1
|
Zhou W, Cao X, Li H, Cui X, Diao X, Qiao Z. Genomic Analysis of Hexokinase Genes in Foxtail Millet ( Setaria italica): Haplotypes and Expression Patterns Under Abiotic Stresses. Int J Mol Sci 2025; 26:1962. [PMID: 40076588 PMCID: PMC11900577 DOI: 10.3390/ijms26051962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Hexokinases (HXKs) in plants are multifunctional enzymes that not only phosphorylate hexose but also function as glucose sensors, integrating nutrient, light, and hormone signaling networks to regulate cell metabolism and signaling pathways, thereby controlling growth and development in response to environmental changes. To date, limited information is available regarding the HXKs of foxtail millet (Setaria italica L.). In this study, six HXK genes were identified and characterized in foxtail millet. Phylogenetic analysis revealed that the foxtail millet hexokinases were classified into three subfamilies, corresponding to the two types (B-type and C-type) of hexokinases in plants. Gene structure and conserved motif analysis showed that the SiHXKs exhibited varying numbers of introns and exons, with proteins in each subfamily showing similar motif organization. Evolutionary divergence analysis indicated that the foxtail millet HXK and green foxtail HXK genes families underwent both positive and negative selection and experienced a large-scale duplication event approximately 1.18-154.84 million years ago. Expression analysis revealed that these genes are widely expressed in roots, stems, leaves, panicles, anthers, and seeds, with most genes showing significantly increased expression in roots under abiotic stress conditions, including 20% PEG 6000 (drought stress), 200 μmol/L NaCl (salt stress), and 1 μmol/L BR (brassinosteroid-mediated stress response). These results suggest that these genes may play a pivotal role in enhancing stress tolerance. Subcellular localization assay showed that SiHXK5 and SiHXK6 were predominantly localized in mitochondria. Haplotype analysis revealed that SiHXK3-H1 was associated with higher plant height and grain yield. These findings provide valuable insights into the functional characteristics of HXK genes, especially in the context of marker-assisted selection and the pyramiding of advantageous haplotypes in foxtail millet breeding programs.
Collapse
Affiliation(s)
- Wei Zhou
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.Z.); (H.L.)
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiaoning Cao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China;
- Key Laboratory of Crop Genetic Resources and Germplasm Development in Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan 030031, China
| | - Hangyu Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.Z.); (H.L.)
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China;
| | - Xiaokuo Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China;
- Key Laboratory of Crop Genetic Resources and Germplasm Development in Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan 030031, China
| |
Collapse
|
2
|
Liu D, Garrigues S, Culleton H, McKie VA, de Vries RP. Analysis of the molecular basis for the non-amylolytic and non-proteolytic nature of Aspergillus vadensis CBS 113365. N Biotechnol 2024; 82:25-32. [PMID: 38697469 DOI: 10.1016/j.nbt.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/01/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Aspergillus vadensis CBS 113365, a close relative of A. niger, has been suggested as a more favourable alternative for recombinant protein production as it does not acidify the culture medium and produces very low levels of extracellular proteases. The aim of this study was to investigate the underlying cause of the non-amylolytic and non-proteolytic phenotype of A. vadensis CBS 113365. Our results demonstrate that the non-functionality of the amylolytic transcription factor AmyR in A. vadensis CBS 113365 is primarily attributed to the lack of functionality of its gene's promoter sequence. In contrast, a different mechanism is likely causing the lack of PrtT activity, which is the main transcriptional regulator of protease production. The findings presented here not only expand our understanding of the genetic basis behind the distinct characteristics of A. vadensis CBS 113365, but also underscore its potential as a favourable alternative for recombinant protein production.
Collapse
Affiliation(s)
- Dujuan Liu
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Sandra Garrigues
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Departament of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Helena Culleton
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Megazyme International Ireland, Bray, Co. Wicklow, Ireland
| | | | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
3
|
Zhang X, Yang Y, Liu L, Sui X, Bermudez RS, Wang L, He W, Xu H. Insights into the efficient degradation mechanism of extracellular proteases mediated by Purpureocillium lilacinum. Front Microbiol 2024; 15:1404439. [PMID: 39040909 PMCID: PMC11260826 DOI: 10.3389/fmicb.2024.1404439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Protease secretion is crucial for degrading nematode cuticles using nematophagous fungus Purpureocillium lilacinum, but the secretion pattern of protease remains poorly understood. This study aimed to explore the degradation mechanism of proteases by investigating the characteristics of protease secretion under various carbon and nitrogen sources, and different carbon to nitrogen (C:N) ratios in P. lilacinum. The results showed that corn flour as a carbon source and yeast extract as a nitrogen source specifically induced protease secretion in P. lilacinum. P. lilacinum produced significant amounts of gelatinase and casein enzyme at C:N ratios of 10:1, 20:1, and 40:1, indicating that higher C:N ratios were more beneficial for secreting extracellular proteases. Proteomic analysis revealed 14 proteases, including 4 S8 serine endopeptidases and one M28 aminopeptidase. Among four S8 serine peptidases, Alp1 exhibited a high secretion level at C:N ratio less than 5:1, whereas PR1C, PR1D, and P32 displayed higher secretion levels at higher C:N ratios. In addition, the transcription levels of GATA transcription factors were investigated, revealing that Asd-4, A0A179G170, and A0A179HGL4 were more prevalent at a C:N ratio of 40:1. In contrast, the transcription levels of SREP, AreA, and NsdD were higher at lower C:N ratios. The putative regulatory profile of extracellular protease production in P. lilacinum, induced by different C:N ratios, was analyzed. The findings offered insights into the complexity of protease production and aided in the hydrolytic degradation of nematode cuticles.
Collapse
Affiliation(s)
- Xiujun Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yuhong Yang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Li Liu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xin Sui
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | | | - Lushan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Huilian Xu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
4
|
Zhang S, Wang W, Chang R, Yu J, Yan J, Yu W, Li C, Xu Z. Structure and Expression Analysis of PtrSUS, PtrINV, PtrHXK, PtrPGM, and PtrUGP Gene Families in Populus trichocarpa Torr. and Gray. Int J Mol Sci 2023; 24:17277. [PMID: 38139109 PMCID: PMC10743687 DOI: 10.3390/ijms242417277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Exogenous nitrogen and carbon can affect plant cell walls, which are composed of structural carbon. Sucrose synthase (SUS), invertase (INV), hexokinase (HXK), phosphoglucomutase (PGM), and UDP-glucose pyrophosphorylase (UGP) are the key enzymes of sucrose metabolism involved in cell wall synthesis. To understand whether these genes are regulated by carbon and nitrogen to participate in structural carbon biosynthesis, we performed genome-wide identification, analyzed their expression patterns under different carbon and nitrogen treatments, and conducted preliminary functional verification. Different concentrations of nitrogen and carbon were applied to poplar (Populus trichocarpa Torr. and Gray), which caused changes in cellulose, lignin, and hemicellulose contents. In poplar, 6 SUSs, 20 INVs, 6 HXKs, 4 PGMs, and 2 UGPs were identified. Moreover, the physicochemical properties, collinearity, and tissue specificity were analyzed. The correlation analysis showed that the expression levels of PtrSUS3/5, PtrNINV1/2/3/5/12, PtrCWINV3, PtrVINV2, PtrHXK5/6, PtrPGM1/2, and PtrUGP1 were positively correlated with the cellulose content. Meanwhile, the knockout of PtrNINV12 significantly reduced the cellulose content. This study could lay the foundation for revealing the functions of SUSs, INVs, HXKs, PGMs, and UGPs, which affected structural carbon synthesis regulated by nitrogen and carbon, proving that PtrNINV12 is involved in cell wall synthesis.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (W.W.); (R.C.)
| | - Wenjie Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (W.W.); (R.C.)
| | - Ruhui Chang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (W.W.); (R.C.)
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| | - Junxin Yan
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China;
| | - Wenxi Yu
- Heilongjiang Forestry Academy of Science, Harbin 150081, China;
| | - Chunming Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| | - Zhiru Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (W.W.); (R.C.)
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|
5
|
Chen S, Tian Z, Guo Y. Characterization of hexokinase gene family members in Glycine max and functional analysis of GmHXK2 under salt stress. Front Genet 2023; 14:1135290. [PMID: 36911414 PMCID: PMC9996050 DOI: 10.3389/fgene.2023.1135290] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Hexokinase (HXK) is a bifunctional enzyme involved in carbohydrate metabolism and sugar signal sensing. HXK gene family has been extensively discussed in many species, while the detailed investigations of the family in Glycine max have yet to be reported. In this study, 17 GmHXK genes (GmHXKs) were identified in the G. max genome and the features of their encoded proteins, conserved domains, gene structures, and cis-acting elements were systematically characterized. The GmHXK2 gene isolated from G. max was firstly constructed into plant expression vector pMDC83 and then transformed with Agrobacterium tumefaciens into Arabidopsis thaliana. The expression of integrated protein was analyzed by Western Blotting. Subcellular localization analysis showed that the GmHXK2 was located on both vacuolar and cell membrane. Under salt stress, seedlings growth was significantly improved in Arabidopsis overexpressing GmHXK2 gene. Furthermore, physiological indicators and expression of salt stress responsive genes involved in K+ and Na+ homeostasis were significantly lower in GmHXK2-silenced soybean seedlings obtained by virus-induced gene silencing (VIGS) technique under salt stress compared with the control plants. Our study showed that GmHXK2 gene played an important role in resisting salt stress, which suggested potential value for the genetic improvement of abiotic resistant crops.
Collapse
Affiliation(s)
- Shuai Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zengyuan Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuqi Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Zheng W, Zhang Y, Zhang Q, Wu R, Wang X, Feng S, Chen S, Lu C, Du L. Genome-Wide Identification and Characterization of Hexokinase Genes in Moso Bamboo ( Phyllostachys edulis). FRONTIERS IN PLANT SCIENCE 2020; 11:600. [PMID: 32508863 PMCID: PMC7248402 DOI: 10.3389/fpls.2020.00600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/20/2020] [Indexed: 05/18/2023]
Abstract
Plant hexokinases (HXKs) are a class of multifunctional proteins that not only act as the enzymes required for hexose phosphorylation but also serve as sugar sensors that repress the expression of some photosynthetic genes when internal glucose level increases and regulators of cell metabolism and some sugar-related signaling pathways independent on their catalytic actives. The HXKs have been studied in many plants; however, limited information is available on HXKs of moso bamboo (Phyllostachys edulis). In this study, we identified and characterized 12 hexokinase genes in moso bamboo. Phylogenetic analysis revealed that the moso bamboo hexokinases (PeHXKs) were classifiable into five subfamilies which represented the three types of hexokinases in plants. Gene structure and conserved motif analysis showed that the PeHXK genes contained diverse numbers of introns and exons and that the encoded proteins showed similar motif organization within each subfamily. Multiple sequence alignment revealed that the PeHXK proteins contained conserved domains, such as phosphate 1 (P1), phosphate 2 (P2), adenosine, and a sugar-binding domain. Evolutionary divergence analysis indicated that the PeHXK, OsHXK, and BdHXK families underwent negative selection and experienced a large-scale duplication event approximately 19-319 million years ago. Expression analysis of the PeHXK genes in the leaf, stem, root, and rhizome of moso bamboo seedlings indicated that the PeHXKs perform pivotal functions in the development of moso bamboo. A protein subcellular localization assay showed that PeHXK5a, PeHXK8, and PeHXK3b were predominantly localized in mitochondria, and PeHXK8 protein was also detected in the nucleus. The HXK activity of the PeHXK5a, PeHXK8, and PeHXK3b was verified by a functional complementation assay using the HXK-deficient triple-mutant yeast strain YSH7.4-3C (hxk1, hxk2, and glk1), and the results showed that the three PeHXKs had the plant HXK-specific enzyme traits. The present findings would provide a foundation for further functional analysis of the PeHXK gene family.
Collapse
Affiliation(s)
- Wenqing Zheng
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuan Zhang
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qian Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ruihua Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinwei Wang
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shengnian Feng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Cunfu Lu
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Du
- Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
7
|
Zhao B, Qi K, Yi X, Chen G, Liu X, Qi X, Zhang S. Identification of hexokinase family members in pear (Pyrus × bretschneideri) and functional exploration of PbHXK1 in modulating sugar content and plant growth. Gene 2019; 711:143932. [DOI: 10.1016/j.gene.2019.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
|
8
|
Khosravi C, Battaglia E, Kun RS, Dalhuijsen S, Visser J, Aguilar-Pontes MV, Zhou M, Heyman HM, Kim YM, Baker SE, de Vries RP. Blocking hexose entry into glycolysis activates alternative metabolic conversion of these sugars and upregulates pentose metabolism in Aspergillus nidulans. BMC Genomics 2018; 19:214. [PMID: 29566661 PMCID: PMC5863803 DOI: 10.1186/s12864-018-4609-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/19/2018] [Indexed: 11/11/2022] Open
Abstract
Background Plant biomass is the most abundant carbon source for many fungal species. In the biobased industry fungi, are used to produce lignocellulolytic enzymes to degrade agricultural waste biomass. Here we evaluated if it would be possible to create an Aspergillus nidulans strain that releases, but does not metabolize hexoses from plant biomass. For this purpose, metabolic mutants were generated that were impaired in glycolysis, by using hexokinase (hxkA) and glucokinase (glkA) negative strains. To prevent repression of enzyme production due to the hexose accumulation, strains were generated that combined these mutations with a deletion in creA, the repressor involved in regulating preferential use of different carbon catabolic pathways. Results Phenotypic analysis revealed reduced growth for the hxkA1 glkA4 mutant on wheat bran. However, hexoses did not accumulate during growth of the mutants on wheat bran, suggesting that glucose metabolism is re-routed towards alternative carbon catabolic pathways. The creAΔ4 mutation in combination with preventing initial phosphorylation in glycolysis resulted in better growth than the hxkA/glkA mutant and an increased expression of pentose catabolic and pentose phosphate pathway genes. This indicates that the reduced ability to use hexoses as carbon sources created a shift towards the pentose fraction of wheat bran as a major carbon source to support growth. Conclusion Blocking the direct entry of hexoses to glycolysis activates alternative metabolic conversion of these sugars in A. nidulans during growth on plant biomass, but also upregulates conversion of other sugars, such as pentoses. Electronic supplementary material The online version of this article (10.1186/s12864-018-4609-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claire Khosravi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Evy Battaglia
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Roland S Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Sacha Dalhuijsen
- Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Fungal Genetics and Technology Consultancy, P.O. Box 396, 6700, AJ, Wageningen, The Netherlands
| | - María Victoria Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Miaomiao Zhou
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Heino M Heyman
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Scott E Baker
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands. .,Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Role of HxkC, a mitochondrial hexokinase-like protein, in fungal programmed cell death. Fungal Genet Biol 2016; 97:36-45. [DOI: 10.1016/j.fgb.2016.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 11/21/2022]
|
10
|
Extreme Diversity in the Regulation of Ndt80-Like Transcription Factors in Fungi. G3-GENES GENOMES GENETICS 2015; 5:2783-92. [PMID: 26497142 PMCID: PMC4683649 DOI: 10.1534/g3.115.021378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Saccharomyces cerevisiaeNdt80 protein is the founding member of a class of p53-like transcription factors that is known as the NDT80/PhoG-like DNA-binding family. The number of NDT80-like genes in different fungi is highly variable and their roles, which have been examined in only a few species, include regulation of meiosis, sexual development, biofilm formation, drug resistance, virulence, the response to nutrient stress and programmed cell death. The protein kinase Ime2 regulates the single NDT80 gene present in S. cerevisiae. In this study we used a genetic approach to investigate whether the Aspergillus nidulansIme2 homolog, ImeB, and/or protein kinases MpkC, PhoA and PhoB regulate the two NDT80-like genes (xprG and ndtA) in A. nidulans. Disruption of imeB, but not mpkC, phoA or phoB, led to increased extracellular protease activity and a defect in mycotoxin production similar to the xprG1 gain-of-function mutation. Quantitative RT-PCR showed that ImeB is a negative regulator of xprG expression and XprG is a negative regulator of xprG and ndtA expression. Thus, in contrast to Ime2, which is a positive regulator of NDT80 in S. cerevisiae, ImeB is a negative regulator as in Neurospora crassa. However, the ability of Ndt80 to autoregulate NDT80 is conserved in A. nidulans though the autoregulatory effect is negative rather than positive. Unlike N. crassa, a null mutation in imeB does not circumvent the requirement for XprG or NdtA. These results show that the regulatory activities of Ime2 and Ndt80-like proteins display an extraordinarily level of evolutionary flexibility.
Collapse
|
11
|
Katz ME, Buckland R, Hunter CC, Todd RB. Distinct roles for the p53-like transcription factor XprG and autophagy genes in the response to starvation. Fungal Genet Biol 2015; 83:10-18. [DOI: 10.1016/j.fgb.2015.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
|
12
|
Katz ME, Braunberger K, Yi G, Cooper S, Nonhebel HM, Gondro C. A p53-like transcription factor similar to Ndt80 controls the response to nutrient stress in the filamentous fungus, Aspergillus nidulans. F1000Res 2013; 2:72. [PMID: 24358888 PMCID: PMC3821154 DOI: 10.12688/f1000research.2-72.v1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2013] [Indexed: 12/11/2022] Open
Abstract
The
Aspergillus nidulans xprG gene encodes a putative transcriptional activator that is a member of the Ndt80 family in the p53-like superfamily of proteins. Previous studies have shown that XprG controls the production of extracellular proteases in response to starvation. We undertook transcriptional profiling to investigate whether XprG has a wider role as a global regulator of the carbon nutrient stress response. Our microarray data showed that the expression of a large number of genes, including genes involved in secondary metabolism, development, high-affinity glucose uptake and autolysis, were altered in an
xprGΔ null mutant. Many of these genes are known to be regulated in response to carbon starvation. We confirmed that sterigmatocystin and penicillin production is reduced in
xprG
- mutants. The loss of fungal mass and secretion of pigments that accompanies fungal autolysis in response to nutrient depletion was accelerated in an
xprG1 gain-of-function mutant and decreased or absent in an
xprG
- mutant. The results support the hypothesis that XprG plays a major role in the response to carbon limitation and that nutrient sensing may represent one of the ancestral roles for the p53-like superfamily. Disruption of the AN6015 gene, which encodes a second Ndt80-like protein, showed that it is required for sexual reproduction in
A. nidulans.
Collapse
Affiliation(s)
- Margaret E Katz
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia
| | - Kathryn Braunberger
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia
| | - Gauncai Yi
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia ; Current address: Nanjing Hospital for Women & Children's Health, Nanjing Medical University, Nanjing City, 210004, China
| | - Sarah Cooper
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia
| | - Heather M Nonhebel
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia
| | - Cedric Gondro
- The Centre for Genetic Analysis and Applications, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
13
|
Szilágyi M, Kwon NJ, Dorogi C, Pócsi I, Yu JH, Emri T. The extracellular β-1,3-endoglucanase EngA is involved in autolysis of Aspergillus nidulans. J Appl Microbiol 2010; 109:1498-508. [PMID: 20602653 DOI: 10.1111/j.1365-2672.2010.04782.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To elucidate the roles of the β-1,3-endoglucanase EngA in autolysis of the filamentous fungus Aspergillus nidulans and to identify the common regulatory elements of autolytic hydrolases. METHODS AND RESULTS A β-1,3-endoglucanase was purified from carbon-starving cultures of A. nidulans. This enzyme is found to be encoded by the engA gene (locus ID: AN0472.3). Functional and gene-expression studies demonstrated that EngA is involved in the autolytic cell wall degradation resulting from carbon starvation of the fungus. Moreover, regulation of engA is found to be dependent on the FluG/BrlA asexual sporulation signalling pathway in submerged culture. The deletion of either engA or chiB (encoding an endochitinase) caused highly reduced production of hydrolases in general. CONCLUSIONS The β-1,3-endoglucanase EngA plays a pivotal role in fungal autolysis, and activities of both EngA and ChiB are necessary to orchestrate the expression of autolytic hydrolases. The production of cell wall-degrading enzymes was coordinately controlled in a highly sophisticated and complex manner. SIGNIFICANCE AND IMPACT OF THE STUDY No information was available on the autolytic glucanase(s) of the euascomycete A. nidulans. This study demonstrates that EngA is a key element in fungal autolysis, and normal activities of both EngA and ChiB are crucial for balanced production of hydrolases.
Collapse
Affiliation(s)
- M Szilágyi
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
14
|
Meiotic regulators Ndt80 and ime2 have different roles in Saccharomyces and Neurospora. Genetics 2010; 185:1271-82. [PMID: 20519745 DOI: 10.1534/genetics.110.117184] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiosis is a highly regulated process in eukaryotic species. The filamentous fungus Neurospora crassa has been shown to be missing homologs of a number of meiotic initiation genes conserved in Saccharomyces cerevisiae, but has three homologs of the well-characterized middle meiotic transcriptional regulator NDT80. In this study, we evaluated the role of all three NDT80 homologs in the formation of female reproductive structures, sexual development, and meiosis. We found that none of the NDT80 homologs were required for meiosis and that even the triple mutant was unaffected. However, strains containing mutations in NCU09915 (fsd-1) were defective in female sexual development and ascospore maturation. vib-1 was a major regulator of protoperithecial development in N. crassa, and double mutants carrying deletions of both vib-1 (NCU03725) and fsd-1 exhibited a synergistic effect on the timing of female reproductive structure (protoperithecia) formation. We further evaluated the role of the N. crassa homolog of IME2, a kinase involved in initiation of meiosis in S. cerevisiae. Strains containing mutations in ime-2 showed unregulated development of protoperithecia. Genetic analysis indicated that mutations in vib-1 were epistatic to ime-2, suggesting that IME-2 may negatively regulate VIB-1 activity. Our data indicate that the IME2/NDT80 pathway is not involved in meiosis in N. crassa, but rather regulates the formation of female reproductive structures.
Collapse
|
15
|
Aspergillus fumigatus catalytic glucokinase and hexokinase: expression analysis and importance for germination, growth, and conidiation. EUKARYOTIC CELL 2010; 9:1120-35. [PMID: 20453072 DOI: 10.1128/ec.00362-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fungi contain several hexokinases, which are involved either in sugar phosphorylation or in carbon source sensing. Glucose and fructose phosphorylations appear to rely exclusively on glucokinase and hexokinase. Here, we characterized the catalytic glucokinase and hexokinase from the opportunistic human pathogen Aspergillus fumigatus and showed that both enzymes display different biochemical properties and play different roles during growth and development. Glucokinase efficiently activates glucose and mannose but activates fructose only to a minor extent. Hexokinase showed a high efficiency for fructose activation but also activated glucose and mannose. Transcript and activity determinations revealed high levels of glucokinase in resting conidia, whereas hexokinase was associated mainly with the mycelium. Consequentially, a glucokinase mutant showed delayed germination at low glucose concentrations, whereas colony growth was not overly affected. The deletion of hexokinase had only a minor impact on germination but reduced colony growth, especially on sugar-containing media. Transcript determinations from infected mouse lungs revealed the expression of both genes, indicating a contribution to virulence. Interestingly, a double-deletion mutant showed impaired growth not only on sugars but also on nonfermentable nutrients, and growth on gluconeogenic carbon sources was strongly suppressed in the presence of glucose. Furthermore, the glkA hxkA deletion affected cell wall integrity, implying that both enzymes contribute to the cell wall composition. Additionally, the absence of either enzyme deregulated carbon catabolite repression since mutants displayed an induction of isocitrate lyase activity during growth on glucose-ethanol medium. Therefore, both enzymes seem to be required for balancing carbon flux in A. fumigatus and are indispensable for growth under all nutritional conditions.
Collapse
|
16
|
A regulator of Aspergillus fumigatus extracellular proteolytic activity is dispensable for virulence. Infect Immun 2009; 77:4041-50. [PMID: 19564390 DOI: 10.1128/iai.00425-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virulence of the fungal pathogen Aspergillus fumigatus is in part based on the saprophytic lifestyle that this mold has evolved. A crucial function for saprophytism resides in secreted proteases that allow assimilation of proteinaceous substrates. The impact of extracellular proteolytic activities on the pathogenesis of aspergillosis, however, remains controversial. In order to address this issue, characterization of a conserved regulatory factor, PrtT, that acts on expression of secreted proteases was pursued. Expression of PrtT appears to be regulated posttranscriptionally, and the existence of an mRNA leader sequence implies translational control via eIF2alpha kinase signaling. Phenotypic classification of a prtTDelta deletion mutant revealed that expression of several major extracellular proteases is PrtT dependent, resulting in the inability to utilize protein as a nutritional source. Certain genes encoding secreted proteases are not regulated by PrtT. Most strikingly, the deletant strain is not attenuated in virulence when tested in a leukopenic mouse model, which makes a strong case for reconsidering any impact of secreted proteases in pulmonary aspergillosis.
Collapse
|
17
|
PepJ is a new extracellular proteinase of Aspergillus nidulans. Folia Microbiol (Praha) 2009; 54:105-9. [DOI: 10.1007/s12223-009-0015-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 01/06/2009] [Indexed: 10/20/2022]
|
18
|
Mutations in genes encoding sorting nexins alter production of intracellular and extracellular proteases in Aspergillus nidulans. Genetics 2009; 181:1239-47. [PMID: 19204378 DOI: 10.1534/genetics.108.095315] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
XprG, a putative p53-like transcriptional activator, regulates production of extracellular proteases in response to nutrient limitation and may also have a role in programmed cell death. To identify genes that may be involved in the XprG regulatory pathway, xprG2 revertants were isolated and shown to carry mutations in genes which we have named sogA-C (suppressors of xprG). The translocation breakpoint in the sogA1 mutant was localized to a homolog of Saccharomyces cerevisiae VPS5 and mapping data indicated that sogB was tightly linked to a VPS17 homolog. Complementation of the sogA1 and sogB1 mutations and identification of nonsense mutations in the sogA2 and sogB1 alleles confirmed the identification. Vps17p and Vps5p are part of a complex involved in sorting of vacuolar proteins in yeast and regulation of cell-surface receptors in mammals. Protease zymograms indicate that mutations in sogA-C permit secretion of intracellular proteases, as in S. cerevisiae vps5 and vps17 mutants. In contrast to S. cerevisiae, the production of intracellular protease was much higher in the mutants. Analysis of serine protease gene expression suggests that an XprG-independent mechanism for regulation of extracellular protease gene expression in response to carbon starvation exists and is activated in the pseudorevertants.
Collapse
|
19
|
Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 2009; 27:53-75. [DOI: 10.1016/j.biotechadv.2008.09.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/04/2008] [Accepted: 09/07/2008] [Indexed: 12/11/2022]
|
20
|
Punt PJ, Schuren FH, Lehmbeck J, Christensen T, Hjort C, van den Hondel CA. Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes. Fungal Genet Biol 2008; 45:1591-9. [DOI: 10.1016/j.fgb.2008.09.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/12/2008] [Accepted: 09/22/2008] [Indexed: 11/28/2022]
|
21
|
Karve A, Rauh BL, Xia X, Kandasamy M, Meagher RB, Sheen J, Moore BD. Expression and evolutionary features of the hexokinase gene family in Arabidopsis. PLANTA 2008; 228:411-25. [PMID: 18481082 PMCID: PMC2953952 DOI: 10.1007/s00425-008-0746-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 04/24/2008] [Accepted: 04/24/2008] [Indexed: 05/17/2023]
Abstract
Arabidopsis hexokinase1 (HXK1) is a moonlighting protein that has separable functions in glucose signaling and in glucose metabolism. In this study, we have characterized expression features and glucose phosphorylation activities of the six HXK gene family members in Arabidopsis thaliana. Three of the genes encode catalytically active proteins, including a stromal-localized HXK3 protein that is expressed mostly in sink organs. We also show that three of the genes encode hexokinase-like (HKL) proteins, which are about 50% identical to AtHXK1, but do not phosphorylate glucose or fructose. Expression studies indicate that both HKL1 and HKL2 transcripts occur in most, if not all, plant tissues and that both proteins are targeted within cells to mitochondria. The HKL1 and HKL2 proteins have 6-10 amino acid insertions/deletions (indels) at the adenosine binding domain. In contrast, HKL3 transcript was detected only in flowers, the protein lacks the noted indels, and the protein has many other amino acid changes that might compromise its ability even to bind glucose or ATP. Activity measurements of HXKs modified by site-directed mutagenesis suggest that the lack of catalytic activities in the HKL proteins might be attributed to any of numerous existing changes. Sliding windows analyses of coding sequences in A. thaliana and A. lyrata ssp. lyrata revealed a differential accumulation of nonsynonymous changes within exon 8 of both HKL1 and HXK3 orthologs. We further discuss the possibility that the non-catalytic HKL proteins have regulatory functions instead of catalytic functions.
Collapse
Affiliation(s)
- Abhijit Karve
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Bradley L. Rauh
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Xiaoxia Xia
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | | | - Jen Sheen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Brandon d. Moore
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
22
|
Emri T, Szilágyi M, Justyák A, Pócsi I. Heterotrimeric G protein mediated regulation of proteinase production in Aspergillus nidulans. Acta Microbiol Immunol Hung 2008; 55:111-7. [PMID: 18595316 DOI: 10.1556/amicr.55.2008.2.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Extracellular proteinase production induced by carbon starvation was studied in a series of heterotrimeric G protein signaling pathway mutants of Aspergillus nidulans. All the mutants tested--including deltafadA (Galpha), deltasfaD (Gbeta), deltagpgA (Ggamma) and deltasfgA (regulator of FadA signaling)--showed an elevated proteinase production after glucose depletion. Our results strongly support the view that during growth, FadA/SfaD/GpgA G protein signaling inhibits proteinase production via both Galpha and Gbetagamma subunits, and all conditions, which are not sufficient to support vegetative growth and, hence, inhibit this type of G protein signaling, elevate extracellular proteinase activities.
Collapse
Affiliation(s)
- Tamás Emri
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4010 Debrecen, Hungary.
| | | | | | | |
Collapse
|
23
|
Katz ME, Bernardo SM, Cheetham BF. The interaction of induction, repression and starvation in the regulation of extracellular proteases in Aspergillus nidulans: evidence for a role for CreA in the response to carbon starvation. Curr Genet 2008; 54:47-55. [PMID: 18512059 DOI: 10.1007/s00294-008-0198-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/14/2008] [Accepted: 05/15/2008] [Indexed: 11/26/2022]
Abstract
In Aspergillus nidulans, production of extracellular proteases in response to carbon starvation and to a lesser extent nitrogen starvation is controlled by XprG, a putative transcriptional activator. In this study the role of genes involved in carbon catabolite repression and the role of protein as an inducer of extracellular protease gene expression were examined. The addition of exogenous protein to the growth medium did not increase extracellular protease activity whether or not additional carbon or nitrogen sources were present indicating that induction does not play a major role in the regulation of extracellular proteases. Northern blot analysis confirmed that protein is not an inducer of the major A. nidulans protease, PrtA. Mutations in the creA, creB and creC genes increased extracellular protease levels in medium lacking a carbon source suggesting that they may have a role in the response to carbon starvation as well as carbon catabolite repression. Analysis of glkA4 frA2 and creADelta4 mutants showed that the loss of glucose signalling or the DNA-binding protein which mediates carbon catabolite repression did not abolish glucose repression but did increase extracellular protease activity. This increase was XprG-dependent indicating that the effect of these genes may be through modulation of XprG activity.
Collapse
Affiliation(s)
- Margaret E Katz
- Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia.
| | | | | |
Collapse
|
24
|
Eibes GM, Lú-Chau TA, Ruiz-Dueñas FJ, Feijoo G, Martínez MJ, Martínez AT, Lema JM. Effect of culture temperature on the heterologous expression of Pleurotus eryngii versatile peroxidase in Aspergillus hosts. Bioprocess Biosyst Eng 2008; 32:129-34. [PMID: 18481101 DOI: 10.1007/s00449-008-0231-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
Abstract
Production of recombinant versatile peroxidase in Aspergillus hosts was optimized through the modification of temperature during bioreactor cultivations. To further this purpose, the cDNA encoding a versatile peroxidase of Pleurotus eryngii was expressed under control of the alcohol dehydrogenase (alcA) promoter of Aspergillus nidulans. A dependence of recombinant peroxidase production on cultivation temperature was found. Lowering the culture temperature from 28 to 19 degrees C enhanced the level of active peroxidase 5.8-fold and reduced the effective proteolytic activity twofold. Thus, a maximum peroxidase activity of 466 U L(-1) was reached. The same optimization scheme was applied to a recombinant Aspergillus niger that bore the alcohol dehydrogenase regulator (alcR), enabling transformation with the peroxidase cDNA under the same alcA promoter. However, with this strain, the peroxidase activity was not improved, while the effective proteolytic activity was increased between 3- and 11-fold compared to that obtained with A. nidulans.
Collapse
Affiliation(s)
- G M Eibes
- Department of Chemical Engineering, Institute of Technology, Santiago de Compostela, Spain.
| | | | | | | | | | | | | |
Collapse
|
25
|
Rui O, Hahn M. The Botrytis cinerea hexokinase, Hxk1, but not the glucokinase, Glk1, is required for normal growth and sugar metabolism, and for pathogenicity on fruits. Microbiology (Reading) 2007; 153:2791-2802. [PMID: 17660443 DOI: 10.1099/mic.0.2007/006338-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hexose kinases play a central role in the initiation of sugar metabolism of living organisms and have also been implicated in carbon catabolite repression in yeasts and plants. In this study, the genes encoding glucokinase (Glk1) and hexokinase (Hxk1) from the plant-pathogenic ascomycete Botrytis cinerea were isolated and functionally characterized. Glk1-deficient mutants were indistinguishable from the wild-type in all growth parameters tested. In contrast, Deltahxk1 mutants lacking Hxk1 showed a pleiotropic growth defect. On artificial media, vegetative growth was retarded, and conidia formation strongly reduced. No or only marginal growth of Deltahxk1 mutants was observed when fructose, galactose, sucrose or sorbitol were used as carbon sources, and fructose inhibited growth of the mutant in the presence of other carbon sources. B. cinerea mutants containing hxk1 alleles with point mutations leading to enzymically inactive enzymes showed phenotypes similar to the Deltahxk1 disruption mutant, indicating that loss of hexose phosphorylation activity of Hxk1 is solely responsible for the pleiotropic growth defect. Virulence of the Deltahxk1 mutants was dependent on the plant tissue: on leaves, lesion formation was only slightly retarded compared to the wild-type, whereas only small lesions were formed on apples, strawberries and tomatoes. The low virulence of Deltahxk1 mutants on fruits was correlated with their high contents of sugars, in particular fructose. Heterologous expression of Hxk1 and Glk1 in yeast allowed their enzymic characterization, revealing kinetic properties similar to other fungal hexokinases and glucokinases. Both Deltaglk1 and Deltahxk1 mutants showed normal glucose repression of secreted lipase 1 activity, indicating that, in contrast to yeast, B. cinerea hexose kinases are not involved in carbon catabolite repression.
Collapse
Affiliation(s)
- Oliver Rui
- Phytopathology, Department of Biology, University of Kaiserslautern, 67653 Kaiserslautern, Germany
| | - Matthias Hahn
- Phytopathology, Department of Biology, University of Kaiserslautern, 67653 Kaiserslautern, Germany
| |
Collapse
|
26
|
Bernardo SMH, Gray KA, Todd RB, Cheetham BF, Katz ME. Characterization of regulatory non-catalytic hexokinases in Aspergillus nidulans. Mol Genet Genomics 2007; 277:519-32. [PMID: 17226029 DOI: 10.1007/s00438-006-0203-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 12/12/2006] [Indexed: 11/30/2022]
Abstract
Hexokinases catalyse the first step in glucose metabolism and play a role in glucose sensing in mammals, plants and fungi. We describe a new class of hexokinases that appear to be solely regulatory in function. The Aspergillus nidulans hxkD gene (formerly named xprF) encodes a hexokinase-like protein. We constructed hxkDDelta gene disruption mutants which showed increased levels of extracellular protease in response to carbon starvation. The hxkDDelta mutations are not completely recessive, indicating that the level of the gene product is critical. Transcript levels of hxkD increase during carbon starvation and this response is not dependent on functional HxkD. A gene encoding a second atypical hexokinase (HxkC) was identified. The hxkCDelta gene disruption mutant exhibits a phenotype similar, but not identical, to hxkDDelta mutants. As with hxkD, mutations in hxkC are suppressed by loss-of-function mutations in xprG, which encodes a putative transcriptional activator involved in the response to nutrient limitation. We show that GFP-tagged HxkD was found only in nuclei suggesting a regulatory role for HxkD. GFP-tagged HxkC was associated with mitochondria. Homologs of hxkC and hxkD are conserved in multi-cellular fungi. Genes encoding atypical hexokinases are present in many genome sequence databases. Thus, non-catalytic hexokinases may be widespread.
Collapse
Affiliation(s)
- Stella M H Bernardo
- Molecular and Cellular Biology, University of New England, Armidale, NSW, Australia
| | | | | | | | | |
Collapse
|
27
|
Katz ME, Gray KA, Cheetham BF. The Aspergillus nidulans xprG (phoG) gene encodes a putative transcriptional activator involved in the response to nutrient limitation. Fungal Genet Biol 2006; 43:190-9. [PMID: 16464624 DOI: 10.1016/j.fgb.2005.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/07/2005] [Accepted: 12/14/2005] [Indexed: 11/17/2022]
Abstract
The Aspergillus nidulans xprG gene is involved in the regulation of extracellular proteases. A plasmid which complemented the xprG2 mutation was shown to carry the phoG gene, reported to encode an acid phosphatase. Two phoGDelta mutants were constructed and were identical in phenotype to an xprG2 mutant. Null mutants were unable to use protein as a carbon or nitrogen source, have lost a repressible acid phosphatase and have pale conidial color. XprG shows similarity to the Ndt80 transcriptional activator, which regulates the expression of genes during meiosis in Saccharomyces cerevisiae. The xprG1 gain-of-function mutant contains a missense mutation in the region encoding the putative DNA-binding domain. The response to carbon, nitrogen, sulfur, and phosphate limitation is altered in xprG(-) mutants suggesting that XprG is involved in a general response to starvation. Ndt80 may also be involved in sensing nutritional status and control of commitment to meiosis in S. cerevisiae.
Collapse
Affiliation(s)
- Margaret E Katz
- Molecular and Cellular Biology, University of New England, Armidale, NSW, Australia.
| | | | | |
Collapse
|
28
|
Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N, Plamann M, Goodrich-Tanrikulu M, Schulte U, Mannhaupt G, Nargang FE, Radford A, Selitrennikoff C, Galagan JE, Dunlap JC, Loros JJ, Catcheside D, Inoue H, Aramayo R, Polymenis M, Selker EU, Sachs MS, Marzluf GA, Paulsen I, Davis R, Ebbole DJ, Zelter A, Kalkman ER, O'Rourke R, Bowring F, Yeadon J, Ishii C, Suzuki K, Sakai W, Pratt R. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 2004; 68:1-108. [PMID: 15007097 PMCID: PMC362109 DOI: 10.1128/mmbr.68.1.1-108.2004] [Citation(s) in RCA: 434] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present an analysis of over 1,100 of the approximately 10,000 predicted proteins encoded by the genome sequence of the filamentous fungus Neurospora crassa. Seven major areas of Neurospora genomics and biology are covered. First, the basic features of the genome, including the automated assembly, gene calls, and global gene analyses are summarized. The second section covers components of the centromere and kinetochore complexes, chromatin assembly and modification, and transcription and translation initiation factors. The third area discusses genome defense mechanisms, including repeat induced point mutation, quelling and meiotic silencing, and DNA repair and recombination. In the fourth section, topics relevant to metabolism and transport include extracellular digestion; membrane transporters; aspects of carbon, sulfur, nitrogen, and lipid metabolism; the mitochondrion and energy metabolism; the proteasome; and protein glycosylation, secretion, and endocytosis. Environmental sensing is the focus of the fifth section with a treatment of two-component systems; GTP-binding proteins; mitogen-activated protein, p21-activated, and germinal center kinases; calcium signaling; protein phosphatases; photobiology; circadian rhythms; and heat shock and stress responses. The sixth area of analysis is growth and development; it encompasses cell wall synthesis, proteins important for hyphal polarity, cytoskeletal components, the cyclin/cyclin-dependent kinase machinery, macroconidiation, meiosis, and the sexual cycle. The seventh section covers topics relevant to animal and plant pathogenesis and human disease. The results demonstrate that a large proportion of Neurospora genes do not have homologues in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. The group of unshared genes includes potential new targets for antifungals as well as loci implicated in human and plant physiology and disease.
Collapse
Affiliation(s)
- Katherine A Borkovich
- Department of Plant Pathology, University of California, Riverside, California 92521, USA. Katherine/
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Flipphi M, van de Vondervoort PJI, Ruijter GJG, Visser J, Arst HN, Felenbok B. Onset of carbon catabolite repression in Aspergillus nidulans. Parallel involvement of hexokinase and glucokinase in sugar signaling. J Biol Chem 2003; 278:11849-57. [PMID: 12519784 DOI: 10.1074/jbc.m209443200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of hexose phosphorylating enzymes in the signaling of carbon catabolite repression was investigated in the filamentous fungus Aspergillus nidulans. A d-fructose non-utilizing, hexokinase-deficient (hxkA1, formerly designated frA1) strain was utilized to obtain new mutants lacking either glucokinase (glkA4) or both hexose kinases (hxkA1/glkA4). d-Glucose and d-fructose phosphorylation is completely abolished in the double mutant, which consequently cannot grow on either sugar. The glucokinase single mutant exhibits no nutritional deficiencies. Three repressible diagnostic systems, ethanol utilization (alcA and alcR genes), xylan degradation (xlnA), and acetate catabolism (facA), were analyzed in these hexose kinase mutants at the transcript level. Transcriptional repression by d-glucose is fully retained in the two single kinase mutants, whereas the hexokinase mutant is partially derepressed for d-fructose. Thus, hexokinase A and glucokinase A compensate each other for carbon catabolite repression by d-glucose in the single mutants. In contrast, both d-glucose and d-fructose repression are severely impaired for all three diagnostic systems in the double mutant. Unlike the situation in Saccharomyces cerevisiae, the hexose phosphorylating enzymes play parallel roles in glucose repression in A. nidulans.
Collapse
Affiliation(s)
- Michel Flipphi
- Institut de Génétique et Microbiologie, CNRS Unité Mixte de Recherche 8621, Université Paris-Sud XI, Centre d'Orsay, Bâtiment 409, F-91405 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|