1
|
Samd7 is a cell type-specific PRC1 component essential for establishing retinal rod photoreceptor identity. Proc Natl Acad Sci U S A 2017; 114:E8264-E8273. [PMID: 28900001 DOI: 10.1073/pnas.1707021114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7-null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7-deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity.
Collapse
|
2
|
Kang H, McElroy KA, Jung YL, Alekseyenko AA, Zee BM, Park PJ, Kuroda MI. Sex comb on midleg (Scm) is a functional link between PcG-repressive complexes in Drosophila. Genes Dev 2015; 29:1136-50. [PMID: 26063573 PMCID: PMC4470282 DOI: 10.1101/gad.260562.115] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, Kang et al. investigate how PcG complexes form repressive chromatin domains. The findings show that Scm, a transcriptional repressor, is an important regulator of PRC1, PRC2, and transcriptional silencing and suggest that Scm coordinates PcG complexes and polymerizes, resulting in PcG silencing. The Polycomb group (PcG) proteins are key regulators of development in Drosophila and are strongly implicated in human health and disease. How PcG complexes form repressive chromatin domains remains unclear. Using cross-linked affinity purifications of BioTAP-Polycomb (Pc) or BioTAP-Enhancer of zeste [E(z)], we captured all PcG-repressive complex 1 (PRC1) or PRC2 core components and Sex comb on midleg (Scm) as the only protein strongly enriched with both complexes. Although previously not linked to PRC2, we confirmed direct binding of Scm and PRC2 using recombinant protein expression and colocalization of Scm with PRC1, PRC2, and H3K27me3 in embryos and cultured cells using ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing). Furthermore, we found that RNAi knockdown of Scm and overexpression of the dominant-negative Scm-SAM (sterile α motif) domain both affected the binding pattern of E(z) on polytene chromosomes. Aberrant localization of the Scm-SAM domain in long contiguous regions on polytene chromosomes revealed its independent ability to spread on chromatin, consistent with its previously described ability to oligomerize in vitro. Pull-downs of BioTAP-Scm captured PRC1 and PRC2 and additional repressive complexes, including PhoRC, LINT, and CtBP. We propose that Scm is a key mediator connecting PRC1, PRC2, and transcriptional silencing. Combined with previous structural and genetic analyses, our results strongly suggest that Scm coordinates PcG complexes and polymerizes to produce broad domains of PcG silencing.
Collapse
Affiliation(s)
- Hyuckjoon Kang
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kyle A McElroy
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Youngsook Lucy Jung
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Artyom A Alekseyenko
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Barry M Zee
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter J Park
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mitzi I Kuroda
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
3
|
Meier K, Brehm A. Chromatin regulation: how complex does it get? Epigenetics 2014; 9:1485-95. [PMID: 25482055 PMCID: PMC4622878 DOI: 10.4161/15592294.2014.971580] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/18/2014] [Accepted: 09/29/2014] [Indexed: 12/16/2022] Open
Abstract
Gene transcription is tightly regulated at different levels to ensure that the transcriptome of the cell is appropriate for developmental stage and cell type. The chromatin state in which a gene is embedded determines its expression level to a large extent. Activation or repression of transcription is typically accomplished by the recruitment of chromatin-associated multisubunit protein complexes that combine several molecular tools, such as histone-binding and chromatin-modifying activities. Recent biochemical purifications of such complexes have revealed a substantial diversity. On the one hand, complexes that were thought to be unique have been revealed to be part of large complex families. On the other hand, protein subunits that were thought to only exist in separate complexes have been shown to coexist in novel assemblies. In this review we discuss our current knowledge of repressor complexes that contain MBT domain proteins and/or the CoREST co-repressor and use them as a paradigm to illustrate the unexpected heterogeneity and tool sharing of chromatin regulating protein complexes. These recent insights also challenge the ways we define and think about protein complexes in general.
Collapse
Key Words
- ATP, adenosine triphosphate
- BAP, brahma associated protein
- BHC80, BRAF-histone deacetylase complex 80
- BRG1, brahma Related Gene 1
- CHD, chromo domain helicase DNA binding
- CoREST
- CoREST REST, corepressor
- DNA, deoxyribonucleic acid
- DNMT, DNA methyltransferase
- DP-1, dimerization partner 1
- E2F, E2 transcription Factor
- ELM2, EGL-27 and MTA1 homology 2
- ES cell, embryonic stem cells
- H, histone
- HDAC, histone deacetylas
- HMTase, histone methylase
- HP1, heterochromatin protein 1
- K, lysine
- L3MBTL, lethal 3 malignant brain tumor-like
- LINT, l(3)mbt interacting
- LSD1, lysine-specific demethylase 1
- Lint-1, l(3)mbt interacting 1
- MBT protein
- MBT, malignant brain tumor
- MBTS, malignant brain tumor signature
- NPA1, nucleosome assembly protein
- NRSF, neural-restrictive silencing factor
- NuRD, nucleosome remodeling and deacetylase
- PBAP, polybromo-associated BAP
- PHD, plant homeo domain
- PRC1, polycomb repressive complex 1
- PRE, polycomb responsive element
- Pc, polycomb
- PcG, polycomb group
- Ph, polyhomeotic
- Pho, pleiohomeotic
- PhoRC, Pho repressive complex
- Psc, posterior sex combs
- RB, retinoblastoma
- REST, repressor element 1 silencing transcription factor
- RNA, ribonucleic acid
- Rpd3, reduced potassium dependency 3
- SANT, SWI/ADA2/N-CoR/TFIIIB
- SCML, sex combs on midleg-like
- SLC, SFMBT1, LSD1, CoREST
- SWH, Salvador-Warts-Hippo
- SWI/SNF, switching defective/sucrose non-fermenting
- Sce, sex combs extra
- Scm, sex combs on midleg
- Sfmbt, Scm-related gene containing 4 mbt domains
- TSS, transcription start site
- YY1, ying-yang 1
- ZNF, zinc finger
- complex family
- dL(3)mbt, Drosophila Lethal 3 malignant brain tumor
- hBRM, human Brahma
- l(3)mbt, lethal 3 malignant brain tumor
- protein complex
- transcriptional regulation
Collapse
Affiliation(s)
- Karin Meier
- Institut für Molekularbiologie und Tumorforschung; Philipps-Universität Marburg; Marburg, Germany
- Instituto de Fisiología Celular; Departamento de Genética Molecular; Universidad Nacional Autónoma de México; México City, México
| | - Alexander Brehm
- Institut für Molekularbiologie und Tumorforschung; Philipps-Universität Marburg; Marburg, Germany
| |
Collapse
|
4
|
Bonasio R, Lecona E, Narendra V, Voigt P, Parisi F, Kluger Y, Reinberg D. Interactions with RNA direct the Polycomb group protein SCML2 to chromatin where it represses target genes. eLife 2014; 3:e02637. [PMID: 24986859 PMCID: PMC4074974 DOI: 10.7554/elife.02637] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polycomb repressive complex-1 (PRC1) is essential for the epigenetic regulation of gene expression. SCML2 is a mammalian homolog of Drosophila SCM, a Polycomb-group protein that associates with PRC1. In this study, we show that SCML2A, an SCML2 isoform tightly associated to chromatin, contributes to PRC1 localization and also directly enforces repression of certain Polycomb target genes. SCML2A binds to PRC1 via its SPM domain and interacts with ncRNAs through a novel RNA-binding region (RBR). Targeting of SCML2A to chromatin involves the coordinated action of the MBT domains, RNA binding, and interaction with PRC1 through the SPM domain. Deletion of the RBR reduces the occupancy of SCML2A at target genes and overexpression of a mutant SCML2A lacking the RBR causes defects in PRC1 recruitment. These observations point to a role for ncRNAs in regulating SCML2 function and suggest that SCML2 participates in the epigenetic control of transcription directly and in cooperation with PRC1.DOI: http://dx.doi.org/10.7554/eLife.02637.001.
Collapse
Affiliation(s)
- Roberto Bonasio
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, New York University School of Medicine, New York, United States
| | - Emilio Lecona
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, New York University School of Medicine, New York, United States
| | - Varun Narendra
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, New York University School of Medicine, New York, United States
| | - Philipp Voigt
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, New York University School of Medicine, New York, United States
| | - Fabio Parisi
- Department of Pathology, Yale University School of Medicine, New Haven, United States Yale Cancer Center, Yale University School of Medicine, New Haven, United States
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, United States Yale Cancer Center, Yale University School of Medicine, New Haven, United States
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, New York University School of Medicine, New York, United States
| |
Collapse
|
5
|
Steffen PA, Ringrose L. What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat Rev Mol Cell Biol 2014; 15:340-56. [PMID: 24755934 DOI: 10.1038/nrm3789] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In any biological system with memory, the state of the system depends on its history. Epigenetic memory maintains gene expression states through cell generations without a change in DNA sequence and in the absence of initiating signals. It is immensely powerful in biological systems - it adds long-term stability to gene expression states and increases the robustness of gene regulatory networks. The Polycomb group (PcG) and Trithorax group (TrxG) proteins can confer long-term, mitotically heritable memory by sustaining silent and active gene expression states, respectively. Several recent studies have advanced our understanding of the molecular mechanisms of this epigenetic memory during DNA replication and mitosis.
Collapse
Affiliation(s)
- Philipp A Steffen
- Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Leonie Ringrose
- Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
6
|
The relationship between long-range chromatin occupancy and polymerization of the Drosophila ETS family transcriptional repressor Yan. Genetics 2012; 193:633-49. [PMID: 23172856 DOI: 10.1534/genetics.112.146647] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
ETS family transcription factors are evolutionarily conserved downstream effectors of Ras/MAPK signaling with critical roles in development and cancer. In Drosophila, the ETS repressor Yan regulates cell proliferation and differentiation in a variety of tissues; however, the mechanisms of Yan-mediated repression are not well understood and only a few direct target genes have been identified. Yan, like its human ortholog TEL1, self-associates through an N-terminal sterile α-motif (SAM), leading to speculation that Yan/TEL1 polymers may spread along chromatin to form large repressive domains. To test this hypothesis, we created a monomeric form of Yan by recombineering a point mutation that blocks SAM-mediated self-association into the yan genomic locus and compared its genome-wide chromatin occupancy profile to that of endogenous wild-type Yan. Consistent with the spreading model predictions, wild-type Yan-bound regions span multiple kilobases. Extended occupancy patterns appear most prominent at genes encoding crucial developmental regulators and signaling molecules and are highly conserved between Drosophila melanogaster and D. virilis, suggesting functional relevance. Surprisingly, although occupancy is reduced, the Yan monomer still makes extensive multikilobase contacts with chromatin, with an overall pattern similar to that of wild-type Yan. Despite its near-normal chromatin recruitment, the repressive function of the Yan monomer is significantly impaired, as evidenced by elevated target gene expression and failure to rescue a yan null mutation. Together our data argue that SAM-mediated polymerization contributes to the functional output of the active Yan repressive complexes that assemble across extended stretches of chromatin, but does not directly mediate recruitment to DNA or chromatin spreading.
Collapse
|
7
|
Li Z, Cheng D, Mon H, Tatsuke T, Zhu L, Xu J, Lee JM, Xia Q, Kusakabe T. Genome-wide identification of polycomb target genes reveals a functional association of Pho with Scm in Bombyx mori. PLoS One 2012; 7:e34330. [PMID: 22485166 PMCID: PMC3317521 DOI: 10.1371/journal.pone.0034330] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/26/2012] [Indexed: 11/29/2022] Open
Abstract
Polycomb group (PcG) proteins are evolutionarily conserved chromatin modifiers and act together in three multimeric complexes, Polycomb repressive complex 1 (PRC1), Polycomb repressive complex 2 (PRC2), and Pleiohomeotic repressive complex (PhoRC), to repress transcription of the target genes. Here, we identified Polycomb target genes in Bombyx mori with holocentric centromere using genome-wide expression screening based on the knockdown of BmSCE, BmESC, BmPHO, or BmSCM gene, which represent the distinct complexes. As a result, the expressions of 29 genes were up-regulated after knocking down 4 PcG genes. Particularly, there is a significant overlap between targets of BmPho (331 out of 524) and BmScm (331 out of 532), and among these, 190 genes function as regulator factors playing important roles in development. We also found that BmPho, as well as BmScm, can interact with other Polycomb components examined in this study. Further detailed analysis revealed that the C-terminus of BmPho containing zinc finger domain is involved in the interaction between BmPho and BmScm. Moreover, the zinc finger domain in BmPho contributes to its inhibitory function and ectopic overexpression of BmScm is able to promote transcriptional repression by Gal4-Pho fusions including BmScm-interacting domain. Loss of BmPho expression causes relocalization of BmScm into the cytoplasm. Collectively, we provide evidence of a functional link between BmPho and BmScm, and propose two Polycomb-related repression mechanisms requiring only BmPho associated with BmScm or a whole set of PcG complexes.
Collapse
Affiliation(s)
- Zhiqing Li
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Hiroaki Mon
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Tsuneyuki Tatsuke
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Li Zhu
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Jian Xu
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Jae Man Lee
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Takahiro Kusakabe
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
8
|
Smith M, Mallin DR, Simon JA, Courey AJ. Small ubiquitin-like modifier (SUMO) conjugation impedes transcriptional silencing by the polycomb group repressor Sex Comb on Midleg. J Biol Chem 2011; 286:11391-400. [PMID: 21278366 DOI: 10.1074/jbc.m110.214569] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Drosophila protein Sex Comb on Midleg (Scm) is a member of the Polycomb group (PcG), a set of transcriptional repressors that maintain silencing of homeotic genes during development. Recent findings have identified PcG proteins both as targets for modification by the small ubiquitin-like modifier (SUMO) protein and as catalytic components of the SUMO conjugation pathway. We have found that the SUMO-conjugating enzyme Ubc9 binds to Scm and that this interaction, which requires the Scm C-terminal sterile α motif (SAM) domain, is crucial for the efficient sumoylation of Scm. Scm is associated with the major Polycomb response element (PRE) of the homeotic gene Ultrabithorax (Ubx), and efficient PRE recruitment requires an intact Scm SAM domain. Global reduction of sumoylation augments binding of Scm to the PRE. This is likely to be a direct effect of Scm sumoylation because mutations in the SUMO acceptor sites in Scm enhance its recruitment to the PRE, whereas translational fusion of SUMO to the Scm N terminus interferes with this recruitment. In the metathorax, Ubx expression promotes haltere formation and suppresses wing development. When SUMO levels are reduced, we observe decreased expression of Ubx and partial haltere-to-wing transformation phenotypes. These observations suggest that SUMO negatively regulates Scm function by impeding its recruitment to the Ubx major PRE.
Collapse
Affiliation(s)
- Matthew Smith
- Department of Chemistry and Biochemistry, UCLA, Los, Angeles, California 90095-1569, USA
| | | | | | | |
Collapse
|
9
|
Comparative analysis of chromatin binding by Sex Comb on Midleg (SCM) and other polycomb group repressors at a Drosophila Hox gene. Mol Cell Biol 2010; 30:2584-93. [PMID: 20351181 DOI: 10.1128/mcb.01451-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sex Comb on Midleg (SCM) is a transcriptional repressor in the Polycomb group (PcG), but its molecular role in PcG silencing is not known. Although SCM can interact with Polycomb repressive complex 1 (PRC1) in vitro, biochemical studies have indicated that SCM is not a core constituent of PRC1 or PRC2. Nevertheless, SCM is just as critical for Drosophila Hox gene silencing as canonical subunits of these well-characterized PcG complexes. To address functional relationships between SCM and other PcG components, we have performed chromatin immunoprecipitation studies using cultured Drosophila Schneider line 2 (S2) cells and larval imaginal discs. We find that SCM associates with a Polycomb response element (PRE) upstream of the Ubx gene which also binds PRC1, PRC2, and the DNA-binding PcG protein Pleiohomeotic (PHO). However, SCM is retained at this Ubx PRE despite genetic disruption or knockdown of PHO, PRC1, or PRC2, suggesting that SCM chromatin targeting does not require prior association of these other PcG components. Chromatin immunoprecipitations (IPs) to test the consequences of SCM genetic disruption or knockdown revealed that PHO association is unaffected, but reduced levels of PRE-bound PRC2 and PRC1 were observed. We discuss these results in light of current models for recruitment of PcG complexes to chromatin targets.
Collapse
|
10
|
|
11
|
Sterile alpha motif domain-mediated self-association plays an essential role in modulating the activity of the Drosophila ETS family transcriptional repressor Yan. Mol Cell Biol 2010; 30:1158-70. [PMID: 20048052 DOI: 10.1128/mcb.01225-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The ETS family transcriptional repressor Yan is an important downstream target and effector of the receptor tyrosine kinase (RTK) signaling pathway in Drosophila melanogaster. Structural and biochemical studies have shown that the N-terminal sterile alpha motif (SAM) of Yan is able to self associate to form a helical polymeric structure in vitro, although the extent and functional significance of self-association of full-length Yan remain unclear. In this study, we demonstrated that full-length Yan self associates via its SAM domain to form higher-order complexes in living cells. Introduction of SAM domain missense mutations that restrict Yan to a monomeric state reduces Yan's transcriptional repression activity and impairs its function during embryonic and retinal development. Coexpression of combinations of SAM domain mutations that permit the formation of Yan dimers, but not higher-order oligomers, increases activity relative to that of monomeric Yan, but not to the level obtained with wild-type Yan. Mechanistically, self-association directly promotes transcriptional repression of target genes independent of its role in limiting mitogen-activated protein kinase (MAPK)-mediated phosphorylation and nuclear export of Yan. Thus, we propose that the formation of higher-order Yan oligomers contributes to proper repression of target gene expression and RTK signaling output in developing tissues.
Collapse
|
12
|
Inoue T, Terada K, Furukawa A, Koike C, Tamaki Y, Araie M, Furukawa T. Cloning and characterization of mr-s, a novel SAM domain protein, predominantly expressed in retinal photoreceptor cells. BMC DEVELOPMENTAL BIOLOGY 2006; 6:15. [PMID: 16539743 PMCID: PMC1435744 DOI: 10.1186/1471-213x-6-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 03/16/2006] [Indexed: 11/17/2022]
Abstract
Background Sterile alpha motif (SAM) domains are ~70 residues long and have been reported as common protein-protein interaction modules. This domain is found in a large number of proteins, including Polycomb group (PcG) proteins and ETS family transcription factors. In this work, we report the cloning and functional characterization of a novel SAM domain-containing protein, which is predominantly expressed in retinal photoreceptors and the pineal gland and is designated mouse mr-s (major retinal SAM domain protein). Results mr-s is evolutionarily conserved from zebrafish through human, organisms through which the mechanism of photoreceptor development is also highly conserved. Phylogenetic analysis suggests that the SAM domain of mr-s is most closely related to a mouse polyhomeotic (ph) ortholog, Mph1/Rae28, which is known as an epigenetic molecule involved in chromatin modifications. These findings provide the possibility that mr-s may play a critical role by regulating gene expression in photoreceptor development. mr-s is preferentially expressed in the photoreceptors at postnatal day 3–6 (P3-6), when photoreceptors undergo terminal differentiation, and in the adult pineal gland. Transcription of mr-s is directly regulated by the cone-rod homeodomain protein Crx. Immunoprecipitation assay showed that the mr-s protein self-associates mainly through the SAM domain-containing region as well as ph. The mr-s protein localizes mainly in the nucleus, when mr-s is overexpressed in HEK293T cells. Moreover, in the luciferase assays, we found that mr-s protein fused to GAL4 DNA-binding domain functions as a transcriptional repressor. We revealed that the repression activity of mr-s is not due to a homophilic interaction through its SAM domain but to the C-terminal region. Conclusion We identified a novel gene, mr-s, which is predominantly expressed in retinal photoreceptors and pineal gland. Based on its expression pattern and biochemical analysis, we predict that mr-s may function as a transcriptional repressor in photoreceptor cells and in pinealocytes of the pineal gland.
Collapse
Affiliation(s)
- Tatsuya Inoue
- Osaka Bioscience Institute; 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
- PRESTO, Japan Science and Technology Agency; 4-1-8 Honcho, Kawaguchi, Saitama, Japan
- Department of Ophthalmology, Tokyo University School of Medicine; 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koji Terada
- Osaka Bioscience Institute; 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Akiko Furukawa
- Osaka Bioscience Institute; 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
- Department of Ophthalmology, Osaka University Medical School; Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chieko Koike
- Osaka Bioscience Institute; 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Yasuhiro Tamaki
- Department of Ophthalmology, Tokyo University School of Medicine; 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Makoto Araie
- Department of Ophthalmology, Tokyo University School of Medicine; 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahisa Furukawa
- Osaka Bioscience Institute; 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
- PRESTO, Japan Science and Technology Agency; 4-1-8 Honcho, Kawaguchi, Saitama, Japan
| |
Collapse
|
13
|
Andreyeva EN, Belyaeva ES, Semeshin VF, Pokholkova GV, Zhimulev IF. Three distinct chromatin domains in telomere ends of polytene chromosomes in Drosophila melanogaster Tel mutants. J Cell Sci 2005; 118:5465-77. [PMID: 16278293 DOI: 10.1242/jcs.02654] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Drosophila melanogaster telomeric DNA is known to comprise two domains: the terminal tract of retrotransposons (HeT-A, TART and TAHRE) and telomere-associated sequences (TAS). Chromosome tips are capped by a protein complex, which is assembled on the chromosome ends independently of the underlying terminal DNA sequences. To investigate the properties of these domains in salivary gland polytene chromosomes, we made use of Tel mutants. Telomeres in this background are elongated owing to the amplification of a block of terminal retroelements. Supercompact heterochromatin is absent from the telomeres of polytene chromosomes: electron microscopy analysis identifies the telomeric cap and the tract of retroelements as a reticular material, having no discernible banding pattern, whereas TAS repeats appear as faint bands. According to the pattern of bound proteins, the cap, tract of retroelements and TAS constitute distinct and non-overlapping domains in telomeres. SUUR, HP2, SU(VAR)3-7 and H3Me3K27 localize to the cap region, as has been demonstrated for HP1. All these proteins are also found in pericentric heterochromatin. The tract of retroelements is associated with proteins characteristic for both heterochromatin (H3Me3K9) and euchromatin (H3Me3K4, JIL-1, Z4). The TAS region is enriched for H3Me3K27. PC and E(Z) are detected both in TAS and many intercalary heterochromatin regions. Telomeres complete replication earlier than heterochromatic regions. The frequency of telomeric associations in salivary gland polytene chromosomes does not depend on the SuUR gene dosage, rather it appears to be defined by the telomere length.
Collapse
Affiliation(s)
- Evgenia N Andreyeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | | | | | |
Collapse
|
14
|
Kim CA, Sawaya MR, Cascio D, Kim W, Bowie JU. Structural Organization of a Sex-comb-on-midleg/Polyhomeotic Copolymer. J Biol Chem 2005; 280:27769-75. [PMID: 15905166 DOI: 10.1074/jbc.m503055200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polycomb group proteins are required for the stable maintenance of gene repression patterns established during development. They function as part of large multiprotein complexes created via a multitude of protein-protein interaction domains. Here we examine the interaction between the SAM domains of the polycomb group proteins polyhomeotic (Ph) and Sex-comb-on-midleg (Scm). Previously we showed that Ph-SAM polymerizes as a helical structure. We find that Scm-SAM also polymerizes, and a crystal structure reveals an architecture similar to the Ph-SAM polymer. These results suggest that Ph-SAM and Scm-SAM form a copolymer. Binding affinity measurements between Scm-SAM and Ph-SAM subunits in different orientations indicate a preference for the formation of a single junction copolymer. To provide a model of the copolymer, we determined the structure of the Ph-SAM/Scm-SAM junction. Similar binding modes are observed in both homo- and heterocomplex formation with minimal change in helix axis direction at the polymer joint. The copolymer model suggests that polymeric Scm complexes could extend beyond the local domains of polymeric Ph complexes on chromatin, possibly playing a role in long range repression.
Collapse
Affiliation(s)
- Chongwoo A Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
15
|
Peterson AJ, Mallin DR, Francis NJ, Ketel CS, Stamm J, Voeller RK, Kingston RE, Simon JA. Requirement for sex comb on midleg protein interactions in Drosophila polycomb group repression. Genetics 2005; 167:1225-39. [PMID: 15280237 PMCID: PMC1470928 DOI: 10.1534/genetics.104.027474] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Drosophila Sex Comb on Midleg (SCM) protein is a transcriptional repressor of the Polycomb group (PcG). Although genetic studies establish SCM as a crucial PcG member, its molecular role is not known. To investigate how SCM might link to PcG complexes, we analyzed the in vivo role of a conserved protein interaction module, the SPM domain. This domain is found in SCM and in another PcG protein, Polyhomeotic (PH), which is a core component of Polycomb repressive complex 1 (PRC1). SCM-PH interactions in vitro are mediated by their respective SPM domains. Yeast two-hybrid and in vitro binding assays were used to isolate and characterize >30 missense mutations in the SPM domain of SCM. Genetic rescue assays showed that SCM repressor function in vivo is disrupted by mutations that impair SPM domain interactions in vitro. Furthermore, overexpression of an isolated, wild-type SPM domain produced PcG loss-of-function phenotypes in flies. Coassembly of SCM with a reconstituted PRC1 core complex shows that SCM can partner with PRC1. However, gel filtration chromatography showed that the bulk of SCM is biochemically separable from PH in embryo nuclear extracts. These results suggest that SCM, although not a core component of PRC1, interacts and functions with PRC1 in gene silencing.
Collapse
Affiliation(s)
- Aidan J Peterson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Moehring AJ, Mackay TFC. The quantitative genetic basis of male mating behavior in Drosophila melanogaster. Genetics 2005; 167:1249-63. [PMID: 15280239 PMCID: PMC1470936 DOI: 10.1534/genetics.103.024372] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Male mating behavior is an important component of fitness in Drosophila and displays segregating variation in natural populations. However, we know very little about the genes affecting naturally occurring variation in mating behavior, their effects, or their interactions. Here, we have mapped quantitative trait loci (QTL) affecting courtship occurrence, courtship latency, copulation occurrence, and copulation latency that segregate between a D. melanogaster strain selected for reduced male mating propensity (2b) and a standard wild-type strain (Oregon-R). Mating behavior was assessed in a population of 98 recombinant inbred lines derived from these two strains and QTL affecting mating behavior were mapped using composite interval mapping. We found four QTL affecting male mating behavior at cytological locations 1A;3E, 57C;57F, 72A;85F, and 96F;99A. We used deficiency complementation mapping to map the autosomal QTL with much higher resolution to five QTL at 56F5;56F8, 56F9;57A3, 70E1;71F4, 78C5;79A1, and 96F1;97B1. Quantitative complementation tests performed for 45 positional candidate genes within these intervals revealed 7 genes that failed to complement the QTL: eagle, 18 wheeler, Enhancer of split, Polycomb, spermatocyte arrest, l(2)05510, and l(2)k02206. None of these genes have been previously implicated in mating behavior, demonstrating that quantitative analysis of subtle variants can reveal novel pleiotropic effects of key developmental loci on behavior.
Collapse
Affiliation(s)
- Amanda J Moehring
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695-7614, USA.
| | | |
Collapse
|
17
|
Qiao F, Song H, Kim CA, Sawaya MR, Hunter JB, Gingery M, Rebay I, Courey AJ, Bowie JU. Derepression by depolymerization; structural insights into the regulation of Yan by Mae. Cell 2004; 118:163-73. [PMID: 15260987 DOI: 10.1016/j.cell.2004.07.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 05/25/2004] [Accepted: 06/08/2004] [Indexed: 11/20/2022]
Abstract
Yan, an ETS family transcriptional repressor, is regulated by receptor tyrosine kinase signaling via the Ras/MAPK pathway. Phosphorylation and downregulation of Yan is facilitated by a protein called Mae. Yan and Mae interact through their SAM domains. We find that repression by Yan requires the formation of a higher order structure mediated by Yan-SAM polymerization. Moreover, a crystal structure of the Yan-SAM/Mae-SAM complex shows that Mae-SAM specifically recognizes a surface on Yan-SAM that is also required for Yan-SAM polymerization. Mae-SAM binds to Yan-SAM with approximately 1000-fold higher affinity than Yan-SAM binds to itself and can effectively depolymerize Yan-SAM. Mutations on Mae that specifically disrupt its SAM domain-dependent interactions with Yan disable the derepression function of Mae in vivo. Depolymerization of Yan by Mae represents a novel mechanism of transcriptional control that sensitizes Yan for regulation by receptor tyrosine kinases.
Collapse
Affiliation(s)
- Feng Qiao
- UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, Department of Chemistry and Biochemistry, University of California, Los Angeles 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lessard J, Sauvageau G. Polycomb group genes as epigenetic regulators of normal and leukemic hemopoiesis. Exp Hematol 2003; 31:567-85. [PMID: 12842702 DOI: 10.1016/s0301-472x(03)00081-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epigenetic modification of chromatin structure underlies the differentiation of pluripotent hemopoietic stem cells (HSCs) into their committed/differentiated progeny. Compelling evidence indicates that Polycomb group (PcG) genes play a key role in normal and leukemic hemopoiesis through epigenetic regulation of HSC self-renewal/proliferation and commitment. The PcG proteins are constituents of evolutionary highly conserved molecular pathways regulating cell fate in several other tissues through diverse mechanisms, including 1) regulation of self-renewal/proliferation, 2) regulation of senescence/immortalization, 3) interaction with the initiation transcription machinery, 4) interaction with chromatin-condensation proteins, 5) modification of histones, 6) inactivation of paternal X chromosome, and 7) regulation of cell death. It is therefore not surprising that PcG genes lead to pleiotropic phenotypes when mutated and have been associated with malignancies in several systems in both mice and humans. Although much remains to be learned regarding the PcG mechanism(s) of action, advances in identifying the functional domains and enzymatic activities of these multimeric protein complexes have provided insights into how PcG proteins accomplish such processes. Some of the new insights into a role for the PcG cellular memory system in regulating normal and leukemic hemopoiesis are reviewed here, with special emphasis on their potential involvement in epigenetic regulation of gene expression through modification of chromatin structure.
Collapse
Affiliation(s)
- Julie Lessard
- Laboratory of Molecular Genetics of Hemopoietic Stem Cells, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | | |
Collapse
|
19
|
Brown JL, Fritsch C, Mueller J, Kassis JA. The Drosophila pho-like gene encodes a YY1-related DNA binding protein that is redundant with pleiohomeotic in homeotic gene silencing. Development 2003; 130:285-94. [PMID: 12466196 DOI: 10.1242/dev.00204] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polycomb group proteins (PcG) repress homeotic genes in cells where these genes must remain inactive during Drosophila and vertebrate development. This repression depends on cis-acting silencer sequences, called Polycomb group response elements (PREs). Pleiohomeotic (Pho), the only known sequence-specific DNA-binding PcG protein, binds to PREs but pho mutants show only mild phenotypes compared with other PcG mutants. We characterize pho-like, a gene encoding a protein with high similarity to Pho. Pho-like binds to Pho-binding sites in vitro and pho-like, pho double mutants show more severe misexpression of homeotic genes than do the single mutants. These results suggest that Pho and Pho-like act redundantly to repress homeotic genes. We examined the distribution of five PcG proteins on polytene chromosomes from pho-like, pho double mutants. Pc, Psc, Scm, E(z) and Ph remain bound to polytene chromosomes at most sites in the absence of Pho and Pho-like. At a few chromosomal locations, however, some of the PcG proteins are no longer present in the absence of Pho and Pho-like, suggesting that Pho-like and Pho may anchor PcG protein complexes to only a subset of PREs. Alternatively, Pho-like and Pho may not participate in the anchoring of PcG complexes, but may be necessary for transcriptional repression mediated through PREs. In contrast to Pho and Pho-like, removal of Trithorax-like/GAGA factor or Zeste, two other DNA-binding proteins implicated in PRE function, does not cause misexpression of homeotic genes or reporter genes in imaginal disks.
Collapse
Affiliation(s)
- J Lesley Brown
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
20
|
Simon JA, Tamkun JW. Programming off and on states in chromatin: mechanisms of Polycomb and trithorax group complexes. Curr Opin Genet Dev 2002; 12:210-8. [PMID: 11893495 DOI: 10.1016/s0959-437x(02)00288-5] [Citation(s) in RCA: 282] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polycomb and trithorax group proteins are evolutionarily conserved chromatin components that maintain stable states of gene expression. Recent studies have identified and characterized several multiprotein complexes containing these transcriptional regulators. Advances in understanding molecular activities of these complexes in vitro, and functional domains present in their subunits, suggest that they control transcription through multistep mechanisms that involve nucleosome modification, chromatin remodeling, and interaction with general transcription factors.
Collapse
Affiliation(s)
- Jeffrey A Simon
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church St., Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|