ishiura H, Tsuji S, Takeda H, Morishita S. AgIn: measuring the landscape of CpG methylation of individual repetitive elements. Bioinformatics 2016; 32:2911-9. [PMID: 27318202 PMCID: PMC5039925 DOI: 10.1093/bioinformatics/btw360] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 05/19/2016] [Accepted: 06/03/2016] [Indexed: 12/18/2022] Open
Abstract
MOTIVATION Determining the methylation state of regions with high copy numbers is challenging for second-generation sequencing, because the read length is insufficient to map reads uniquely, especially when repetitive regions are long and nearly identical to each other. Single-molecule real-time (SMRT) sequencing is a promising method for observing such regions, because it is not vulnerable to GC bias, it produces long read lengths, and its kinetic information is sensitive to DNA modifications. RESULTS We propose a novel linear-time algorithm that combines the kinetic information for neighboring CpG sites and increases the confidence in identifying the methylation states of those sites. Using a practical read coverage of ∼30-fold from an inbred strain medaka (Oryzias latipes), we observed that both the sensitivity and precision of our method on individual CpG sites were ∼93.7%. We also observed a high correlation coefficient (R = 0.884) between our method and bisulfite sequencing, and for 92.0% of CpG sites, methylation levels ranging over [0,1] were in concordance within an acceptable difference 0.25. Using this method, we characterized the landscape of the methylation status of repetitive elements, such as LINEs, in the human genome, thereby revealing the strong correlation between CpG density and hypomethylation and detecting hypomethylation hot spots of LTRs and LINEs. We uncovered the methylation states for nearly identical active transposons, two novel LINE insertions of identity ∼99% and length 6050 base pairs (bp) in the human genome, and 16 Tol2 elements of identity >99.8% and length 4682 bp in the medaka genome. AVAILABILITY AND IMPLEMENTATION AgIn (Aggregate on Intervals) is available at: https://github.com/hacone/AgIn CONTACT ysuzuki@cb.k.u-tokyo.ac.jp or moris@cb.k.u-tokyo.ac.jp SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yuta Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8583, Japan
| | | | | | - Tatsuya Tsukahara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Junko Taniguchi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8583, Japan
| | - Wei Qu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8583, Japan
| | - Kazuki Ichikawa
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8583, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8583, Japan
| | - Hideaki Yurino
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8583, Japan
| | - Yuji Takahashi
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8583, Japan
| |
Collapse
|
5
|
Abstract
hAT transposons are ancient in their origin and they are widespread across eukaryote kingdoms. They can be present in large numbers in many genomes. However, only a few active forms of these elements have so far been discovered indicating that, like all transposable elements, there is selective pressure to inactivate them. Nonetheless, there have been sufficient numbers of active hAT elements and their transposases characterized that permit an analysis of their structure and function. This review analyzes these and provides a comparison with the several domesticated hAT genes discovered in eukaryote genomes. Active hAT transposons have also been developed as genetic tools and understanding how these may be optimally utilized in new hosts will depend, in part, on understanding the basis of their function in genomes.
Collapse
|
6
|
Tc1-like Transposase Thm3 of Silver Carp (Hypophthalmichthys molitrix) Can Mediate Gene Transposition in the Genome of Blunt Snout Bream (Megalobrama amblycephala). G3-GENES GENOMES GENETICS 2015; 5:2601-10. [PMID: 26438298 PMCID: PMC4683633 DOI: 10.1534/g3.115.020933] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tc1-like transposons consist of an inverted repeat sequence flanking a transposase gene that exhibits similarity to the mobile DNA element, Tc1, of the nematode, Caenorhabditis elegans. They are widely distributed within vertebrate genomes including teleost fish; however, few active Tc1-like transposases have been discovered. In this study, 17 Tc1-like transposon sequences were isolated from 10 freshwater fish species belonging to the families Cyprinidae, Adrianichthyidae, Cichlidae, and Salmonidae. We conducted phylogenetic analyses of these sequences using previously isolated Tc1-like transposases and report that 16 of these elements comprise a new subfamily of Tc1-like transposons. In particular, we show that one transposon, Thm3 from silver carp (Hypophthalmichthys molitrix; Cyprinidae), can encode a 335-aa transposase with apparently intact domains, containing three to five copies in its genome. We then coinjected donor plasmids harboring 367 bp of the left end and 230 bp of the right end of the nonautonomous silver carp Thm1 cis-element along with capped Thm3 transposase RNA into the embryos of blunt snout bream (Megalobrama amblycephala; one- to two-cell embryos). This experiment revealed that the average integration rate could reach 50.6% in adult fish. Within the blunt snout bream genome, the TA dinucleotide direct repeat, which is the signature of Tc1-like family of transposons, was created adjacent to both ends of Thm1 at the integration sites. Our results indicate that the silver carp Thm3 transposase can mediate gene insertion by transposition within the genome of blunt snout bream genome, and that this occurs with a TA position preference.
Collapse
|
7
|
Watanabe K, Koga H, Nakamura K, Fujita A, Hattori A, Matsuda M, Koga A. Spontaneous germline excision of Tol1, a DNA-based transposable element naturally occurring in the medaka fish genome. Genome 2014; 57:193-9. [PMID: 24905071 DOI: 10.1139/gen-2014-0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA-based transposable elements are ubiquitous constituents of eukaryotic genomes. Vertebrates are, however, exceptional in that most of their DNA-based elements appear to be inactivated. The Tol1 element of the medaka fish, Oryzias latipes, is one of the few elements for which copies containing an undamaged gene have been found. Spontaneous transposition of this element in somatic cells has previously been demonstrated, but there is only indirect evidence for its germline transposition. Here, we show direct evidence of spontaneous excision in the germline. Tyrosinase is the key enzyme in melanin biosynthesis. In an albino laboratory strain of medaka fish, which is homozygous for a mutant tyrosinase gene in which a Tol1 copy is inserted, we identified de novo reversion mutations related to melanin pigmentation. The gamete-based reversion rate was as high as 0.4%. The revertant fish carried the tyrosinase gene from which the Tol1 copy had been excised. We previously reported the germline transposition of Tol2, another DNA-based element that is thought to be a recent invader of the medaka fish genome. Tol1 is an ancient resident of the genome. Our results indicate that even an old element can contribute to genetic variation in the host genome as a natural mutator.
Collapse
Affiliation(s)
- Kohei Watanabe
- a Matsuyama High School, Higashimatsuyama 355-0018, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Skipper KA, Andersen PR, Sharma N, Mikkelsen JG. DNA transposon-based gene vehicles - scenes from an evolutionary drive. J Biomed Sci 2013; 20:92. [PMID: 24320156 PMCID: PMC3878927 DOI: 10.1186/1423-0127-20-92] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/27/2013] [Indexed: 12/12/2022] Open
Abstract
DNA transposons are primitive genetic elements which have colonized living organisms from plants to bacteria and mammals. Through evolution such parasitic elements have shaped their host genomes by replicating and relocating between chromosomal loci in processes catalyzed by the transposase proteins encoded by the elements themselves. DNA transposable elements are constantly adapting to life in the genome, and self-suppressive regulation as well as defensive host mechanisms may assist in buffering ‘cut-and-paste’ DNA mobilization until accumulating mutations will eventually restrict events of transposition. With the reconstructed Sleeping Beauty DNA transposon as a powerful engine, a growing list of transposable elements with activity in human cells have moved into biomedical experimentation and preclinical therapy as versatile vehicles for delivery and genomic insertion of transgenes. In this review, we aim to link the mechanisms that drive transposon evolution with the realities and potential challenges we are facing when adapting DNA transposons for gene transfer. We argue that DNA transposon-derived vectors may carry inherent, and potentially limiting, traits of their mother elements. By understanding in detail the evolutionary journey of transposons, from host colonization to element multiplication and inactivation, we may better exploit the potential of distinct transposable elements. Hence, parallel efforts to investigate and develop distinct, but potent, transposon-based vector systems will benefit the broad applications of gene transfer. Insight and clever optimization have shaped new DNA transposon vectors, which recently debuted in the first DNA transposon-based clinical trial. Learning from an evolutionary drive may help us create gene vehicles that are safer, more efficient, and less prone for suppression and inactivation.
Collapse
Affiliation(s)
| | | | | | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Wilh, Meyers Allé 4, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
9
|
Ladevèze V, Chaminade N, Lemeunier F, Periquet G, Aulard S. General survey of hAT transposon superfamily with highlight on hobo element in Drosophila. Genetica 2012; 140:375-92. [DOI: 10.1007/s10709-012-9687-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/10/2012] [Indexed: 11/30/2022]
|
10
|
Jiang XY, Du XD, Tian YM, Shen RJ, Sun CF, Zou SM. Goldfish transposase Tgf2 presumably from recent horizontal transfer is active. FASEB J 2012; 26:2743-52. [PMID: 22441985 DOI: 10.1096/fj.11-199273] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hobo/Activator/Tam3 (hAT) superfamily transposons occur in plants and animals and play a role in genomic evolution. Certain hAT transposons are active and have been developed as incisive genetic tools. Active vertebrate elements are rarely discovered; however, Tgf2 transposon was recently discovered in goldfish (Carassius auratus). Here, we found that the endogenous Tgf2 element can transpose in goldfish genome. Seven different goldfish mRNA transcripts, encoding three lengths of Tgf2 transposase, were identified. Tgf2 transposase mRNA was detected in goldfish embryos, mainly in epithelial cells; levels were high in ovaries and mature eggs and in all adult tissues tested. Endogenous Tgf2 transposase mRNA is active in mature eggs and can mediate high rates of transposition (>30%) when injected with donor plasmids harboring a Tgf2 cis-element. When donor plasmid was coinjected with capped Tgf2 transposase mRNA, the insertion rate reached >90% at 1 yr. Nonautonomous copies of the Tgf2 transposon with large-fragment deletions and low levels of point mutations were also detected in common goldfish. Phylogenetic analysis indicates the taxonomic distribution of Tgf2 in goldfish is not due to vertical inheritance. We propose that the goldfish Tgf2 transposon originated by recent horizontal transfer and maintains a highly native activity.
Collapse
Affiliation(s)
- Xia-Yun Jiang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
11
|
Koga A. Under-representation of repetitive sequences in whole-genome shotgun sequence databases: an illustration using a recently acquired transposable element. Genome 2012; 55:172-5. [PMID: 22321171 DOI: 10.1139/g11-088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is widely accepted in a conceptual framework that repetitive sequences, especially those with high sequence homogeneity among copies, tend to be under-represented in whole-genome shotgun sequence databases, because of the difficulty of assembling sequence reads into contigs. Although this is easily inferred, there is no quantitative illustration of this phenomenon. An example using a currently used database is expected to contribute to the intuitive understanding of how serious the under-representation is. The present study provides the first quantitative example (in the case of 16 copies of virtually identical, 4.7-kb sequences in a genome of 7 × 10 (8) bp) by comparing the results of BLAST searches of a sequence database (contig N50; 9.8 kb) with those of Southern blot analysis of genomic DNA. This has revealed that the internal regions of the repetitive sequences are under-represented to a striking extent.
Collapse
Affiliation(s)
- Akihiko Koga
- Division of Genome Diversity, Primate Research Institute, Kyoto University, Inuyama City, Japan.
| |
Collapse
|
12
|
Abstract
The medaka fish, Oryzias latipes, is an emerging vertebrate model and now has a high quality draft genome and a number of unique mutants. The long history of medaka research in Japan has provided medaka with unique features, which are complementary to other vertebrate models. A large collection of spontaneous mutants collected over a century, the presence of highly polymorphic inbred lines established over decades, and the recently completed genome sequence all give the medaka a big boost. This review focuses on the state of the art in medaka genetics and genomics, such as the first isolation of active transposons in vertebrates, the influence of chromatin structure on sequence variation, fine quantitative trait locus (QTL) analysis, and versatile mutants as human disease models.
Collapse
Affiliation(s)
- Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
13
|
Occurrence of a short variant of the Tol2 transposable element in natural populations of the medaka fish. Genet Res (Camb) 2010; 93:13-21. [PMID: 21134318 DOI: 10.1017/s0016672310000479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Tol2 is a member of the hAT (hobo/Activator/Tam3) transposable element family, residing as 10-30 copies per diploid genome in the medaka fish. We previously reported that this element is highly homogeneous in structure at both the restriction map level and the nucleotide sequence level. It was, however, possible that there is variation of such a low frequency as not to have been detected in our previous surveys, in which samples from 12 geographical locations were used. In the present study, we first conducted searches of genome sequence databases of medaka, and found a 119-bp-long internal deletion. We then conducted a survey of samples from 58 locations for this deletion by performing PCR preceded by restriction enzyme digestion to increase the sensitivity to this deletion. We found that copies suffering this deletion have spread, or have been generated by multiple origins, in the northern-to-central part of mainland Japan. Thus, although the high homogeneity in structure is a distinct feature of Tol2, variation does exist at low frequencies in natural populations of medaka. The current status of Tol2 is expected to provide information with which results of future surveys can be compared for clarification of determinants of population dynamics of this DNA-based element.
Collapse
|
14
|
Mota NR, Ludwig A, Valente VLDS, Loreto ELS. Harrow: new Drosophila hAT transposons involved in horizontal transfer. INSECT MOLECULAR BIOLOGY 2010; 19:217-228. [PMID: 20017754 DOI: 10.1111/j.1365-2583.2009.00977.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this study we characterize the transposable elements harrow, which belong to the hAT superfamily of DNA transposons. Searches for harrow sequences were performed in 65 Drosophilidae species, mainly representing Neotropical and cosmopolitan groups from the genus Drosophila. The nucleotide divergence among elements found in these species suggests that harrow sequences could be clustered in a subfamily. The patchy distribution throughout the genus Drosophila and the high similarity presented between all harrow sequences indicate that horizontal transfer could play a major role in the evolution of harrow elements. The results obtained suggest an evolutionary scenario in which harrow would have undergone multiple horizontal transfer events in the Neotropics, involving D. tripuncatata, D. mojavensis (Subgenus Drosophila) and several species of the willistoni and saltans groups (subgenus Sophophora).
Collapse
Affiliation(s)
- N R Mota
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | |
Collapse
|
15
|
Koga A, Wakamatsu Y, Sakaizumi M, Hamaguchi S, Shimada A. Distribution of complete and defective copies of the Tol1 transposable element in natural populations of the medaka fish Oryzias latipes. Genes Genet Syst 2010; 84:345-52. [PMID: 20154421 DOI: 10.1266/ggs.84.345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
DNA-based transposable elements are present in the genomes of various organisms, and generally occur in autonomous and nonautonomous forms, with a good correspondence to complete and defective copies, respectively. In vertebrates, however, the vast majority of DNA-based elements occur only in the nonautonomous form. Until now, the only clear exception known has been the Tol2 element of the medaka fish, which still causes mutations in genes of the host species. Here, we report another exception: the Tol1 element of the same species. This element was thought likely to be a "dead" element like the vast majority of vertebrate elements, but recent identification of an autonomous Tol1 copy in a laboratory medaka strain gave rise to the possibility that the element is still "alive" in medaka natural populations. We examined variation in the structure of Tol1 copies through genomic Southern blot analysis, and revealed that 10 of the 32 fish samples examined contained full-length Tol1 copies in their genomes. The frequency at which these copies occur among Tol1 copies is at most 0.5%, yet some of them still have the ability to produce a functional transposase. The medaka fish thus harbors two active DNA-based elements in its genome, and is in this respect unique among vertebrates.
Collapse
Affiliation(s)
- Akihiko Koga
- Primate Research Institute, Kyoto University, Inuyama City 464-8506, Japan
| | | | | | | | | |
Collapse
|
16
|
Sano S, Takashima S, Niwa H, Yokoi H, Shimada A, Arenz A, Wittbrodt J, Takeda H. Characterization of teleost Mdga1 using a gene-trap approach in medaka (Oryzias latipes). Genesis 2009; 47:505-13. [PMID: 19422017 DOI: 10.1002/dvg.20528] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
MAM domain containing glycosilphosphatidilinositol anchor 1 (MDGA1) is an IgCAM protein present in many vertebrate species including humans. In mammals, MDGA1 is expressed by a subset of neurons in the developing brain and thought to function in neural cell migration. We identified a fish ortholog of mdga1 by a gene-trap screen utilizing the Frog Prince transposon in medaka (Japanese killifish, Oryzias latipes). The gene-trap vector was inserted into an intronic region of mdga1 to form a chimeric protein with green fluorescent protein, allowing us to monitor mdga1 expression in vivo. Expression of medaka mdga1 was seen in various types of embryonic brain neurons, and specifically in neurons migrating toward their target sites, supporting the proposed function of MDGA1. We also isolated the closely related mdga2 gene, whose expression partially overlapped with that of mdga1. Despite the fact that the gene-trap event eliminated most of the functional domains of the Mdga1 protein, homozygous embryos developed normally without any morphological abnormality, suggesting a functional redundancy of Mdga1 with other related proteins. High sequential homology of MDGA proteins between medaka and other vertebrate species suggests an essential role of the MDGA gene family in brain development among the vertebrate phylum.
Collapse
Affiliation(s)
- Shinya Sano
- Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
The Tol1 element of the medaka fish, a member of the hAT transposable element family, jumps in Caenorhabditis elegans. Heredity (Edinb) 2008; 101:222-7. [PMID: 18506201 DOI: 10.1038/hdy.2008.47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Tol1 is a DNA-based transposable element residing in the genome of the medaka fish Oryzias latipes, and has been proven to be transposed in various vertebrate species, including mammals. This element belongs to the hAT (hobo/Activator/Tam3) transposable element family, whose members are distributed in a wide range of organisms. It is thus possible that Tol1 is mobile in organisms other than vertebrates. We here show that transposition of this element occurs in the nematode Caenorhabditis elegans. A donor plasmid containing a Tol1 element and a helper plasmid carrying the transposase gene were delivered into gonad cells and, after several generations of culturing, were recovered from worms. PCR analysis of the donor plasmid, using primers that encompassed the Tol1 element, revealed excision of the Tol1 portion from the plasmid. Analysis of genomic DNA of the worms by the inverse PCR method provided evidence that Tol1 had been integrated into the C. elegans chromosomes. Vertebrates and C. elegans are phylogenetically distantly related organisms in that the former are deuterostomes and the latter a protostome animal. Our results indicate (1) the transposition reaction of the Tol1 element requires, besides the transposase, no factors from host cells, or (2) the host factors, even if required, are those that are common to protostomes and deuterostomes. The results also have significance for the development of a gene transfer vector and other biotechnology tools for C. elegans.
Collapse
|
18
|
Hikosaka A, Kobayashi T, Saito Y, Kawahara A. Evolution of the Xenopus piggyBac Transposon Family TxpB: Domesticated and Untamed Strategies of Transposon Subfamilies. Mol Biol Evol 2007; 24:2648-56. [DOI: 10.1093/molbev/msm191] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AbstractA new family, termed TxpB, of DNA transposons belonging to the piggyBac superfamily was found in 3 Xenopus species (Xenopus tropicalis, Xenopus laevis, and Xenopus borealis). Two TxpB subfamilies of Kobuta and Uribo1 were found in all the 3 species, and another subfamily termed Uribo2 was found in X. tropicalis. Molecular phylogenetic analyses of their open reading frames (ORFs) revealed that TxpB transposons have been maintained for over 100 Myr. Both the Uribo1 and the Uribo2 ORFs were present as multiple copies in each genome, and some of them were framed by terminal inverted repeat sequences. In contrast, all the Kobuta ORFs were present as a single copy in each genome and exhibited high evolutionary conservation, suggesting domestication of Kobuta genes by the host. Genomic insertion polymorphisms of the Uribo1 and Uribo2 transposons (nonautonomous type) were observed in a single species of X. tropicalis, indicating recent transposition events. Transfection experiments in cell culture revealed that an expression vector construct for the intact Uribo2 ORF caused precise excision of a nonautonomous Uribo2 element from the target vector construct but that for the Kobuta ORF did not. The present results support our viewpoint that some Uribo2 members are naturally active autonomous transposons, whereas Kobuta members may be domesticated by hosts.
Collapse
Affiliation(s)
- Akira Hikosaka
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Toshihiro Kobayashi
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Akira Kawahara
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
19
|
Abstract
Zebrafish is an excellent model animal to study vertebrate development by genetic approaches. Hundreds of mutations affecting various processes of development have been isolated by chemical mutagenesis and insertional mutagenesis using a pseudotyped retrovirus. However, useful transposon tools and methods had not been available in zebrafish. This is mainly because no active transposable element has been found from the zebrafish genome. Recently, efficient transgenesis, gene trap, and enhancer trap methods have been developed in zebrafish by using the Tol2 and the Sleeping Beauty transposon systems. These methods should increase the usefulness of zebrafish as a model vertebrate and facilitate the study of developmental biology, genetics, and genomics.
Collapse
Affiliation(s)
- Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, Japan.
| |
Collapse
|
20
|
Abstract
Although the sex of most animals is determined by genetic information, sex-determining genes had been identified only in mammals, several flies, and the worm Caenorhabditis elegans until the recent discovery of DMY (DM-domain gene on the Y chromosome) in the sex-determining region on the Y chromosome of the teleost fish medaka, Oryzias latipes. Functional and expression analyses of DMY have shown it to be the master gene for male sex determination in the medaka. The only sex-determining genes found so far in vertebrates are Sry and DMY. Therefore, the medaka is expected to become a good experimental animal for investigating the precise mechanisms involved in primary sex determination in nonmammalian vertebrates. This article reviews the origin of DMY and the sexual development of gonads in the medaka. The putative functions of DMY are also discussed.
Collapse
Affiliation(s)
- Masaru Matsuda
- PRESTO, Japan Science and Technology Corporation, Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan.
| |
Collapse
|
21
|
Wadman SA, Clark KJ, Hackett PB. Fishing for answers with transposons. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2005; 7:135-41. [PMID: 15864468 DOI: 10.1007/s10126-004-0068-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 07/07/2004] [Indexed: 05/02/2023]
Abstract
Transposons are one means that nature has used to introduce new genetic material into chromosomes of organisms from every kingdom. They have been extensively used in prokaryotic and lower eukaryotic systems, but until recently there was no transposon that had significant activity in vertebrates. The Sleeping Beauty (SB) transposon system was developed to direct the integration of precise DNA sequences into chromosomes. The SB system was derived from salmonid sequences that had been inactive for more than 10 million years. SB transposons have been used for two principle uses--as a vector for transgenesis and as a method for introducing various trap vectors into (gene-trap) or in the neighborhood of (enhancer-trap) genes to identify their functions. Results of these studies show that SB-mediated transgenesis is more efficient than that by injection of simple plasmids and that expression of transgenesis is stable and reliable following passage through the germline.
Collapse
|
22
|
Torti C, Gomulski LM, Bonizzoni M, Murelli V, Moralli D, Guglielmino CR, Raimondi E, Crisafulli D, Capy P, Gasperi G, Malacrida AR. Cchobo, a hobo-related sequence in Ceratitis capitata. Genetica 2005; 123:313-25. [PMID: 15954502 DOI: 10.1007/s10038-004-7126-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A hobo-related sequence, Cchobo, with high similarity to the Drosophila melanogaster HFL1 and hobo108 elements was isolated from the medfly. Thirteen PCR-derived clones, which share 97.9-100% DNA identity, were sequenced, seven of which do not show frame-shift or stop codon mutations in their conceptual translations. The consensus sequence has 99.7% DNA identity with the D. melanogaster hobo element HFLI. In a phylogenetic analysis with other hobo-related elements, Cchobo clusters with the HFL1 and hobo108 elements from D. melanogaster and hobo-related elements from D. simulans, D. mauritiana and Mamestra brassicae. These elements may have undergone horizontal transfer in the recent past. The genomic distribution of Cchobo was studied by FISH to mitotic and polytene chromosomes, which revealed that Cchobo is distributed within both the heterochromatin and euchromatin. Intra- and interstrain polymorphisms were detected both at euchromatic and heterochromatic sites. These findings suggest that active copies of the element may be present in the medfly genome.
Collapse
Affiliation(s)
- C Torti
- Department of Animal Biology, University of Pavia, Piazza Botta 9, I-27100 Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schartl M, Nanda I, Kondo M, Schmid M, Asakawa S, Sasaki T, Shimizu N, Henrich T, Wittbrodt J, Furutani-Seiki M, Kondoh H, Himmelbauer H, Hong Y, Koga A, Nonaka M, Mitani H, Shima A. Current status of medaka genetics and genomics. The Medaka Genome Initiative (MGI). Methods Cell Biol 2004; 77:173-99. [PMID: 15602912 DOI: 10.1016/s0091-679x(04)77010-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Manfred Schartl
- Biocenter, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wickstead B, Ersfeld K, Gull K. Repetitive elements in genomes of parasitic protozoa. Microbiol Mol Biol Rev 2003; 67:360-75, table of contents. [PMID: 12966140 PMCID: PMC193867 DOI: 10.1128/mmbr.67.3.360-375.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repetitive DNA elements have been a part of the genomic fauna of eukaryotes perhaps since their very beginnings. Millions of years of coevolution have given repeats central roles in chromosome maintenance and genetic modulation. Here we review the genomes of parasitic protozoa in the context of the current understanding of repetitive elements. Particular reference is made to repeats in five medically important species with ongoing or completed genome sequencing projects: Plasmodium falciparum, Leishmania major, Trypanosoma brucei, Trypanosoma cruzi, and Giardia lamblia. These organisms are used to illustrate five thematic classes of repeats with different structures and genomic locations. We discuss how these repeat classes may interact with parasitic life-style and also how they can be used as experimental tools. The story which emerges is one of opportunism and upheaval which have been employed to add genetic diversity and genomic flexibility.
Collapse
Affiliation(s)
- Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
25
|
Biémont C, Nardon C, Deceliere G, Lepetit D, Lœvenbruck C, Vieira C. WORLDWIDE DISTRIBUTION OF TRANSPOSABLE ELEMENT COPY NUMBER IN NATURAL POPULATIONS OF DROSOPHILA SIMULANS. Evolution 2003. [DOI: 10.1554/0014-3820(2003)057[0159:wdotec]2.0.co;2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Biémont C, Nardon C, Deceliere G, Lepetit D, Loevenbruck C, Vieira C. Worldwide distribution of transposable element copy number in natural populations of Drosophila simulans. Evolution 2003; 57:159-67. [PMID: 12643577 DOI: 10.1111/j.0014-3820.2003.tb00225.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transposable elements (TEs), which promote various kinds of mutations, constitute a large fraction of the genome. How they invade natural populations and species is therefore of fundamental importance for understanding the dynamics of genetic diversity and genome composition. On the basis of 85 samples of natural populations of Drosophila simulans, we report the distributions of the genome insertion site numbers of nine TEs that were chosen because they have a low average number of sites. Most populations were found to have 0-3 insertion sites, but some of them had a significantly higher number of sites for a given TE. The populations located in regions outside Africa had the highest number of sites for all elements except HMS Beagle and Coral, suggesting a recent increase in the activity of some TEs associated with the colonization patterns of Drosophila simulans. The element Tirant had a very distinctive pattern of distribution: it was identified mainly in populations from East Africa and some islands in the Indian Ocean, and its insertion site number was low in all these populations. The data suggest that the genome of the entire species of Drosophila simulans may be being invaded by TEs from populations in which they are present in high copy number.
Collapse
Affiliation(s)
- Christian Biémont
- Laboratoire de Biométrie et Biologie Evolutive, UMR Centre National de la Recherche Scientifique 5558, Université Lyon 1, 69622 Villeurbanne Cedex, France.
| | | | | | | | | | | |
Collapse
|
27
|
Koga A, Hori H, Ishikawa Y. Gamera, a family of LINE-like repetitive sequences widely distributed in medaka and related fishes. Heredity (Edinb) 2002; 89:446-52. [PMID: 12466987 DOI: 10.1038/sj.hdy.6800162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2002] [Accepted: 07/16/2002] [Indexed: 11/09/2022] Open
Abstract
A family of repetitive sequences, designated Gamera, has been identified in the genome of the Hainan medaka fish Oryzias curvinotus, a closely related species to the common medaka fish O. latipes. Sequencing and Southern blot analyses of this family revealed: (1) amino acid sequence similarity to reverse transcriptase domains of long interspersed nuclear elements (LINEs); (2) 5' truncation of dispersed copies; and (3) the disruption of another genetic element, indicating a past transposition event. These results suggest that Gamera belongs to the LINE superfamily. Gamera is widely distributed in the genus Oryzias, and the phylogenetic relationship might indicate its presence in the common ancestor of the genus.
Collapse
Affiliation(s)
- A Koga
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | | | | |
Collapse
|
28
|
Abstract
DNA-based transposable elements appear to have been nearly or completely inactivated in vertebrates. Therefore the elements of the medaka fish Oryzias latipes that still have transposition activity provide precious materials for studying transposition mechanisms, as well as the evolution, of transposable elements in vertebrates. Fortunately, the medaka fish has a strong background for genetic and evolutionary studies. The advantages of this host species and their elements, together with results so far obtained, are here described.
Collapse
Affiliation(s)
- Akihiko Koga
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | | | | |
Collapse
|
29
|
Koga A, Hori H. The Tol2 transposable element of the medaka fish: an active DNA-based element naturally occurring in a vertebrate genome. Genes Genet Syst 2001; 76:1-8. [PMID: 11376546 DOI: 10.1266/ggs.76.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Several DNA-based transposable elements are known to be present in vertebrate genomes, but few of them have been demonstrated to be active. The Tol2 element of the medaka fish is one such element and, therefore, is potentially useful for developing a gene tagging system and other molecular biological tools applicable to vertebrates. Towards this goal, analyses of the element at the molecular, cellular and population levels are in progress. Results so far obtained are described here.
Collapse
Affiliation(s)
- A Koga
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Japan
| | | |
Collapse
|
30
|
Abstract
The maize transposon Activator (Ac) was the first mobile DNA element to be discovered. Since then, other elements were found that share similarity to Ac, suggesting that it belongs to a transposon superfamily named hAT after hobo from Drosophila, Ac from maize, and Tam3 from snapdragon. We addressed the structure and evolution of hAT elements by developing new tools for transposon mining and searching the public sequence databases for the hallmarks of hAT elements, namely the transposase and short terminal inverted repeats (TIRs) flanked by 8-bp host duplications. We found 147 hAT-related sequences in plants, animals, and fungi. Six conserved blocks could be identified in the transposase of most hAT elements. A total of 41 hAT sequences were flanked by TIRs and 8-bp host duplications and, out of these, 34 sequences had TIRs similar to the consensus determined in this work, suggesting that they are active or recently active transposons. Phylogenetic analysis and clustering of hAT sequences suggest that the hAT superfamily is very ancient, probably predating the plant-fungi-animal separation, and that, unlike previously proposed, there is no evidence that horizontal gene transfer was involved in the evolution of hAT elements.
Collapse
Affiliation(s)
- E Rubin
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
31
|
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, et alLander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J. Initial sequencing and analysis of the human genome. Nature 2001; 409:860-921. [PMID: 11237011 DOI: 10.1038/35057062] [Show More Authors] [Citation(s) in RCA: 15021] [Impact Index Per Article: 625.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.
Collapse
Affiliation(s)
- E S Lander
- Whitehead Institute for Biomedical Research, Center for Genome Research, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Tol2 is a terminal-inverted-repeat transposable element of the medaka fish Oryzias latipes. It is a member of the hAT (hobo/Activator/Tam3) transposable element family that is distributed in a wide range of organisms. We here document direct evidence for de novo insertion of this element. A Tol2 clone marked with the bacterial tetracycline-resistance gene was microinjected into fertilized eggs together with a target plasmid, and the plasmid was recovered from embryos. The screening of plasmid molecules after transformation into Escherichia coli demonstrated transposition of tet into the plasmid and, by inference, precise insertion of Tol2 in medaka fish cells. De novo excision of Tol2 has previously been demonstrated. The present study provides direct evidence that the Tol2 element has the entire activity necessary for cut-and-paste transposition. Some elements of the mariner/Tc1 family, another widespread group, have already been applied to development of gene tagging systems in vertebrates. The Tol2 element of the hAT family, having different features from mariner/Tc1 family elements, also has potential as an alternative gene tagging tool in vertebrates.
Collapse
Affiliation(s)
- A Koga
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | | |
Collapse
|