1
|
Olsen KC, Escareno Medina LD, Barreto FS, Edmands S, Burton RS. Optimal outbreeding is shaped during larval life history in the splash pool copepod Tigriopus californicus. J Hered 2025; 116:159-169. [PMID: 39058401 DOI: 10.1093/jhered/esae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
Inbreeding and outbreeding depression are dynamic forms of selection critical to mating system evolution and the efficacy of conservation biology. Most evidence on how the relative severity and timing of these forces are shaped is confined to self-fertilization, distant outcrossing, and intermediate "optimal outcrossing" in hermaphrodites. We tested the notion that closed population demographics may reduce and delay the costs of inbreeding relative to distant outbreeding in an intertidal copepod with separate sexes and a biphasic larval/post-metamorphic life history (Tigriopus californicus). At three lifecycle stages (fecundity, metamorphosis, and post-metamorphosis), we quantified the effects of inbreeding and outbreeding in crosses with varying degrees of recent common ancestry. Although inbreeding and outbreeding depression have distinct genetic mechanisms, both manifested the same stage-specific consequences for fitness. Inbreeding and outbreeding depression were not apparent for fecundity, post-metamorphic survival, sex ratio, or the ability to acquire mates, but inbreeding between full siblings and outbreeding between interpopulation hybrids reduced the fraction of offspring that completed metamorphosis by 32% and 47%, respectively. On average, the effects of inbreeding on metamorphic rate were weaker and nearly twice as variable among families than those of outbreeding, suggesting genetic load was less pervasive than the incompatibilities accrued between divergent populations. Overall, our results indicate the transition from larval to juvenile life stages is markedly susceptible to both inbreeding and outbreeding depression in T. californicus. We suggest stage-specific selection acting concurrently with the timing of metamorphosis may be an instrumental factor in shaping reproductive optima in species with complex life histories.
Collapse
Affiliation(s)
- Kevin C Olsen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Luis D Escareno Medina
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Felipe S Barreto
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
2
|
Thompson NF, Sutherland BJG, Green TJ, Delomas TA. A free lunch: microhaplotype discovery in an existing amplicon panel improves parentage assignment for the highly polymorphic Pacific oyster. G3 (BETHESDA, MD.) 2025; 15:jkae280. [PMID: 39700397 PMCID: PMC11797050 DOI: 10.1093/g3journal/jkae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
Amplicon panels using genotyping by sequencing methods are now common, but have focused on characterizing SNP markers. We investigate how microhaplotype (MH) discovery within a recently developed Pacific oyster (Magallana gigas) amplicon panel could increase the statistical power for relationship assignment. Trios (offspring and two parents) from three populations in a newly established breeding program were genotyped on a 592 locus panel. After processing, 92% of retained amplicons contained polymorphic MH variants and 85% of monomorphic SNP markers contained MH variation. The increased allelic richness resulted in substantially improved power for relationship assignment with much lower estimated false positive rates. No substantive differences in assignment accuracy occurred between SNP and MH datasets, but using MHs increased the separation in log-likelihood values between true parents and highly related potential parents (aunts and uncles). A high number of Mendelian incompatibilities among trios were observed, likely due to null alleles. Further development of a MH panel, including removing loci with high rates of null alleles, would enable high-throughput genotyping by reducing panel size and therefore cost for Pacific oyster research and breeding programs.
Collapse
Affiliation(s)
- Neil F Thompson
- Pacific Shellfish Research Unit, USDA Agricultural Research Service, 2030 SE Marine Science Drive, Newport, OR 97365, USA
| | - Ben J G Sutherland
- Sutherland Bioinformatics, Lantzville, BC V0R 2H0, Canada
- Faculty of Science and Technology, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada
| | - Timothy J Green
- Faculty of Science and Technology, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada
| | - Thomas A Delomas
- National Cold Water Marine Aquaculture Center, USDA Agricultural Research Service, 483 CBLS, 120 Flagg Road, Kingston, RI 02881, USA
| |
Collapse
|
3
|
Calla B, Song J, Thompson N. Weak genetic divergence and signals of adaptation obscured by high gene flow in an economically important aquaculture species. BMC Genomics 2025; 26:112. [PMID: 39910466 PMCID: PMC11796273 DOI: 10.1186/s12864-025-11259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND The genetic diversity of a population defines its ability to adapt to episodic and fluctuating environmental changes. For species of agricultural value, available genetic diversity also determines their breeding potential and remains fundamental to the development of practices that maintain health and productivity. In this study, we used whole-genome resequencing to investigate genetic diversity within and between naturalized and captively reared populations of Pacific oysters from the US Pacific coast. The analyses included individuals from preserved samples dating to 1998 and 2004, two contemporary naturalized populations, and one domesticated population. RESULTS Despite high overall heterozygosity, there was extremely low but significant genetic divergence between populations, indicative of high gene flow and/or little variability from founding events. The captive population, which was reared for over 25 years was the most genetically distinct population and exhibited reduced nucleotide diversity, attributable to inbreeding. Individuals from populations that were separated both geographically and temporally did not show detectable genetic differences, illustrating the consequences of human intervention in the form translocation of animals between farms, hatcheries and natural settings. Fifty-nine significant FST outlier sites were identified, the majority of which were present in high proportions of the captive population individuals, and which are possibly associated with domestication. CONCLUSION Pacific oysters in the US Pacific coast harbor high genetic heterozygosity which obscures weak population structure. Differences between these Pacific oyster populations could be leveraged for breeding and might be a source of adaptation to new environments.
Collapse
Affiliation(s)
- Bernarda Calla
- Pacific Shellfish Research Unit, United States Department of Agriculture, Agricultural Research Service, Newport, OR, USA.
| | - Jingwei Song
- Coastal Oregon Marine Experimental Station, Oregon State University, Newport, OR, USA
| | - Neil Thompson
- Pacific Shellfish Research Unit, United States Department of Agriculture, Agricultural Research Service, Newport, OR, USA
| |
Collapse
|
4
|
Wooldridge TB, Ford SM, Conwell HC, Hyde J, Harris K, Shapiro B. Direct Measurement of the Mutation Rate and Its Evolutionary Consequences in a Critically Endangered Mollusk. Mol Biol Evol 2025; 42:msae266. [PMID: 39775835 PMCID: PMC11704959 DOI: 10.1093/molbev/msae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The rate at which mutations arise is a fundamental parameter of biology. Despite progress in measuring germline mutation rates across diverse taxa, such estimates are missing for much of Earth's biodiversity. Here, we present the first estimate of a germline mutation rate from the phylum Mollusca. We sequenced three pedigreed families of the white abalone Haliotis sorenseni, a long-lived, large-bodied, and critically endangered mollusk, and estimated a de novo mutation rate of 8.60 × 10-9 single nucleotide mutations per site per generation. This mutation rate is similar to rates measured in vertebrates with comparable generation times and longevity to abalone, and higher than mutation rates measured in faster-reproducing invertebrates. The spectrum of de novo mutations is also similar to that seen in vertebrate species, although an excess of rare C > A polymorphisms in wild individuals suggests that a modifier allele or environmental exposure may have once increased C > A mutation rates. We use our rate to infer baseline effective population sizes (Ne) across multiple Pacific abalone and find that abalone persisted over most of their evolutionary history as large and stable populations, in contrast to extreme fluctuations over recent history and small census sizes in the present day. We then use our mutation rate to infer the timing and pattern of evolution of the abalone genus Haliotis, which was previously unknown due to few fossil calibrations. Our findings are an important step toward understanding mutation rate evolution and they establish a key parameter for conservation and evolutionary genomics research in mollusks.
Collapse
Affiliation(s)
- T Brock Wooldridge
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Sarah M Ford
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Holland C Conwell
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - John Hyde
- Southwest Fisheries Science Center, La Jolla, CA 92037, USA
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
- Colossal Biosciences, Austin, TX 95060, USA
| |
Collapse
|
5
|
Farjallah S, Amor N, Montero FE, Repullés-Albelda A, Villar-Torres M, Nasser Alagaili A, Merella P. Assessment of the Genetic Diversity of the Monogenean Gill Parasite Lamellodiscus echeneis (Monogenea) Infecting Wild and Cage-Reared Populations of Sparus aurata (Teleostei) from the Mediterranean Sea. Animals (Basel) 2024; 14:2653. [PMID: 39335243 PMCID: PMC11429135 DOI: 10.3390/ani14182653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The diplectanid monogenean Lamellodiscus echeneis (Wagener, 1857) is a specific and common gill parasite of the gilthead seabream Sparus aurata Linnaeus, 1758, in the Mediterranean Sea. Few isolated molecular studies of this monogenean have been conducted, and its population structure and genetic diversity are poorly understood. This study represents the first analysis of the population genetics of L. echeneis, isolated from wild and cage-reared gilthead seabream from fifteen localities in both the Southern (Tunisia) and Northern (Italy and Spain) regions of the Mediterranean Sea, using nuclear ITS rDNA markers and a partial fragment of the mitochondrial gene cytochrome oxidase subunit I (COI). The phylogenetic trees based on the newly obtained dataset and the previously published sequences of L. echeneis corroborated the spread of only a single species throughout the Mediterranean Sea. The star-like haplotypes network, inferred by COI sequences, suggested a recent population expansion of L. echeneis. This is supported by the observed high haplotype diversity (Hd = 0.918) and low nucleotide diversity (Pi = 0.01595). Population structure-based AMOVA for two groups (the Adriatic Sea and the rest of the Mediterranean Sea) attributed 35.39% of the total variation to differences within populations, 16.63% to differences among populations within groups, and 47.99% to differences among groups. Fixation indices were significant, with a high FST value (0.64612), likely related to the divergence of the parasite populations from the Adriatic Sea and other Mediterranean regions. Phylogenetic analyses grouped all samples into the main clade corresponding to L. echeneis from several localities. This study provides insight into the genetic variation between L. echeneis populations, and did not show a clear genetic structure between populations of L. echeneis throughout Tunisian, Italian, and Spanish localities, which can be attributed to the considerable gene flow between the populations favoured by the potential for host dispersion within the Mediterranean Sea. Finally, haplotypes shared between wild and cage-reared hosts provided evidence for the potential for cross-infection between wild and farmed hosts in the Mediterranean Sea.
Collapse
Affiliation(s)
- Sarra Farjallah
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms LR18ES41, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Nabil Amor
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms LR18ES41, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Francisco Esteban Montero
- Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, C/Catedrático José, Beltrán 2, 46980 Paterna, Spain
| | - Aigües Repullés-Albelda
- Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, C/Catedrático José, Beltrán 2, 46980 Paterna, Spain
| | - Mar Villar-Torres
- Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, C/Catedrático José, Beltrán 2, 46980 Paterna, Spain
| | | | - Paolo Merella
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy
| |
Collapse
|
6
|
Zhao H, Guo X, Wang W, Wang Z, Rawson P, Wilbur A, Hare M. Consequences of domestication in eastern oyster: Insights from whole genomic analyses. Evol Appl 2024; 17:e13710. [PMID: 38817396 PMCID: PMC11134191 DOI: 10.1111/eva.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Selective breeding for production traits has yielded relatively rapid successes with high-fecundity aquaculture species. Discovering the genetic changes associated with selection is an important goal for understanding adaptation and can also facilitate better predictions about the likely fitness of selected strains if they escape aquaculture farms. Here, we hypothesize domestication as a genetic change induced by inadvertent selection in culture. Our premise is that standardized culture protocols generate parallel domestication effects across independent strains. Using eastern oyster as a model and a newly developed 600K SNP array, this study tested for parallel domestication effects in multiple independent selection lines compared with their progenitor wild populations. A single contrast was made between pooled selected strains (1-17 generations in culture) and all wild progenitor samples combined. Population structure analysis indicated rank order levels of differentiation as [wild - wild] < [wild - cultured] < [cultured - cultured]. A genome scan for parallel adaptation to the captive environment applied two methodologically distinct outlier tests to the wild versus selected strain contrast and identified a total of 1174 candidate SNPs. Contrasting wild versus selected strains revealed the early evolutionary consequences of domestication in terms of genomic differentiation, standing genetic diversity, effective population size, relatedness, runs of homozygosity profiles, and genome-wide linkage disequilibrium patterns. Random Forest was used to identify 37 outlier SNPs that had the greatest discriminatory power between bulked wild and selected oysters. The outlier SNPs were in genes enriched for cytoskeletal functions, hinting at possible traits under inadvertent selection during larval culture or pediveliger setting at high density. This study documents rapid genomic changes stemming from hatchery-based cultivation of eastern oysters, identifies candidate loci responding to domestication in parallel among independent aquaculture strains, and provides potentially useful genomic resources for monitoring interbreeding between farm and wild oysters.
Collapse
Affiliation(s)
- Honggang Zhao
- Department of Natural Resources & the EnvironmentCornell UniversityIthacaNew YorkUSA
- Present address:
Center for Aquaculture TechnologySan DiegoCaliforniaUSA
| | - Ximing Guo
- Haskin Shellfish Research LaboratoryRutgers UniversityPort NorrisNew JerseyUSA
| | - Wenlu Wang
- Department of Computer SciencesTexas A&M University‐Corpus ChristiCorpus ChristiTexasUSA
| | - Zhenwei Wang
- Haskin Shellfish Research LaboratoryRutgers UniversityPort NorrisNew JerseyUSA
| | - Paul Rawson
- School of Marine SciencesUniversity of MaineOronoMaineUSA
| | - Ami Wilbur
- Shellfish Research Hatchery, Center for Marine ScienceUniversity of North Carolina WilmingtonWilmingtonNorth CarolinaUSA
| | - Matthew Hare
- Department of Natural Resources & the EnvironmentCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
7
|
Wei D, Zheng S, Wang S, Yan J, Liu Z, Zhou L, Wu B, Sun X. Genetic and Haplotype Diversity of Manila Clam Ruditapes philippinarum in Different Regions of China Based on Three Molecular Markers. Animals (Basel) 2023; 13:2886. [PMID: 37760286 PMCID: PMC10525975 DOI: 10.3390/ani13182886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
China has the largest production yield of Manila clam Ruditapes philippinarum in the world. Most of the clam seeds for aquaculture are mainly derived from artificial breeding in southern China, likely resulting in the loss of genetic variation and inbreeding depression. To understand the genetic and haplotype diversity of R. philippinarum, 14 clam populations sampled from different regions of China were analyzed by three molecular markers, including COI, 16SrRNA and ITS. Based on the results of the COI and ITS genes, the 14 populations showed a moderate to high level of genetic diversity, with an average haplotype diversity of 0.9242 and nucleotide diversity of 0.05248. AMOVA showed that there was significant genetic differentiation among all populations (mean FST of the total population was 0.4534). Pairwise FST analysis showed that genetic differentiation reached significant levels between Laizhou and other populations. Two Laizhou populations showed great divergence from other populations, forming an independent branch in the phylogenetic tree. The shared haplotypes Hap_2 and Hap_4 of COI appeared most frequently in most clam populations. In contrast, 16SrRNA analysis of the clam populations revealed the dominated haplotype Hap_2, accounting for 70% of the total number of individuals. The haplotype diversity of the Laizhou population (Laizhou shell-wide (KK) and Laizhou dock (LZMT)) was relatively higher than other populations, showing multiple unique haplotypes (e.g., Hap_40, Hap_41 and Hap_42). These findings of genetic and haplotype diversity of clam populations provide guiding information for genetic resource conservation and genetic improvement of the commercially important R. philippinarum.
Collapse
Affiliation(s)
- Di Wei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (D.W.); (S.Z.); (S.W.); (Z.L.); (L.Z.); (B.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
- College of Fisheries, Ocean University of China, Qingdao 260003, China
| | - Sichen Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (D.W.); (S.Z.); (S.W.); (Z.L.); (L.Z.); (B.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Songlin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (D.W.); (S.Z.); (S.W.); (Z.L.); (L.Z.); (B.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingkai Yan
- Laizhou Marine Development and Fishery Service Center, Yantai 261400, China;
| | - Zhihong Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (D.W.); (S.Z.); (S.W.); (Z.L.); (L.Z.); (B.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Liqing Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (D.W.); (S.Z.); (S.W.); (Z.L.); (L.Z.); (B.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Biao Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (D.W.); (S.Z.); (S.W.); (Z.L.); (L.Z.); (B.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Xiujun Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (D.W.); (S.Z.); (S.W.); (Z.L.); (L.Z.); (B.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
8
|
Bodenstein S, Casas SM, Tiersch TR, Peyre JFL. Energetic budget of diploid and triploid eastern oysters during a summer die-off. FRONTIERS IN MARINE SCIENCE 2023; 10:1194296. [PMID: 38577631 PMCID: PMC10993659 DOI: 10.3389/fmars.2023.1194296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Triploid oysters are widely used in off-bottom aquaculture of eastern oysters, Crassostrea virginica. However, farmers of the Gulf of Mexico (GoM) and Atlantic coast estuaries have observed unresolved, late-spring die-offs of triploid oysters, threatening the sustainability of triploid aquaculture. To investigate this, the physiological processes underlying oyster growth (e.g., feeding, respiration) and mortality of one-year-old diploid and triploid oysters were compared in early summer following an uptick in mortality. It was predicted that higher triploid mortality was the result of energetic imbalances (increased metabolic demands and decreased feeding behavior). Oyster clearance rates, percentage of time valves were open, absorption efficiency, oxygen consumption rates (basal and routine), ammonia excretion rate were measured in the laboratory and scope for growth was calculated. In addition, their condition index, gametogenic stage, Perkinsus marinus infection level, and mortality were measured. Mortality of triploids in the laboratory was greater than for diploids, mirroring mortality observed in a related field study. The physiological parameters measured, however, could not explain triploid mortality. Scope for growth, condition index, and clearance rates of triploids were greater than for diploids, suggesting sufficient energy reserves, while all other measurements where similar between the ploidies. It remains to be determined whether mortality could be caused from disruption of energy homeostasis at the cellular level.
Collapse
Affiliation(s)
- Sarah Bodenstein
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Sandra M. Casas
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Terrence R. Tiersch
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Jerome F. La Peyre
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
9
|
Guo X, Puritz JB, Wang Z, Proestou D, Allen S, Small J, Verbyla K, Zhao H, Haggard J, Chriss N, Zeng D, Lundgren K, Allam B, Bushek D, Gomez-Chiarri M, Hare M, Hollenbeck C, La Peyre J, Liu M, Lotterhos KE, Plough L, Rawson P, Rikard S, Saillant E, Varney R, Wikfors G, Wilbur A. Development and Evaluation of High-Density SNP Arrays for the Eastern Oyster Crassostrea virginica. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:174-191. [PMID: 36622459 DOI: 10.1007/s10126-022-10191-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The eastern oyster Crassostrea virginica is a major aquaculture species for the USA. The sustainable development of eastern oyster aquaculture depends upon the continued improvement of cultured stocks through advanced breeding technologies. The Eastern Oyster Breeding Consortium (EOBC) was formed to advance the genetics and breeding of the eastern oyster. To facilitate efficient genotyping needed for genomic studies and selection, the consortium developed two single-nucleotide polymorphism (SNP) arrays for the eastern oyster: one screening array with 566K SNPs and one breeders' array with 66K SNPs. The 566K screening array was developed based on whole-genome resequencing data from 292 oysters from Atlantic and Gulf of Mexico populations; it contains 566,262 SNPs including 47K from protein-coding genes with a marker conversion rate of 48.34%. The 66K array was developed using best-performing SNPs from the screening array, which contained 65,893 oyster SNPs including 22,984 genic markers with a calling rate of 99.34%, a concordance rate of 99.81%, and a much-improved marker conversion rate of 92.04%. Null alleles attributable to large indels were found in 13.1% of the SNPs, suggesting that copy number variation is pervasive. Both arrays provided easy identification and separation of selected stocks from wild progenitor populations. The arrays contain 31 mitochondrial SNPs that allowed unambiguous identification of Gulf mitochondrial genotypes in some Atlantic populations. The arrays also contain 756 probes from 13 oyster and human pathogens for possible detection. Our results show that marker conversion rate is low in high polymorphism species and that the two-step process of array development can greatly improve array performance. The two arrays will advance genomic research and accelerate genetic improvement of the eastern oyster by delineating genetic architecture of production traits and enabling genomic selection. The arrays also may be used to monitor pedigree and inbreeding, identify selected stocks and their introgression into wild populations, and assess the success of oyster restoration.
Collapse
Affiliation(s)
- Ximing Guo
- Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA.
| | - Jonathan B Puritz
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Zhenwei Wang
- Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Dina Proestou
- USDA ARS NCWMAC Shellfish Genetics Lab, 120 Flagg Rd., Kingston, RI, 02881, USA
| | - Standish Allen
- Virginia Institute of Marine Science, 1375 Greate Rd., Gloucester Pt., VA, 23062, USA
| | - Jessica Small
- Virginia Institute of Marine Science, 1375 Greate Rd., Gloucester Pt., VA, 23062, USA
| | | | - Honggang Zhao
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14853, USA
| | - Jaime Haggard
- Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Noah Chriss
- Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Dan Zeng
- Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Kathryn Lundgren
- USDA ARS NCWMAC Shellfish Genetics Lab, 120 Flagg Rd., Kingston, RI, 02881, USA
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - David Bushek
- Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Matthew Hare
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14853, USA
| | - Christopher Hollenbeck
- Texas A&M University - Corpus Christi, Texas A&M AgriLife Research, 6300 Ocean Drive Unit 5892, Corpus Christi, TX, 78412, USA
| | - Jerome La Peyre
- School of Animal Sciences, Louisiana State University Agricultural Center, 201 Animal and Food Sciences Laboratory Building, Forestry Lane, Baton Rouge, LA, 70803, USA
| | - Ming Liu
- Patuxent Environmental and Aquatic Research Laboratory, Morgan State University, 10545 Mackall Road, Saint Leonard, MD, 20685, USA
| | - Katie E Lotterhos
- Northeastern Marine Science Center, 430 Nahant Rd, Nahant, MA, 01908, USA
| | - Louis Plough
- Horn Point Lab, University of Maryland, 5745 Lovers Lane, Cambridge, MD, 21613, USA
| | - Paul Rawson
- School of Marine Sciences, University of Maine, 5751 Murray Hall, , Orono, ME, 04469, USA
| | - Scott Rikard
- School of Fisheries Aquaculture and Aquatic Sciences, Auburn University Shellfish Laboratory, Auburn University, 150 Agassiz St., Dauphin Island, AL, 36528, USA
| | - Eric Saillant
- School of Ocean Science and Engineering, The University of Southern Mississippi, 103 McIlwain Drive, Ocean Springs, MS, 39564, USA
| | - Robin Varney
- Shellfish Research Hatchery, University of North Carolina Wilmington, 5600 Marvin K. Moss Ln., Wilmington, NC, 28409, USA
| | - Gary Wikfors
- Milford CT Laboratory, NOAA Fisheries, 212 Rogers Avenue, Milford, CT, 06460, USA
| | - Ami Wilbur
- Shellfish Research Hatchery, University of North Carolina Wilmington, 5600 Marvin K. Moss Ln., Wilmington, NC, 28409, USA
| |
Collapse
|
10
|
Lowell N, Suhrbier A, Tarpey C, May S, Carson H, Hauser L. Population structure and adaptive differentiation in the sea cucumber Apostichopus californicus and implications for spatial resource management. PLoS One 2023; 18:e0280500. [PMID: 36928497 PMCID: PMC10019739 DOI: 10.1371/journal.pone.0280500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/03/2023] [Indexed: 03/18/2023] Open
Abstract
A growing body of evidence suggests that spatial population structure can develop in marine species despite large population sizes and high gene flow. Characterizing population structure is important for the effective management of exploited species, as it can be used to identify appropriate scales of management in fishery and aquaculture contexts. The California sea cucumber, Apostichopus californicus, is one such exploited species whose management could benefit from further characterization of population structure. Using restriction site-associated DNA (RAD) sequencing, we developed 2075 single nucleotide polymorphisms (SNPs) to quantify genetic structure over a broad section of the species' range along the North American west coast and within the Salish Sea, a region supporting the Washington State A. californicus fishery and developing aquaculture production of the species. We found evidence for population structure (global fixation index (FST) = 0.0068) with limited dispersal driving two patterns of differentiation: isolation-by-distance and a latitudinal gradient of differentiation. Notably, we found detectable population differences among collection sites within the Salish Sea (pairwise FST = 0.001-0.006). Using FST outlier detection and gene-environment association, we identified 10.2% of total SNPs as putatively adaptive. Environmental variables (e.g., temperature, salinity) from the sea surface were more correlated with genetic variation than those same variables measured near the benthos, suggesting that selection on pelagic larvae may drive adaptive differentiation to a greater degree than selection on adults. Our results were consistent with previous estimates of and patterns in population structure for this species in other extents of the range. Additionally, we found that patterns of neutral and adaptive differentiation co-varied, suggesting that adaptive barriers may limit dispersal. Our study provides guidance to decision-makers regarding the designation of management units for A. californicus and adds to the growing body of literature identifying genetic population differentiation in marine species despite large, nominally connected populations.
Collapse
Affiliation(s)
- Natalie Lowell
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Andy Suhrbier
- Pacific Shellfish Institute, Olympia, Washington, United States of America
| | - Carolyn Tarpey
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Samuel May
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Henry Carson
- Washington Department of Fish and Wildlife, Olympia, Washington, United States of America
| | - Lorenz Hauser
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
11
|
The mud-dwelling clam Meretrix petechialis secretes endogenously synthesized erythromycin. Proc Natl Acad Sci U S A 2022; 119:e2214150119. [PMID: 36442100 PMCID: PMC9894158 DOI: 10.1073/pnas.2214150119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although lacking an adaptive immune system and often living in habitats with dense and diverse bacterial populations, marine invertebrates thrive in the presence of potentially challenging microbial pathogens. However, the mechanisms underlying this resistance remain largely unexplored and promise to reveal novel strategies of microbial resistance. Here, we provide evidence that a mud-dwelling clam, Meretrix petechialis, synthesizes, stores, and secretes the antibiotic erythromycin. Liquid chromatography coupled with mass spectrometry, immunocytochemistry, fluorescence in situ hybridization, RNA interference, and enzyme-linked immunosorbent assay revealed that this potent macrolide antimicrobial, thought to be synthesized only by microorganisms, is produced by specific mucus-rich cells beneath the clam's mantle epithelium, which interfaces directly with the bacteria-rich environment. The antibacterial activity was confirmed by bacteriostatic assay. Genetic, ontogenetic, phylogenetic and genomic evidence, including genotypic segregation ratios in a family of full siblings, gene expression in clam larvae, phylogenetic tree, and synteny conservation in the related genome region further revealed that the genes responsible for erythromycin production are of animal origin. The detection of this antibiotic in another clam species showed that the production of this macrolide is not exclusive to M. petechialis and may be a common strategy among marine invertebrates. The finding of erythromycin production by a marine invertebrate offers a striking example of convergent evolution in secondary metabolite synthesis between the animal and bacterial domains. These findings open the possibility of engineering-animal tissues for the localized production of an antibacterial secondary metabolite.
Collapse
|
12
|
Hedgecock D. No evidence for temporally balanced selection on larval Pacific oysters Crassostrea gigas: a comment on Durland et al. (2021). Proc Biol Sci 2022; 289:20212579. [PMID: 35642361 PMCID: PMC9156931 DOI: 10.1098/rspb.2021.2579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Dennis Hedgecock
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
| |
Collapse
|
13
|
Toro JE, Oyarzún PA, Toledo FE, Navarro JM, Illesca AF, Gardner JPA. Genetic structure and diversity of the Chilean flat oyster Ostrea chilensis (Bivalvia: Ostreidae) along its natural distribution from natural beds subject to different fishing histories. Genet Mol Biol 2022; 45:e20210214. [PMID: 35266950 PMCID: PMC8908350 DOI: 10.1590/1678-4685-gmb-2021-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
Abstract
Ostrea chilensis (Küster, 1844), the flat oyster, is native to
Chile and New Zealand. In Chile, it occurs in a few natural beds, from the
northern part of Chiloé Island (41 ºS) to the Guaitecas Archipelago (45 ºS).
This bivalve is slow growing, broods its young, and has very limited dispersal
potential. The Ostrea chilensis fishery has been over-exploited
for a number of decades such that in some locations oysters no longer exist. The
aim of this study was to study the genetic diversity of the Chilean flat oyster
along its natural distribution to quantify the possible impact of the dredge
fishery on wild populations. The genetic structure and diversity of
Ostrea chilensis from six natural beds with different
histories of fishing activity were estimated. Based on mitochondrial (Cytb) and
nuclear (ITS1) DNA sequence variation, our results provide evidence that genetic
diversity is different among populations with recent history of wild dredge
fishery efforts. We discuss the possible causes of these results. Ultimately,
such new information may be used to develop and apply new management measures to
promote the sustainable use of this valuable marine resource.
Collapse
Affiliation(s)
- Jorge E Toro
- Universidad Austral de Chile, Instituto de Ciencias Marinas y Limnológicas (ICML), Facultad de Ciencias, Valdivia, Chile
| | - Pablo A Oyarzún
- Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), Quintay, Chile
| | - Felipe E Toledo
- Universidad Austral de Chile, Instituto de Ciencias Marinas y Limnológicas (ICML), Facultad de Ciencias, Valdivia, Chile
| | - Jorge M Navarro
- Universidad Austral de Chile, Instituto de Ciencias Marinas y Limnológicas (ICML), Facultad de Ciencias, Valdivia, Chile.,Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Alex F Illesca
- Universidad Austral de Chile, Instituto de Ciencias Marinas y Limnológicas (ICML), Facultad de Ciencias, Valdivia, Chile
| | - Jonathan P A Gardner
- Victoria University of Wellington, School of Biological Sciences, Wellington, New Zealand
| |
Collapse
|
14
|
Brothers are better than nothing: first report of incestuous mating and inbreeding depression in a freshwater decapod crustacean. ZOOLOGY 2021; 151:125990. [DOI: 10.1016/j.zool.2021.125990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 11/20/2022]
|
15
|
Griffiths JS, Johnson KM, Kelly MW. Evolutionary Change in the Eastern Oyster, Crassostrea Virginica, Following Low Salinity Exposure. Integr Comp Biol 2021; 61:1730-1740. [PMID: 34448845 DOI: 10.1093/icb/icab185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The presence of standing genetic variation will play a role in determining a population's capacity to adapt to environmentally relevant stressors. In the Gulf of Mexico, extreme climatic events and anthropogenic changes to local hydrology will expose productive oyster breeding grounds to stressful low salinity conditions. We identified genetic variation for performance under low salinity (due to the combined effects of low salinity and genetic load) using a single-generation selection experiment on larvae from two populations of the eastern oyster, Crassostrea virginica. We used pool-sequencing to test for allele frequency differences at 152 salinity-associated genes for larval families pre- and post-low salinity exposure. Our results have implications for how evolutionary change occurs during early life history stages at environmentally relevant salinities. Consistent with observations of high genetic load observed in oysters, we demonstrate evidence for purging of deleterious alleles at the larval stage in C. virginica. In addition, we observe increases in allele frequencies at multiple loci, suggesting that natural selection for low salinity performance at the larval stage can act as a filter for genotypes found in adult populations.
Collapse
Affiliation(s)
- Joanna S Griffiths
- Department of Environmental Toxicology and Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA 95616, USA
| | - Kevin M Johnson
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.,California Sea Grant, University of California San Diego, La Jolla, CA 92093, USA
| | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
16
|
Yin X, Hedgecock D. Overt and concealed genetic loads revealed by QTL mapping of genotype-dependent viability in the Pacific oyster Crassostrea gigas. Genetics 2021; 219:6382310. [PMID: 34739049 DOI: 10.1093/genetics/iyab165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/19/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the genetic bases of inbreeding depression, heterosis, and genetic load is integral to understanding how genetic diversity is maintained in natural populations. The Pacific oyster Crassostrea gigas, like many long-lived plants, has high fecundity and high early mortality (type-III survivorship), manifesting a large, overt, genetic load; the oyster harbors an even greater concealed genetic load revealed by inbreeding. Here, we map viability QTL (vQTL) in six interrelated F2 oyster families, using high-density linkage maps of single nucleotide polymorphisms generated by genotyping-by-sequencing (GBS) methods. Altogether, we detect 70 vQTL and provisionally infer 89 causal mutations, 11 to 20 per family. Genetic mortality caused by independent (unlinked) vQTL ranges from 94.2% to 97.8% across families, consistent with previous reports. High-density maps provide better resolution of genetic mechanisms, however. Models of one causal mutation present in both identical-by-descent (IBD) homozygotes and heterozygotes fit genotype frequencies at 37 vQTL; consistent with the mutation-selection balance theory of genetic load, 20 are highly deleterious, completely recessive mutations and 17 are less deleterious, partially dominant mutations. Another 22 vQTL require pairs of recessive or partially dominant causal mutations, half showing selection against recessive mutations linked in repulsion, producing pseudo-overdominance. Only eight vQTL appear to support the overdominance theory of genetic load, with deficiencies of both IBD homozygotes, but at least four of these are likely caused by pseudo-overdominance. Evidence for epistasis is absent. A high mutation rate, random genetic drift, and pseudo-overdominance may explain both the oyster's extremely high genetic diversity and a high genetic load maintained primarily by mutation-selection balance.
Collapse
Affiliation(s)
- Xiaoshen Yin
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | |
Collapse
|
17
|
Durland E, De Wit P, Langdon C. Temporally balanced selection during development of larval Pacific oysters ( Crassostrea gigas) inherently preserves genetic diversity within offspring. Proc Biol Sci 2021; 288:20203223. [PMID: 34465244 PMCID: PMC8437028 DOI: 10.1098/rspb.2020.3223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Balancing selection is one of the mechanisms which has been proposed to explain the maintenance of genetic diversity in species across generations. For species with large populations and complex life histories, however, heterogeneous selection pressures may create a scenario in which the net effects of selection are balanced across developmental stages. With replicated cultures and a pooled sequencing approach, we show that genotype-dependent mortality in larvae of the Pacific oyster (Crassostrea gigas) is largely temporally dynamic and inconsistently in favour of a single genotype or allelic variant at each locus. Overall, the patterns of genetic change we observe to be taking place are more complex than what would be expected under classical examples of additive or dominant genetic interactions. They are also not easily explained by our current understanding of the effects of genetic load. Collectively, temporally heterogeneous selection pressures across different larval developmental stages may act to maintain genetic diversity, while also inherently sheltering genetic load within oyster populations.
Collapse
Affiliation(s)
- Evan Durland
- Department of Fisheries and Wildlife and Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University, Newport, OR 97365, USA.,Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Pierre De Wit
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Chris Langdon
- Department of Fisheries and Wildlife and Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University, Newport, OR 97365, USA
| |
Collapse
|
18
|
Bitter MC, Wong JM, Dam HG, Donelan SC, Kenkel CD, Komoroske LM, Nickols KJ, Rivest EB, Salinas S, Burgess SC, Lotterhos KE. Fluctuating selection and global change: a synthesis and review on disentangling the roles of climate amplitude, predictability and novelty. Proc Biol Sci 2021; 288:20210727. [PMID: 34428970 PMCID: PMC8385344 DOI: 10.1098/rspb.2021.0727] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
A formidable challenge for global change biologists is to predict how natural populations will respond to the emergence of conditions not observed at present, termed novel climates. Popular approaches to predict population vulnerability are based on the expected degree of novelty relative to the amplitude of historical climate fluctuations experienced by a population. Here, we argue that predictions focused on amplitude may be inaccurate because they ignore the predictability of environmental fluctuations in driving patterns of evolution and responses to climate change. To address this disconnect, we review major findings of evolutionary theory demonstrating the conditions under which phenotypic plasticity is likely to evolve in natural populations, and how plasticity decreases population vulnerability to novel environments. We outline key criteria that experimental studies should aim for to effectively test theoretical predictions, while controlling for the degree of climate novelty. We show that such targeted tests of evolutionary theory are rare, with marine systems being overall underrepresented in this venture despite exhibiting unique opportunities to test theory. We conclude that with more robust experimental designs that manipulate both the amplitude and predictability of fluctuations, while controlling for the degree of novelty, we may better predict population vulnerability to climate change.
Collapse
Affiliation(s)
- M. C. Bitter
- Department of Biology, Stanford University, Stanford, CA, USA
| | - J. M. Wong
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, USA
| | - H. G. Dam
- Department of Marine Sciences, University of Connecticut Groton, CT, USA
| | - S. C. Donelan
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - C. D. Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - L. M. Komoroske
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA, USA
| | - K. J. Nickols
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - E. B. Rivest
- Department of Biological Sciences, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA
| | - S. Salinas
- Department of Biology, Kalamazoo College, Kalamazoo, MI, USA
| | - S. C. Burgess
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - K. E. Lotterhos
- Northeastern University Marine Science Center, Nahant, MA, USA
| |
Collapse
|
19
|
High-Density Linkage Maps Based on Genotyping-by-Sequencing (GBS) Confirm a Chromosome-Level Genome Assembly and Reveal Variation in Recombination Rate for the Pacific Oyster Crassostrea gigas. G3-GENES GENOMES GENETICS 2020; 10:4691-4705. [PMID: 33144392 PMCID: PMC7718752 DOI: 10.1534/g3.120.401728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Studies of linkage and linkage mapping have advanced genetic and biological knowledge for over 100 years. In addition to their growing role, today, in mapping phenotypes to genotypes, dense linkage maps can help to validate genome assemblies. Previously, we showed that 40% of scaffolds in the first genome assembly for the Pacific oyster Crassostrea gigas were chimeric, containing single nucleotide polymorphisms (SNPs) mapping to different linkage groups. Here, we merge 14 linkage maps constructed of SNPs generated from genotyping-by-sequencing (GBS) methods with five, previously constructed linkage maps, to create a compendium of nearly 69 thousand SNPs mapped with high confidence. We use this compendium to assess a recently available, chromosome-level assembly of the C. gigas genome, mapping SNPs in 275 of 301 contigs and comparing the ordering of these contigs, by linkage, to their assembly by Hi-C sequencing methods. We find that, while 26% of contigs contain chimeric blocks of SNPs, i.e., adjacent SNPs mapping to different linkage groups than the majority of SNPs in their contig, these apparent misassemblies amount to only 0.08% of the genome sequence. Furthermore, nearly 90% of 275 contigs mapped by linkage and sequencing are assembled identically; inconsistencies between the two assemblies for the remaining 10% of contigs appear to result from insufficient linkage information. Thus, our compilation of linkage maps strongly supports this chromosome-level assembly of the oyster genome. Finally, we use this assembly to estimate, for the first time in a Lophotrochozoan, genome-wide recombination rates and causes of variation in this fundamental process.
Collapse
|
20
|
McFarland K, Plough LV, Nguyen M, Hare MP. Are bivalves susceptible to domestication selection? Using starvation tolerance to test for potential trait changes in eastern oyster larvae. PLoS One 2020; 15:e0230222. [PMID: 32603332 PMCID: PMC7326227 DOI: 10.1371/journal.pone.0230222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/03/2020] [Indexed: 11/18/2022] Open
Abstract
Conservation efforts are increasingly being challenged by a rapidly changing environment, and for some aquatic species the use of captive rearing or selective breeding is an attractive option. However, captivity itself can impose unintended artificial selection known as domestication selection (adaptation to culture conditions) and is relatively understudied for most marine species. To test for domestication selection in marine bivalves, we focused on a fitness-related trait (larval starvation resistance) that could be altered under artificial selection. Using larvae produced from a wild population of Crassostrea virginica and a selectively bred, disease-resistant line we measured growth and survival during starvation versus standard algal diet conditions. Larvae from both lineages showed a remarkable resilience to food limitation, possibly mediated by an ability to utilize dissolved organic matter for somatic maintenance. Water chemistry analysis showed dissolved organic carbon in filtered tank water to be at concentrations similar to natural river water. We observed that survival in larvae produced from the aquaculture line was significantly lower compared to larvae produced from wild broodstock (8 ± 3% and 21 ± 2%, respectively) near the end of a 10-day period with no food (phytoplankton). All larval cohorts had arrested growth and depressed respiration during the starvation period and took at least two days to recover once food was reintroduced before resuming growth. Respiration rate recovered rapidly and final shell length was similar between the two treatments Phenotypic differences between the wild and aquaculture lines suggest potential differences in the capacity to sustain extended food limitation, but this work requires replication with multiple selection lines and wild populations to make more general inferences about domestication selection. With this contribution we explore the potential for domestication selection in bivalves, discuss the physiological and fitness implications of reduced starvation tolerance, and aim to inspire further research on the topic.
Collapse
Affiliation(s)
- Katherine McFarland
- Department of Natural Resources, Cornell University, Ithaca, New York, United States of America
- Center for Environmental Science University of Maryland, Cambridge, Maryland, United States of America
- NOAA Fisheries NEFSC, Milford Laboratory, Milford, CT, United States of America
- * E-mail:
| | - Louis V. Plough
- Center for Environmental Science University of Maryland, Cambridge, Maryland, United States of America
| | - Michelle Nguyen
- Center for Environmental Science University of Maryland, Cambridge, Maryland, United States of America
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Matthew P. Hare
- Department of Natural Resources, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
21
|
Bitter MC, Kapsenberg L, Gattuso JP, Pfister CA. Standing genetic variation fuels rapid adaptation to ocean acidification. Nat Commun 2019; 10:5821. [PMID: 31862880 PMCID: PMC6925106 DOI: 10.1038/s41467-019-13767-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/22/2019] [Indexed: 11/21/2022] Open
Abstract
Global climate change has intensified the need to assess the capacity for natural populations to adapt to abrupt shifts in the environment. Reductions in seawater pH constitute a conspicuous global change stressor that is affecting marine ecosystems globally. Here, we quantify the phenotypic and genetic modifications associated with rapid adaptation to reduced seawater pH in the Mediterranean mussel, Mytilus galloprovincialis. We reared a genetically diverse larval population in two pH treatments (pHT 8.1 and 7.4) and tracked changes in the shell-size distribution and genetic variation through settlement. Additionally, we identified differences in the signatures of selection on shell growth in each pH environment. Both phenotypic and genetic data show that standing variation can facilitate adaptation to declines in seawater pH. This work provides insight into the processes underpinning rapid evolution, and demonstrates the importance of maintaining variation within natural populations to bolster species’ adaptive capacity as global change progresses. Reductions in seawater pH are affecting marine ecosystems globally. Here, the authors describe phenotypic and genetic modifications associated with rapid adaptation to reduced seawater pH in the mussel Mytilus galloprovincialis, and suggest that standing variation within natural populations plays an important role in bolstering species’ adaptive capacity to global change.
Collapse
Affiliation(s)
- M C Bitter
- Department of Ecology and Evolution, University of Chicago, 1101 E. 57th St., Chicago, IL, 60637, USA.
| | - L Kapsenberg
- Department of Marine Biology and Oceanography, CSIC Institute of Marine Sciences, Passeig Marítim de la Barceloneta, 37-49, E-08003, Barcelona, Spain
| | - J-P Gattuso
- Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, 181 chemin du Lazaret, 06230, Villefranche-sur-mer, France.,Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillame, 75007, Paris, France
| | - C A Pfister
- Department of Ecology and Evolution, University of Chicago, 1101 E. 57th St., Chicago, IL, 60637, USA
| |
Collapse
|
22
|
Reisser C, Lo C, Schikorski D, Sham Koua M, Planes S, Ky CL. Strong genetic isolation of the black-lipped pearl oyster (Pinctada margaritifera) in the Marquesas archipelago (French Polynesia). Sci Rep 2019; 9:11420. [PMID: 31388098 PMCID: PMC6684808 DOI: 10.1038/s41598-019-47729-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/23/2019] [Indexed: 11/09/2022] Open
Abstract
The French Polynesian islands are internationally known for their black pearls, produced by culture of the black lipped pearl oyster Pinctada margaritifera. The ongoing development of hatcheries for P. margaritifera in French Polynesia poses new challenges for the industry, particularly regarding the maintenance of genetic diversity in the hatchery stocks. This emphasizes the necessity to characterize the genetic diversity and differentiation within natural and exploited populations, to carefully select putative parental populations. The present study aimed at validating the phylogenetic status and investigating genetic attributes of populations from the only two non-exploited archipelagos of French Polynesia, the Marquesas archipelago, and the Australes archipelago, never analysed before. We found that individuals from both archipelagos belonged to P. margaritifera species. However, while the Australes population was genetically similar to non-exploited populations of the Tuamotu, the Marquesas populations were highly differentiated from the rest of the populations. This differentiation cannot not be only attributed to geographic distance and aquaculture status, but likely to hydrodynamic barriers allowing vicariant events to take place. Our results add up to other studies describing the Marquesas archipelago as a hotspot for biodiversity and differentiation, with some of the highest levels of endemism and vicariance found among marine species worldwide and provide precious information on available genetic resources for the implementation of P. margaritifera selective breeding and its genetic conservation in French Polynesia.
Collapse
Affiliation(s)
- Céline Reisser
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, French Polynesia
| | - Cédrik Lo
- Direction des Ressources Marines et Minières, BP 20, 98713 Papeete, Tahiti, French Polynesia
| | - David Schikorski
- Laboratoire Labofarm, 4 Rue Théodore Botrel 22603 Loudeac, Cedex, France
| | - Manaarii Sham Koua
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, French Polynesia
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Labex Corail, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan, Cedex, France
| | - Chin-Long Ky
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, French Polynesia.
| |
Collapse
|
23
|
Multiple drivers of interannual oyster settlement and recruitment in the lower Chesapeake Bay. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01194-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Bernatchez S, Xuereb A, Laporte M, Benestan L, Steeves R, Laflamme M, Bernatchez L, Mallet MA. Seascape genomics of eastern oyster ( Crassostrea virginica) along the Atlantic coast of Canada. Evol Appl 2019; 12:587-609. [PMID: 30828376 PMCID: PMC6383708 DOI: 10.1111/eva.12741] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022] Open
Abstract
Interactions between environmental factors and complex life-history characteristics of marine organisms produce the genetic diversity and structure observed within species. Our main goal was to test for genetic differentiation among eastern oyster populations from the coastal region of Canadian Maritimes against expected genetic homogeneity caused by historical events, taking into account spatial and environmental (temperature, salinity, turbidity) variation. This was achieved by genotyping 486 individuals originating from 13 locations using RADSeq. A total of 11,321 filtered SNPs were used in a combination of population genomics and environmental association analyses. We revealed significant neutral genetic differentiation (mean F ST = 0.009) between sampling locations, and the occurrence of six major genetic clusters within the studied system. Redundancy analyses (RDAs) revealed that spatial and environmental variables explained 3.1% and 4.9% of the neutral genetic variation and 38.6% and 12.2% of the putatively adaptive genetic variation, respectively. These results indicate that these environmental factors play a role in the distribution of both neutral and putatively adaptive genetic diversity in the system. Moreover, polygenic selection was suggested by genotype-environment association analysis and significant correlations between additive polygenic scores and temperature and salinity. We discuss our results in the context of their conservation and management implications for the eastern oyster.
Collapse
Affiliation(s)
- Simon Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Fisheries and Oceans CanadaMonctonNew BrunswickCanada
- L’Étang Ruisseau Bar Ltd.ShippaganNew BrunswickCanada
| | - Amanda Xuereb
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Laura Benestan
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Royce Steeves
- Fisheries and Oceans CanadaMonctonNew BrunswickCanada
| | - Mark Laflamme
- Fisheries and Oceans CanadaMonctonNew BrunswickCanada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | | |
Collapse
|
25
|
Vendrami DLJ, Houston RD, Gharbi K, Telesca L, Gutierrez AP, Gurney‐Smith H, Hasegawa N, Boudry P, Hoffman JI. Detailed insights into pan-European population structure and inbreeding in wild and hatchery Pacific oysters ( Crassostrea gigas) revealed by genome-wide SNP data. Evol Appl 2019; 12:519-534. [PMID: 30847007 PMCID: PMC6383735 DOI: 10.1111/eva.12736] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 01/10/2023] Open
Abstract
Cultivated bivalves are important not only because of their economic value, but also due to their impacts on natural ecosystems. The Pacific oyster (Crassostrea gigas) is the world's most heavily cultivated shellfish species and has been introduced to all continents except Antarctica for aquaculture. We therefore used a medium-density single nucleotide polymorphism (SNP) array to investigate the genetic structure of this species in Europe, where it was introduced during the 1960s and has since become a prolific invader of coastal ecosystems across the continent. We analyzed 21,499 polymorphic SNPs in 232 individuals from 23 localities spanning a latitudinal cline from Portugal to Norway and including the source populations of Japan and Canada. We confirmed the results of previous studies by finding clear support for a southern and a northern group, with the former being indistinguishable from the source populations indicating the absence of a pronounced founder effect. We furthermore conducted a large-scale comparison of oysters sampled from the wild and from hatcheries to reveal substantial genetic differences including significantly higher levels of inbreeding in some but not all of the sampled hatchery cohorts. These findings were confirmed by a smaller but representative SNP dataset generated using restriction site-associated DNA sequencing. We therefore conclude that genomic approaches can generate increasingly detailed insights into the genetics of wild and hatchery produced Pacific oysters.
Collapse
Affiliation(s)
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Karim Gharbi
- Edinburgh Genomics, Ashworth LaboratoriesUniversity of EdinburghEdinburghUK
| | - Luca Telesca
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
- British Antarctic Survey, High CrossCambridgeUK
| | - Alejandro P. Gutierrez
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Helen Gurney‐Smith
- Department of Fisheries and AquacultureVancouver Island UniversityNanaimoBritish ColumbiaCanada
| | - Natsuki Hasegawa
- National Research Institute of AquacultureJapan Fisheries Research AgencyMinami‐IseJapan
| | - Pierre Boudry
- IfremerLaboratoire des Sciences de l’Environnement Marin (UBO/CNRS/IRD/Ifremer)PlouzanéFrance
| | - Joseph I. Hoffman
- Department of Animal BehaviorBielefeld UniversityBielefeldGermany
- British Antarctic Survey, High CrossCambridgeUK
| |
Collapse
|
26
|
Gagnaire PA, Lamy JB, Cornette F, Heurtebise S, Dégremont L, Flahauw E, Boudry P, Bierne N, Lapègue S. Analysis of Genome-Wide Differentiation between Native and Introduced Populations of the Cupped Oysters Crassostrea gigas and Crassostrea angulata. Genome Biol Evol 2018; 10:2518-2534. [PMID: 30184067 PMCID: PMC6161763 DOI: 10.1093/gbe/evy194] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2018] [Indexed: 01/01/2023] Open
Abstract
The Pacific cupped oyster is genetically subdivided into two sister taxa, Crassostrea gigas and Crassostrea angulata, which are in contact in the north-western Pacific. The nature and origin of their genetic and taxonomic differentiation remains controversial due the lack of known reproductive barriers and the high degree of morphologic similarity. In particular, whether the presence of ecological and/or intrinsic isolating mechanisms contributes to species divergence is unknown. The recent co-introduction of both taxa into Europe offers a unique opportunity to test how genetic differentiation is maintained under new environmental and demographic conditions. We generated a pseudochromosome assembly of the Pacific oyster genome using a combination of BAC-end sequencing and scaffold anchoring to a new high-density linkage map. We characterized genome-wide differentiation between C. angulata and C. gigas in both their native and introduced ranges, and showed that gene flow between species has been facilitated by their recent co-introductions in Europe. Nevertheless, patterns of genomic divergence between species remain highly similar in Asia and Europe, suggesting that the environmental transition caused by the co-introduction of the two species did not affect the genomic architecture of their partial reproductive isolation. Increased genetic differentiation was preferentially found in regions of low recombination. Using historical demographic inference, we show that the heterogeneity of differentiation across the genome is well explained by a scenario whereby recent gene flow has eroded past differentiation at different rates across the genome after a period of geographical isolation. Our results thus support the view that low-recombining regions help in maintaining intrinsic genetic differences between the two species.
Collapse
Affiliation(s)
| | - Jean-Baptiste Lamy
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Florence Cornette
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Serge Heurtebise
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Lionel Dégremont
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Emilie Flahauw
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Pierre Boudry
- Ifremer, UMR LEMAR, Laboratoire des Sciences de l’Environnement Marin (UBO, CNRS, IRD, Ifremer), Plouzané, France
| | - Nicolas Bierne
- Institut des Sciences de l’Evolution, ISEM-CNRS, UMR5554, Montpellier, France
| | - Sylvie Lapègue
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| |
Collapse
|
27
|
Li C, Wang J, Song K, Meng J, Xu F, Li L, Zhang G. Construction of a high-density genetic map and fine QTL mapping for growth and nutritional traits of Crassostrea gigas. BMC Genomics 2018; 19:626. [PMID: 30134839 PMCID: PMC6106840 DOI: 10.1186/s12864-018-4996-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/03/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Both growth and nutritional traits are important economic traits of Crassostrea gigas (C. gigas) in industry. But few work has been done to study the genetic architecture of nutritional traits of the oyster. In this study, we constructed a high-density genetic map of C. gigas to help assemble the genome sequence onto chromosomes, meanwhile explore the genetic basis for nutritional traits via quantitative trait loci (QTL) mapping. RESULTS The constructed genetic map contained 5024 evenly distributed markers, with an average marker interval of 0.68 cM, thus representing the densest genetic map produced for the oyster. According to the high collinearity between the consensus map and the oyster genome, 1574 scaffold (about 70%) of the genome sequence of C. gigas were successfully anchored to 10 linkage groups (LGs) of the consensus map. Using this high-qualified genetic map, we then conducted QTL analysis for growth and nutritional traits, the latter of which includes glycogen, amino acid (AA), and fatty acid (FA). Overall, 41 QTLs were detected for 17 traits. In addition, six candidate genes identified in the QTL interval showed significant correlation with the traits on transcriptional levels. These genes include growth-related genes AMY and BMP1, AA metabolism related genes PLSCR and GR, and FA metabolism regulation genes DYRK and ADAMTS. CONCLUSION Using the constructed high-qualified linkage map, this study not only assembled nearly 70% of the oyster genome sequence onto chromosomes, but also identified valuable markers and candidate genes for growth and nutritional traits, especially for AA and FA that undergone few studies before. These findings will facilitate genome assembly and molecular breeding of important economic traits in C. gigas.
Collapse
Affiliation(s)
- Chunyan Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China
| | - Jinpeng Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China
| | - Kai Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China
| | - Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China
| | - Fei Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China.
| |
Collapse
|
28
|
Hollenbeck CM, Johnston IA. Genomic Tools and Selective Breeding in Molluscs. Front Genet 2018; 9:253. [PMID: 30073016 PMCID: PMC6058216 DOI: 10.3389/fgene.2018.00253] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
The production of most farmed molluscs, including mussels, oysters, scallops, abalone, and clams, is heavily dependent on natural seed from the plankton. Closing the lifecycle of species in hatcheries can secure independence from wild stocks and enables long-term genetic improvement of broodstock through selective breeding. Genomic techniques have the potential to revolutionize hatchery-based selective breeding by improving our understanding of the characteristics of mollusc genetics that can pose a challenge for intensive aquaculture and by providing a new suite of tools for genetic improvement. Here we review characteristics of the life history and genetics of molluscs including high fecundity, self-fertilization, high genetic diversity, genetic load, high incidence of deleterious mutations and segregation distortion, and critically assess their impact on the design and effectiveness of selective breeding strategies. A survey of the results of current breeding programs in the literature show that selective breeding with inbreeding control is likely the best strategy for genetic improvement of most molluscs, and on average growth rate can be improved by 10% per generation and disease resistance by 15% per generation across the major farmed species by implementing individual or family-based selection. Rapid advances in sequencing technology have resulted in a wealth of genomic resources for key species with the potential to greatly improve hatchery-based selective breeding of molluscs. In this review, we catalog the range of genomic resources currently available for molluscs of aquaculture interest and discuss the bottlenecks, including lack of high-quality reference genomes and the relatively high cost of genotyping, as well as opportunities for applying genomics-based selection.
Collapse
Affiliation(s)
- Christopher M Hollenbeck
- School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, United Kingdom
| | - Ian A Johnston
- School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, United Kingdom.,Xelect Ltd, St Andrews, United Kingdom
| |
Collapse
|
29
|
Fiévet JB, Nidelet T, Dillmann C, de Vienne D. Heterosis Is a Systemic Property Emerging From Non-linear Genotype-Phenotype Relationships: Evidence From in Vitro Genetics and Computer Simulations. Front Genet 2018; 9:159. [PMID: 29868111 PMCID: PMC5968397 DOI: 10.3389/fgene.2018.00159] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
Heterosis, the superiority of hybrids over their parents for quantitative traits, represents a crucial issue in plant and animal breeding as well as evolutionary biology. Heterosis has given rise to countless genetic, genomic and molecular studies, but has rarely been investigated from the point of view of systems biology. We hypothesized that heterosis is an emergent property of living systems resulting from frequent concave relationships between genotypic variables and phenotypes, or between different phenotypic levels. We chose the enzyme-flux relationship as a model of the concave genotype-phenotype (GP) relationship, and showed that heterosis can be easily created in the laboratory. First, we reconstituted in vitro the upper part of glycolysis. We simulated genetic variability of enzyme activity by varying enzyme concentrations in test tubes. Mixing the content of "parental" tubes resulted in "hybrids," whose fluxes were compared to the parental fluxes. Frequent heterotic fluxes were observed, under conditions that were determined analytically and confirmed by computer simulation. Second, to test this model in a more realistic situation, we modeled the glycolysis/fermentation network in yeast by considering one input flux, glucose, and two output fluxes, glycerol and acetaldehyde. We simulated genetic variability by randomly drawing parental enzyme concentrations under various conditions, and computed the parental and hybrid fluxes using a system of differential equations. Again we found that a majority of hybrids exhibited positive heterosis for metabolic fluxes. Cases of negative heterosis were due to local convexity between certain enzyme concentrations and fluxes. In both approaches, heterosis was maximized when the parents were phenotypically close and when the distributions of parental enzyme concentrations were contrasted and constrained. These conclusions are not restricted to metabolic systems: they only depend on the concavity of the GP relationship, which is commonly observed at various levels of the phenotypic hierarchy, and could account for the pervasiveness of heterosis.
Collapse
Affiliation(s)
- Julie B Fiévet
- GQE-Le Moulon, INRA, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Sud, Gif-sur-Yvette, France
| | - Thibault Nidelet
- Sciences Pour l'Œnologie, INRA, Université de Montpellier, Montpellier, France
| | - Christine Dillmann
- GQE-Le Moulon, INRA, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Sud, Gif-sur-Yvette, France
| | - Dominique de Vienne
- GQE-Le Moulon, INRA, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Sud, Gif-sur-Yvette, France
| |
Collapse
|
30
|
Mesoscale investigations based on microsatellite analysis of the freshwater sponge Ephydatia fluviatilis in the River-Sieg system (Germany) reveal a genetic divergence. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1069-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Silliman KE, Bowyer TK, Roberts SB. Consistent differences in fitness traits across multiple generations of Olympia oysters. Sci Rep 2018; 8:6080. [PMID: 29666427 PMCID: PMC5904129 DOI: 10.1038/s41598-018-24455-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 03/28/2018] [Indexed: 12/04/2022] Open
Abstract
Adaptive evolution and plasticity are two mechanisms that facilitate phenotypic differences between populations living in different environments. Understanding which mechanism underlies variation in fitness-related traits is a crucial step in designing conservation and restoration management strategies for taxa at risk from anthropogenic stressors. Olympia oysters (Ostrea lurida) have received considerable attention with regard to restoration, however there is limited information on adaptive population structure. Using oysters raised under common conditions for up to two generations (F1s and F2s), we tested for evidence of divergence in reproduction, larval growth, and juvenile growth among three populations in Puget Sound, Washington. We found that the population with the fastest growth rate also exhibited delayed and reduced reproductive activity, indicating a potential adaptive trade-off. Our results corroborate and extend upon a previous reciprocal transplant study on F1 oysters from the same populations, indicating that variation in growth rate and differences in reproductive timing are consistent across both natural and laboratory environments and have a strongly heritable component that cannot be entirely attributed to plasticity.
Collapse
Affiliation(s)
| | - Tynan K Bowyer
- University of Chicago, Ecology and Evolution, Chicago, 60637, United States
| | - Steven B Roberts
- University of Washington, School of Aquatic and Fishery Sciences, Seattle, 98195, United States
| |
Collapse
|
32
|
Chang Y, Ding J, Xu Y, Li D, Zhang W, Li L, Song J. SLAF-based high-density genetic map construction and QTL mapping for major economic traits in sea urchin Strongylocentrotus intermedius. Sci Rep 2018; 8:820. [PMID: 29339742 PMCID: PMC5770408 DOI: 10.1038/s41598-017-18768-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 12/13/2017] [Indexed: 11/09/2022] Open
Abstract
Sea urchin (Strongylocentrotus intermedius) has long been a model species for developmental and evolutionary research, but only a few studies have focused on gene mapping. Here, we reported a high-density genetic map containing 4,387 polymorphism specific-length amplified fragment (SLAF) markers spanning 21 linkage groups (LG) for sea urchin. Based on this genetic map and phenotyping data for eight economic traits, 33 potentially significant QTLs were detected on ten different LGs with explanations ranging from 9.90% to 46.30%, partly including 10 QTLs for test diameter, six QTLs for body weight and eight QTLs for Aristotle's lantern weight. Moreover, we found a QTL enrichment LG, LG15, gathering QTLs for test diameter, body weight, gonad weight, light orange-yellow color difference (≥E1) and light yellow color difference (≥E2). Among all QTLs, we genotyped four QTLs for test diameter, Aristotle's lantern weight and body weight using High Resolution Melting (HRM) technology. Finally, we used the verified SNP marker (detected using SLAF sequencing) to explore their marker-assisted selection (MAS) breeding application potential and found that SNP-29 associated tightly with body weight and that heterozygous genotype was a dominant genotype, indicating that SNP-29 was a promising marker for MAS.
Collapse
Affiliation(s)
- Yaqing Chang
- Dalian Ocean University, Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Liaoning, 116023, China.
| | - Jun Ding
- Dalian Ocean University, Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Liaoning, 116023, China
| | - Yuhui Xu
- Biomarker technology Corporation, Beijing, 101300, China
| | - Dan Li
- Dalian Ocean University, Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Liaoning, 116023, China
| | - Weijie Zhang
- Dalian Ocean University, Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Liaoning, 116023, China
| | - Lei Li
- Dalian Ocean University, Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Liaoning, 116023, China
| | - Jian Song
- Dalian Ocean University, Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Liaoning, 116023, China
| |
Collapse
|
33
|
Niu D, Du Y, Wang Z, Xie S, Nguyen H, Dong Z, Shen H, Li J. Construction of the First High-Density Genetic Linkage Map and Analysis of Quantitative Trait Loci for Growth-Related Traits in Sinonovacula constricta. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:488-496. [PMID: 28725940 DOI: 10.1007/s10126-017-9768-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
The razor clam (Sinonovacula constricta) is an important aquaculture species, for which a high-density genetic linkage map would play an important role in marker-assisted selection (MAS). In this study, we constructed a high-density genetic map and detected quantitative trait loci (QTLs) for Sinonovacula constricta with an F1 cross population by using the specific locus amplified fragment sequencing (SLAF-seq) method. A total of 315,553 SLAF markers out of 467.71 Mreads were developed. The final linkage map was composed of 7516 SLAFs (156.60-fold in the parents and 20.80-fold in each F1 population on average). The total distance of the linkage map was 2383.85 cM, covering 19 linkage groups with an average inter-marker distance of 0.32 cM. The proportion of gaps less than 5.0 cM was on average 96.90%. A total of 16 suggestive QTLs for five growth-related traits (five QTLs for shell height, six QTLs for shell length, three QTLs for shell width, one QTL for total body weight, and one QTL for soft body weight) were identified. These QTLs were distributed on five linkage groups, and the regions showed overlapping on LG9 and LG13. In conclusion, the high-density genetic map and QTLs for S. constricta provide a valuable genetic resource and a basis for MAS.
Collapse
Affiliation(s)
- Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Yunchao Du
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Ze Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Shumei Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Haideng Nguyen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhiguo Dong
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Heding Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, 222005, China.
- College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
34
|
Hsu TH, Gwo JC. Genetic diversity and stock identification of small abalone (Haliotis diversicolor) in Taiwan and Japan. PLoS One 2017; 12:e0179818. [PMID: 28662122 PMCID: PMC5491045 DOI: 10.1371/journal.pone.0179818] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 06/05/2017] [Indexed: 11/19/2022] Open
Abstract
Small abalone (Haliotis diversicolor) is a commercially valuable species for both fisheries and aquaculture. The production of annual farmed small abalone in Taiwan, once the highest in the world, has dramatically decreased in the past 15 years, and currently, the industry is close to collapse. Understanding the genetic diversity of small abalone and developing stock identification methods will be useful for genetic breeding, restoring collapsed stocks, managing stocks, and preventing illegal trade. We investigated 307 cultured and wild individuals from Taiwan, Japan, and Bali Island (Indonesia) by using the mitochondrial cytochrome c oxidase subunit I (COI) gene. Network analysis of mtDNA COI gene sequences revealed that the individuals collected from Taiwan, Japan, and Indonesia could be identified, and showed significant genetic divergence. In addition, the Indonesian population (Haliotis diversicolor squamata) was significantly different from the other populations and might need to be considered a separate species. We discovered a single nucleotide polymorphism marker in the mtDNA COI gene that can be used to distinguish the Taiwan population from the Japan population. We also developed a polymerase chain reaction-restriction fragment length polymorphism method for rapid detection. Furthermore, we could identify the cultured stocks, wild population, and hybrid stocks by using 6 microsatellites and amplified fragment length polymorphism. This study contributes useful tools for stock identification and the production of high-disease resistant small abalone strains (Japan × Taiwan or Taiwan × Japan). Efforts should be made to avoid unintentional random genetic mixing of the Taiwan population with the Japan population and subsequent breakdown of population differentiation, which impair local adaptation of the Taiwan wild population. Molecular markers revealed a split between the Taiwan and Japan populations, and the existence of a possible barrier to the free dispersal of small abalone is discussed.
Collapse
Affiliation(s)
- Te-Hua Hsu
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Jin-Chywan Gwo
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail:
| |
Collapse
|
35
|
Guinand B, Vandeputte M, Dupont-Nivet M, Vergnet A, Haffray P, Chavanne H, Chatain B. Metapopulation patterns of additive and nonadditive genetic variance in the sea bass ( Dicentrarchus labrax). Ecol Evol 2017; 7:2777-2790. [PMID: 28428868 PMCID: PMC5395432 DOI: 10.1002/ece3.2832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/19/2016] [Accepted: 01/28/2017] [Indexed: 01/30/2023] Open
Abstract
Describing and explaining the geographic within‐species variation in phenotypes (“phenogeography”) in the sea over a species distribution range is central to our understanding of a variety of eco‐evolutionary topics. However, phenogeographic studies that have a large potential to investigate adaptive variation are overcome by phylogeographic studies, still mainly focusing on neutral markers. How genotypic and phenotypic data could covary over large geographic scales remains poorly understood in marine species. We crossed 75 noninbred sires (five origins) and 26 dams (two origins; each side of a hybrid zone) in a factorial diallel cross in order to investigate geographic variation for early survival and sex ratio in the metapopulation of the European sea bass (Dicentrarchus labrax), a highly prized marine fish species. Full‐sib families (N = 1,950) were produced and reared in a common environment. Parentage assignment of 7,200 individuals was performed with seven microsatellite markers. Generalized linear models showed significant additive effects for both traits and pleiotropy between traits. A significant nonadditive genetic effect was detected. Different expression of traits and distinct relative performances were found for reciprocal crosses involving populations located on each side of the main hybrid zone located at the Almeria‐Oran front, illustrating asymmetric reproductive isolation. The poor fitness performance observed for the Western Mediterranean population of sea bass is discussed as it represents the main source of seed hatchery production, but also because it potentially illustrates nonadaptive introgression and maladaptation.
Collapse
Affiliation(s)
- Bruno Guinand
- Département Biologie-Ecologie Université de Montpellier Montpellier France.,UMR CNRS IRD EPHE UM Institut des Sciences de l'Evolution de Montpellier Montpellier France
| | - Marc Vandeputte
- INRA UMR 1313 GABI Domaine de Vilvert Jouy-en-Josas France.,Ifremer UMR 9190 Marine Biodiversity, Exploitation and Conservation Palavas-les-Flots France
| | | | - Alain Vergnet
- Ifremer UMR 9190 Marine Biodiversity, Exploitation and Conservation Palavas-les-Flots France
| | | | - Hervé Chavanne
- Istituto Sperimentale Lazzaro Spallanzani Rivolta d'Adda Italy
| | - Béatrice Chatain
- Ifremer UMR 9190 Marine Biodiversity, Exploitation and Conservation Palavas-les-Flots France
| |
Collapse
|
36
|
Plough LV. Genetic load in marine animals: a review. Curr Zool 2016; 62:567-579. [PMID: 29491946 PMCID: PMC5804265 DOI: 10.1093/cz/zow096] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/06/2016] [Indexed: 01/24/2023] Open
Abstract
Marine invertebrates and fish are well known for their remarkable genetic diversity, which is commonly explained by large population size and the characteristic dispersive nature of their early, planktonic life history. Other potential sources of diversity in marine animals, such as a higher mutation rate, have been much less considered, though evidence for a high genetic load in marine bivalves has been accumulating for nearly half a century. In this review, I examine evidence for a higher genetic load in marine animals from studies of molecular marker segregation and linkage over the last 40 years, and survey recent work examining mutational load with molecular evolution approaches. Overall, marine animals appear to have higher genetic load than terrestrial animals (higher dn/ds ratios, inbreeding load, and segregation dis`tortion), though results are mixed for marine fish and data are lacking for many marine animal groups. Bivalves (oysters) have the highest loads observed among marine animals, comparable only to long-lived plants; however, more data is needed from other bivalves and more marine invertebrate taxa generally. For oysters, a higher load may be related to a chronically lower effective population size that, in concert with a higher mutational rate, elevate the number of deleterious mutations observed. I suggest that future studies use high-throughput sequencing approaches to examine (1) polymorphism in genome-scale datasets across a wider range of marine animals at the population level and (2) intergenerational mutational changes between parents and offspring in crosses of aquaculture species to quantify mutation rates.
Collapse
Affiliation(s)
- Louis V. Plough
- Horn Point Laboratory, University of Maryland Center for Environmental Science, 2020 Horns Pt. Road, Cambridge, MD 21613, USA
| |
Collapse
|
37
|
Glandon HL, Michaelis AK, Politano VA, Alexander ST, Vlahovich EA, Reece KS, Koopman HN, Meritt DW, Paynter KT. Impact of Environment and Ontogeny on Relative Fecundity and Egg Quality of Female Oysters (Crassostrea virginica) from Four Sites in Northern Chesapeake Bay. THE BIOLOGICAL BULLETIN 2016; 231:185-198. [PMID: 28048960 DOI: 10.1086/691066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Resource allocation to reproduction is a primary physiological concern for individuals, and can vary with age, environment, or a combination of both factors. In this study we quantified the impact of environment and individual age on the reproductive output of female oysters Crassostrea virginica. We determined the relative fecundity, egg total lipid content, and overall and omega-3/omega-6 (ω3/ω6) fatty acid signatures (FAS) of eggs spawned by female oysters over a 2-year period (n = 32 and n = 64). Variation was quantified spatially and ontogenetically by sampling young and old oyster populations from two rivers in Chesapeake Bay, totaling four collection sites. During Year 1, when oysters underwent oogenesis in different locations, overall and ω3/ω6 egg FAS varied significantly by river, with no significant differences observed in the FAS of oysters by age in Year 1. In Year 2, when oysters from different sites underwent oogenesis in a single location, no significant differences in the overall egg FAS or ω3/ω6 egg FAS by river or age were observed. These findings suggest that oysters integrate environment into their reproductive output, but that time spent growing at a specific location (in this case, represented by oyster age) plays a relatively minor role in the biochemical composition of oyster eggs. These results have consequences for our understanding of how resources are allocated from the female oyster to eggs and, more generally, the impact of environment and ontogeny on reproductive physiology.
Collapse
|
38
|
A High-Density SNP Genetic Linkage Map and QTL Analysis of Growth-Related Traits in a Hybrid Family of Oysters (Crassostrea gigas × Crassostrea angulata) Using Genotyping-by-Sequencing. G3-GENES GENOMES GENETICS 2016; 6:1417-26. [PMID: 26994291 PMCID: PMC4856092 DOI: 10.1534/g3.116.026971] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oysters are among the most important species in global aquaculture. Crassostrea gigas, and its subspecies C. angulata, are the major cultured species. To determine the genetic basis of growth-related traits in oysters, we constructed a second-generation linkage map from 3367 single-nucleotide polymorphisms (SNPs) based on genotyping-by-sequencing, genotyped from a C. gigas × C. angulata hybrid family. These 3367 SNPs were distributed on 1695 markers, which were assigned to 10 linkage groups. The genetic linkage map had a total length of 1084.3 cM, with an average of 0.8 cM between markers; it thus represents the densest genetic map constructed for oysters to date. Twenty-seven quantitative trait loci (QTL) for five growth-related traits were detected. These QTL could explain 4.2-7.7% (mean = 5.4%) of the phenotypic variation. In total, 50.8% of phenotypic variance for shell width, 7.7% for mass weight, and 34.1% for soft tissue weight were explained. The detected QTL were distributed among eight linkage groups, and more than half (16) were concentrated within narrow regions in their respective linkage groups. Thirty-eight annotated genes were identified within the QTL regions, two of which are key genes for carbohydrate metabolism. Other genes were found to participate in assembly and regulation of the actin cytoskeleton, signal transduction, and regulation of cell differentiation and development. The newly developed high-density genetic map, and the QTL and candidate genes identified provide a valuable genetic resource and a basis for marker-assisted selection for C. gigas and C. angulata.
Collapse
|
39
|
Bodénès C, Chancerel E, Ehrenmann F, Kremer A, Plomion C. High-density linkage mapping and distribution of segregation distortion regions in the oak genome. DNA Res 2016; 23:115-24. [PMID: 27013549 PMCID: PMC4833419 DOI: 10.1093/dnares/dsw001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/05/2016] [Indexed: 11/14/2022] Open
Abstract
We developed the densest single-nucleotide polymorphism (SNP)-based linkage genetic map to date for the genus Quercus An 8k gene-based SNP array was used to genotype more than 1,000 full-sibs from two intraspecific and two interspecific full-sib families of Quercus petraea and Quercus robur A high degree of collinearity was observed between the eight parental maps of the two species. A composite map was then established with 4,261 SNP markers spanning 742 cM over the 12 linkage groups (LGs) of the oak genome. Nine genomic regions from six LGs displayed highly significant distortions of segregation. Two main hypotheses concerning the mechanisms underlying segregation distortion are discussed: genetic load vs. reproductive barriers. Our findings suggest a predominance of pre-zygotic to post-zygotic barriers.
Collapse
Affiliation(s)
- Catherine Bodénès
- INRA, UMR1202 BIOGECO, F-33610 Cestas, France Université de Bordeaux, UMR1202 BIOGECO, F-33610 Talence, France
| | - Emilie Chancerel
- INRA, UMR1202 BIOGECO, F-33610 Cestas, France Université de Bordeaux, UMR1202 BIOGECO, F-33610 Talence, France
| | - François Ehrenmann
- INRA, UMR1202 BIOGECO, F-33610 Cestas, France Université de Bordeaux, UMR1202 BIOGECO, F-33610 Talence, France
| | - Antoine Kremer
- INRA, UMR1202 BIOGECO, F-33610 Cestas, France Université de Bordeaux, UMR1202 BIOGECO, F-33610 Talence, France
| | - Christophe Plomion
- INRA, UMR1202 BIOGECO, F-33610 Cestas, France Université de Bordeaux, UMR1202 BIOGECO, F-33610 Talence, France
| |
Collapse
|
40
|
Plough LV, Shin G, Hedgecock D. Genetic inviability is a major driver of type III survivorship in experimental families of a highly fecund marine bivalve. Mol Ecol 2016; 25:895-910. [PMID: 26756438 DOI: 10.1111/mec.13524] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/02/2015] [Accepted: 01/06/2016] [Indexed: 01/06/2023]
Abstract
The offspring of most highly fecund marine fish and shellfish suffer substantial mortality early in the life cycle, complicating prediction of recruitment and fisheries management. Early mortality has long been attributed to environmental factors and almost never to genetic sources. Previous work on a variety of marine bivalve species uncovered substantial genetic inviability among the offspring of inbred crosses, suggesting a large load of early-acting deleterious recessive mutations. However, genetic inviability of randomly bred offspring has not been addressed. Here, genome-wide surveys reveal widespread, genotype-dependent mortality in randomly bred, full-sib progenies of wild-caught Pacific oysters (Crassostrea gigas). Using gene-mapping methods, we infer that 11-19 detrimental alleles per family render 97.9-99.8% of progeny inviable. The variable genomic positions of viability loci among families imply a surprisingly large load of partially dominant or additive detrimental mutations in wild adult oysters. Although caution is required in interpreting the relevance of experimental results for natural field environments, we argue that the observed genetic inviability corresponds with type III survivorship, which is characteristic of both hatchery and field environments and that our results, therefore, suggest the need for additional experiments under the near-natural conditions of mesocosms. We explore the population genetic implications of our results, calculating a detrimental mutation rate that is comparable to that estimated for conifers and other highly fecund perennial plants. Genetic inviability ought to be considered as a potential major source of low and variable recruitment in highly fecund marine animals.
Collapse
Affiliation(s)
- L V Plough
- Horn Point Laboratory, University of Maryland Center for Environmental Science, P.O. Box 775, Cambridge, MD, 21601, USA
| | - G Shin
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA
| | - D Hedgecock
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA
| |
Collapse
|
41
|
The ecology, evolution, impacts and management of host-parasite interactions of marine molluscs. J Invertebr Pathol 2015; 131:177-211. [PMID: 26341124 DOI: 10.1016/j.jip.2015.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 11/22/2022]
Abstract
Molluscs are economically and ecologically important components of aquatic ecosystems. In addition to supporting valuable aquaculture and wild-harvest industries, their populations determine the structure of benthic communities, cycling of nutrients, serve as prey resources for higher trophic levels and, in some instances, stabilize shorelines and maintain water quality. This paper reviews existing knowledge of the ecology of host-parasite interactions involving marine molluscs, with a focus on gastropods and bivalves. It considers the ecological and evolutionary impacts of molluscan parasites on their hosts and vice versa, and on the communities and ecosystems in which they are a part, as well as disease management and its ecological impacts. An increasing number of case studies show that disease can have important effects on marine molluscs, their ecological interactions and ecosystem services, at spatial scales from centimeters to thousands of kilometers and timescales ranging from hours to years. In some instances the cascading indirect effects arising from parasitic infection of molluscs extend well beyond the temporal and spatial scales at which molluscs are affected by disease. In addition to the direct effects of molluscan disease, there can be large indirect impacts on marine environments resulting from strategies, such as introduction of non-native species and selective breeding for disease resistance, put in place to manage disease. Much of our understanding of impacts of molluscan diseases on the marine environment has been derived from just a handful of intensively studied marine parasite-host systems, namely gastropod-trematode, cockle-trematode, and oyster-protistan interactions. Understanding molluscan host-parasite dynamics is of growing importance because: (1) expanding aquaculture; (2) current and future climate change; (3) movement of non-native species; and (4) coastal development are modifying molluscan disease dynamics, ultimately leading to complex relationships between diseases and cultivated and natural molluscan populations. Further, in some instances the enhancement or restoration of valued ecosystem services may be contingent on management of molluscan disease. The application of newly emerging molecular tools and remote sensing techniques to the study of molluscan disease will be important in identifying how changes at varying spatial and temporal scales with global change are modifying host-parasite systems.
Collapse
|
42
|
Valenzuela-Castillo A, Sánchez-Paz A, Castro-Longoria R, López-Torres MA, Grijalva-Chon JM. Seasonal changes in gene expression and polymorphism of hsp70 in cultivated oysters (Crassostrea gigas) at extreme temperatures. MARINE ENVIRONMENTAL RESEARCH 2015; 110:25-32. [PMID: 26254584 DOI: 10.1016/j.marenvres.2015.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/30/2015] [Accepted: 07/30/2015] [Indexed: 06/04/2023]
Abstract
The HSP70 proteins are an important element of the response against thermal stress and infectious diseases, and they are highly conserved and ubiquitous. In some species, variations on the hsp70 encoding sequence resulted in intraspecific differential expression, which leads to variations on thermo-tolerance among individuals. This phenomenon has not been described in the Pacific oyster Crassostrea gigas, which is cultivated in Mexico under temperature conditions highly above the optimal for this species. The present study was aimed to identify associations between hsp70 genotypes and their expression levels in C. gigas. By analyzing a 603 bp fragment from the 3' end of the hsp70 gene, 21 different genotypes with 60 nucleotide polymorphic sites were detected, of which 34 sites were found in heterozygous condition. Although no correlation was found between genotype-expression-season, a minimum expression threshold that should be taken into account as an important feature for a future breeding program is proposed.
Collapse
Affiliation(s)
- Adán Valenzuela-Castillo
- Universidad de Sonora, Departamento de Investigaciones Científicas y Tecnológicas, Hermosillo, Sonora 83000, Mexico
| | - Arturo Sánchez-Paz
- Centro de Investigaciones Biológicas del Noroeste S.C. Laboratorio de Referencia, Análisis y Diagnóstico en Sanidad Acuícola, Hermosillo, Sonora 83106, Mexico
| | - Reina Castro-Longoria
- Universidad de Sonora, Departamento de Investigaciones Científicas y Tecnológicas, Hermosillo, Sonora 83000, Mexico
| | - Marco Antonio López-Torres
- Universidad de Sonora, Departamento de Investigaciones Científicas y Tecnológicas, Hermosillo, Sonora 83000, Mexico
| | - José Manuel Grijalva-Chon
- Universidad de Sonora, Departamento de Investigaciones Científicas y Tecnológicas, Hermosillo, Sonora 83000, Mexico.
| |
Collapse
|
43
|
Hedgecock D, Shin G, Gracey AY, Den Berg DV, Samanta MP. Second-Generation Linkage Maps for the Pacific Oyster Crassostrea gigas Reveal Errors in Assembly of Genome Scaffolds. G3 (BETHESDA, MD.) 2015; 5:2007-19. [PMID: 26248981 PMCID: PMC4592983 DOI: 10.1534/g3.115.019570] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/25/2015] [Indexed: 01/14/2023]
Abstract
The Pacific oyster Crassostrea gigas, a widely cultivated marine bivalve mollusc, is becoming a genetically and genomically enabled model for highly fecund marine metazoans with complex life-histories. A genome sequence is available for the Pacific oyster, as are first-generation, low-density, linkage and gene-centromere maps mostly constructed from microsatellite DNA makers. Here, higher density, second-generation, linkage maps are constructed from more than 1100 coding (exonic) single-nucleotide polymorphisms (SNPs), as well as 66 previously mapped microsatellite DNA markers, all typed in five families of Pacific oysters (nearly 172,000 genotypes). The map comprises 10 linkage groups, as expected, has an average total length of 588 cM, an average marker-spacing of 1.0 cM, and covers 86% of a genome estimated to be 616 cM. All but seven of the mapped SNPs map to 618 genome scaffolds; 260 scaffolds contain two or more mapped SNPs, but for 100 of these scaffolds (38.5%), the contained SNPs map to different linkage groups, suggesting widespread errors in scaffold assemblies. The 100 misassembled scaffolds are significantly longer than those that map to a single linkage group. On the genetic maps, marker orders and intermarker distances vary across families and mapping methods, owing to an abundance of markers segregating from only one parent, to widespread distortions of segregation ratios caused by early mortality, as previously observed for oysters, and to genotyping errors. Maps made from framework markers provide stronger support for marker orders and reasonable map lengths and are used to produce a consensus high-density linkage map containing 656 markers.
Collapse
Affiliation(s)
- Dennis Hedgecock
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0371
| | - Grace Shin
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0371
| | - Andrew Y Gracey
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0371
| | - David Van Den Berg
- Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-9601
| | | |
Collapse
|
44
|
Heritable differences in fitness-related traits among populations of the mustard hill coral, Porites astreoides. Heredity (Edinb) 2015; 115:509-16. [PMID: 26081798 DOI: 10.1038/hdy.2015.52] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 04/07/2015] [Accepted: 04/21/2015] [Indexed: 11/08/2022] Open
Abstract
A population's potential for rapid evolutionary adaptation can be estimated from the amount of genetic variation in fitness-related traits. Inshore populations of the mustard hill coral (Porites astreoides) have been shown to be more tolerant to thermal stress than offshore populations, but it is unclear whether this difference is due to long-term physiological acclimatization or genetic adaptation. Here, we evaluated variation in growth rate and survival among 38 families of juvenile recruits of P. astreoides spawned by colonies originating from inshore and offshore locations. Recruits were reared in a common garden for 5 weeks and then subjected to two thermal treatments (28 and 31 °C) for 2.5 weeks. The most significant effects were detected during the first 5 weeks, before thermal stress was applied: 27-30% of variance in growth and 94% of variance in recruit survival was attributable to parental effects. Genotyping of eight microsatellite loci indicated that the high early mortality of some of the recruit families was not due to higher inbreeding. Post treatment, parental effects diminished such that only 10-15% of variance in growth rate was explained, which most likely reflects the dissipation of maternal effects. However, offshore-origin recruits still grew significantly less under elevated temperature compared with inshore-origin recruits. These differences observed in naive juvenile corals suggest that population-level variation in fitness in response to different thermal environments has a genetic basis and could represent raw material for natural selection in times of climate change.
Collapse
|
45
|
Nie H, Niu H, Zhao L, Yang F, Yan X, Zhang G. Genetic diversity and structure of Manila clam (Ruditapes philippinarum) populations from Liaodong peninsula revealed by SSR markers. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2014.12.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Min JJ, Ye RH, Zhang GF, Zheng RQ. Microsatellite analysis of genetic diversity and population structure of freshwater mussel (Lamprotula leai). DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 36:34-40. [PMID: 25730459 DOI: 10.13918/j.issn.2095-8137.2015.1.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Lamprotula leai is one of the most commercially important freshwater pearl mussels in China, but there is limited data on its genetic diversity and population structure. In the present study, 119 individuals from four major geographical populations were investigated using 15 microsatellite loci identified via cross-species amplification. A total of 114 alleles were detected, with an average of 7.6 alleles per locus (range: 2 to 21). Among the four stocks, those from Hung-tse Lake and Poyang Lake had the lowest (0.412) and highest (0.455) observed heterozygosity respectively. The polymorphism information content (PIC) ranged from 0.374 to 0.927 (mean: 0.907). AMOVA showed that 12.56% and 44.68% genetic variances were among populations and within individuals, respectively. Pairwise Fst ranged from 0.073 to 0.146, indicating medium genetic differentiation among the populations. In aggregate, our results suggest that inbreeding is a crucial factor accounting for deviations from Hardy-Weinberg equilibrium at 12 loci. Moreover, the genetic distance among four stocks ranged from 0.192 to 0.890. Poyang Lake and Hung-tse Lake were clustered together, joined with Dongting Lake and Anqing Lake. Given that specimens from Hung-tse Lake showed the highest average allele richness, expected heterozygosity and PIC, this location may be the source of the highest quality germplasm resources and the stock from this area may be the best for future breeding efforts.
Collapse
Affiliation(s)
- Jin-Jin Min
- Institute of Ecology, Zhejiang Normal University, Jinhua Zhejiang 321004, China
| | - Rong-Hui Ye
- Jinhua Polytechnic, Jinhua Zhejiang 321004, China.
| | | | - Rong-Quan Zheng
- Institute of Ecology, Zhejiang Normal University, Jinhua Zhejiang 321004, China
| |
Collapse
|
47
|
Araki H, Berejikian BA, Ford MJ, Blouin MS. Fitness of hatchery-reared salmonids in the wild. Evol Appl 2015; 1:342-55. [PMID: 25567636 PMCID: PMC3352433 DOI: 10.1111/j.1752-4571.2008.00026.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 02/02/2008] [Indexed: 11/28/2022] Open
Abstract
Accumulating data indicate that hatchery fish have lower fitness in natural environments than wild fish. This fitness decline can occur very quickly, sometimes following only one or two generations of captive rearing. In this review, we summarize existing data on the fitness of hatchery fish in the wild, and we investigate the conditions under which rapid fitness declines can occur. The summary of studies to date suggests: nonlocal hatchery stocks consistently reproduce very poorly in the wild; hatchery stocks that use wild, local fish for captive propagation generally perform better than nonlocal stocks, but often worse than wild fish. However, the data above are from a limited number of studies and species, and more studies are needed before one can generalize further. We used a simple quantitative genetic model to evaluate whether domestication selection is a sufficient explanation for some observed rapid fitness declines. We show that if selection acts on a single trait, such rapid effects can be explained only when selection is very strong, both in captivity and in the wild, and when the heritability of the trait under selection is high. If selection acts on multiple traits throughout the life cycle, rapid fitness declines are plausible.
Collapse
Affiliation(s)
- Hitoshi Araki
- Department of Zoology, Oregon State University Corvallis, OR, USA ; Eawag, The Swiss Federal Institute of Aquatic Science and Technology Kastanienbaum, Switzerland
| | | | - Michael J Ford
- NOAA, Northwest Fisheries Science Center Seattle, WA, USA
| | - Michael S Blouin
- Department of Zoology, Oregon State University Corvallis, OR, USA
| |
Collapse
|
48
|
Ye H, Liu Y, Liu X, Wang X, Wang Z. Genetic mapping and QTL analysis of growth traits in the large yellow croaker Larimichthys crocea. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:729-738. [PMID: 25070688 DOI: 10.1007/s10126-014-9590-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/06/2014] [Indexed: 06/03/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is an important maricultured species in China. A genetic linkage map of the large yellow croaker was constructed using type II microsatellites and expressed sequence tag (EST)-derived microsatellites in two half-sib families (two females and one male). A total of 289 microsatellite markers (contained 93 EST-SSRs) were integrated into 24 linkage groups, which agreed with the haploid chromosome number. The map spanned a length of 1,430.8 cm with an average interval of 5.4 cm, covering 83.9 % of the estimated genome size (1,704.8 cm). A total of seven quantitative trait locis (QTLs) were detected for growth traits on five linkage groups, including two 1 % and five 5 % chromosome-wide significant QTLs, and explained from 2.33 to 5.31 % of the trait variation. The identified QTLs can be applied in marker-assisted selection programs to improve the growth traits.
Collapse
Affiliation(s)
- Hua Ye
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture of the People's Republic of China, Jimei University, Xiamen, 361021, China
| | | | | | | | | |
Collapse
|
49
|
Characterization of fifteen SNP markers by mining EST in sea cucumber, Apostichopus japonicus. J Genet 2014. [DOI: 10.1007/s12041-012-0141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Li Y, He M. Genetic mapping and QTL analysis of growth-related traits in Pinctada fucata using restriction-site associated DNA sequencing. PLoS One 2014; 9:e111707. [PMID: 25369421 PMCID: PMC4219768 DOI: 10.1371/journal.pone.0111707] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/29/2014] [Indexed: 11/19/2022] Open
Abstract
The pearl oyster, Pinctada fucata (P. fucata), is one of the marine bivalves that is predominantly cultured for pearl production. To obtain more genetic information for breeding purposes, we constructed a high-density linkage map of P. fucata and identified quantitative trait loci (QTL) for growth-related traits. One F1 family, which included the two parents, 48 largest progeny and 50 smallest progeny, was sampled to construct a linkage map using restriction site-associated DNA sequencing (RAD-Seq). With low coverage data, 1956.53 million clean reads and 86,342 candidate RAD loci were generated. A total of 1373 segregating SNPs were used to construct a sex-average linkage map. This spanned 1091.81 centimorgans (cM), with 14 linkage groups and an average marker interval of 1.41 cM. The genetic linkage map coverage, Coa, was 97.24%. Thirty-nine QTL-peak loci, for seven growth-related traits, were identified using the single-marker analysis, nonparametric mapping Kruskal-Wallis (KW) test. Parameters included three for shell height, six for shell length, five for shell width, four for hinge length, 11 for total weight, eight for soft tissue weight and two for shell weight. The QTL peak loci for shell height, shell length and shell weight were all located in linkage group 6. The genotype frequencies of most QTL peak loci showed significant differences between the large subpopulation and the small subpopulation (P<0.05). These results highlight the effectiveness of RAD-Seq as a tool for generation of QTL-targeted and genome-wide marker data in the non-model animal, P. fucata, and its possible utility in marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Yaoguo Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- * E-mail:
| |
Collapse
|