1
|
Kelliher CM, Lambreghts R, Xiang Q, Baker CL, Loros JJ, Dunlap JC. PRD-2 directly regulates casein kinase I and counteracts nonsense-mediated decay in the Neurospora circadian clock. eLife 2020; 9:64007. [PMID: 33295874 PMCID: PMC7746235 DOI: 10.7554/elife.64007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/08/2020] [Indexed: 01/22/2023] Open
Abstract
Circadian clocks in fungi and animals are driven by a functionally conserved transcription–translation feedback loop. In Neurospora crassa, negative feedback is executed by a complex of Frequency (FRQ), FRQ-interacting RNA helicase (FRH), and casein kinase I (CKI), which inhibits the activity of the clock’s positive arm, the White Collar Complex (WCC). Here, we show that the prd-2 (period-2) gene, whose mutation is characterized by recessive inheritance of a long 26 hr period phenotype, encodes an RNA-binding protein that stabilizes the ck-1a transcript, resulting in CKI protein levels sufficient for normal rhythmicity. Moreover, by examining the molecular basis for the short circadian period of upf-1prd-6 mutants, we uncovered a strong influence of the Nonsense-Mediated Decay pathway on CKI levels. The finding that circadian period defects in two classically derived Neurospora clock mutants each arise from disruption of ck-1a regulation is consistent with circadian period being exquisitely sensitive to levels of casein kinase I.
Collapse
Affiliation(s)
- Christina M Kelliher
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Randy Lambreghts
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Qijun Xiang
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Christopher L Baker
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States.,The Jackson Laboratory, Bar Harbor, United States
| | - Jennifer J Loros
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Jay C Dunlap
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
2
|
Beyond Transcription: Fine-Tuning of Circadian Timekeeping by Post-Transcriptional Regulation. Genes (Basel) 2018; 9:genes9120616. [PMID: 30544736 PMCID: PMC6315869 DOI: 10.3390/genes9120616] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
The circadian clock is an important endogenous timekeeper, helping plants to prepare for the periodic changes of light and darkness in their environment. The clockwork of this molecular timer is made up of clock proteins that regulate transcription of their own genes with a 24 h rhythm. Furthermore, the rhythmically expressed clock proteins regulate time-of-day dependent transcription of downstream genes, causing messenger RNA (mRNA) oscillations of a large part of the transcriptome. On top of the transcriptional regulation by the clock, circadian rhythms in mRNAs rely in large parts on post-transcriptional regulation, including alternative pre-mRNA splicing, mRNA degradation, and translational control. Here, we present recent insights into the contribution of post-transcriptional regulation to core clock function and to regulation of circadian gene expression in Arabidopsis thaliana.
Collapse
|
3
|
Up-Frameshift Protein UPF1 Regulates Neurospora crassa Circadian and Diurnal Growth Rhythms. Genetics 2017; 206:1881-1893. [PMID: 28600326 DOI: 10.1534/genetics.117.202788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 05/31/2017] [Indexed: 01/24/2023] Open
Abstract
Nonsense-mediated RNA decay (NMD) is a crucial post-transcriptional regulatory mechanism that recognizes and eliminates aberrantly processed transcripts, and mediates the expression of normal gene transcripts. In this study, we report that in the filamentous fungus Neurospora crassa, the NMD factors play a conserved role in regulating the surveillance of NMD targets including premature termination codon (PTC)-containing transcripts and normal transcripts. The circadian rhythms in all of the knockout strains of upf1-3 genes, which encode the Up-frameshift proteins, were aberrant. The upf1 knockout strain displays a shortened circadian period, which can be restored by constantly expressing exogenous Up-frameshift protein 1 (UPF1). UPF1 regulates the circadian clock by modulating the splicing of the core clock gene frequency (frq) through spliceosome and spliceosome-related arginine/serine-rich splicing factors, which partly account for the short periods in the upf1 knockout strain. We also demonstrated that the clock genes including White Collar (WC)-1, WC-2, and FRQ are involved in controlling the diurnal growth rhythm, and UPF1 may affect the growth rhythms by mediating the FRQ protein levels in the daytime. These findings suggest that the NMD factors play important roles in regulating the circadian clock and diurnal growth rhythms in Neurospora.
Collapse
|
4
|
Dhar R, Sägesser R, Weikert C, Yuan J, Wagner A. Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution. J Evol Biol 2011; 24:1135-53. [PMID: 21375649 DOI: 10.1111/j.1420-9101.2011.02249.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most laboratory evolution studies that characterize evolutionary adaptation genomically focus on genetically simple traits that can be altered by one or few mutations. Such traits are important, but they are few compared with complex, polygenic traits influenced by many genes. We know much less about complex traits, and about the changes that occur in the genome and in gene expression during their evolutionary adaptation. Salt stress tolerance is such a trait. It is especially attractive for evolutionary studies, because the physiological response to salt stress is well-characterized on the molecular and transcriptome level. This provides a unique opportunity to compare evolutionary adaptation and physiological adaptation to salt stress. The yeast Saccharomyces cerevisiae is a good model system to study salt stress tolerance, because it contains several highly conserved pathways that mediate the salt stress response. We evolved three replicate lines of yeast under continuous salt (NaCl) stress for 300 generations. All three lines evolved faster growth rate in high salt conditions than their ancestor. In these lines, we studied gene expression changes through microarray analysis and genetic changes through next generation population sequencing. We found two principal kinds of gene expression changes, changes in basal expression (82 genes) and changes in regulation (62 genes). The genes that change their expression involve several well-known physiological stress-response genes, including CTT1, MSN4 and HLR1. Next generation sequencing revealed only one high-frequency single-nucleotide change, in the gene MOT2, that caused increased fitness when introduced into the ancestral strain. Analysis of DNA content per cell revealed ploidy increases in all the three lines. Our observations suggest that evolutionary adaptation of yeast to salt stress is associated with genome size increase and modest expression changes in several genes.
Collapse
Affiliation(s)
- R Dhar
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
5
|
Lakin-Thomas PL, Bell-Pedersen D, Brody S. The genetics of circadian rhythms in Neurospora. ADVANCES IN GENETICS 2011; 74:55-103. [PMID: 21924975 DOI: 10.1016/b978-0-12-387690-4.00003-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This chapter describes our current understanding of the genetics of the Neurospora clock and summarizes the important findings in this area in the past decade. Neurospora is the most intensively studied clock system, and the reasons for this are listed. A discussion of the genetic interactions between clock mutants is included, highlighting the utility of dissecting complex mechanisms by genetic means. The molecular details of the Neurospora circadian clock mechanism are described, as well as the mutations that affect the key clock proteins, FRQ, WC-1, and WC-2, with an emphasis on the roles of protein phosphorylation. Studies on additional genes affecting clock properties are described and place these genes into two categories: those that affect the FRQ/WCC oscillator and those that do not. A discussion of temperature compensation and the mutants affecting this property is included. A section is devoted to the observations pertinent to the existence of other oscillators in this organism with respect to their properties, their effects, and their preliminary characterization. The output of the clock and the control of clock-controlled genes are discussed, emphasizing the phasing of these genes and the layers of control. In conclusion, the authors provide an outlook summarizing their suggestions for areas that would be fruitful for further exploration.
Collapse
|
6
|
Li S, Lakin-Thomas P. Effects of prd circadian clock mutations on FRQ-less rhythms in Neurospora. J Biol Rhythms 2010; 25:71-80. [PMID: 20348458 DOI: 10.1177/0748730409360889] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Rhythmic conidiation (spore formation) in Neurospora crassa provides a model system for investigating the molecular mechanisms of circadian rhythmicity. A feedback loop involving the frq, wc-1, and wc-2 gene products (FRQ/ WCC) is an important component of the mechanism; however, rhythmic conidiation can still be observed when these gene products are absent. The nature of the oscillator(s) that drives this FRQ-less rhythmicity (FLO) is an important question in Neurospora circadian biology. We have looked for interactions between FRQ/WCC and FLO by assaying the effects on FRQ-less rhythms of mutations known to affect the period in the presence of FRQ. We assayed 4 prd mutations (prd-1, prd-2, prd-3, and prd-4) under 2 conditions in frq(null) strains: long-period free-running rhythms in chol-1 strains grown without choline, and heat-entrainable rhythms in choline-sufficient conditions. We found effects of all 4 mutations on both types of FRQ-less rhythms. The greatest effects were seen with prd-1 and prd-2, which abolished free-running rhythms in the chol-1; frq(10) backgrounds and significantly affected entrained peak timing under heat-entrainment conditions in frq( 10) backgrounds. The prd-3 and prd-4 mutations had more subtle effects on period and stability of free-running rhythms in the chol-1; frq(10) backgrounds and had little effect on peak timing under heat-entrainment conditions in frq(10) backgrounds. These results, along with previously published evidence for effects of prd mutations on other FRQ-less rhythms, suggest that either there are common components shared between the FRQ/WCC oscillator and several FRQ-less oscillators or that there is a single oscillator driving all conidiation rhythms. We favor a model of the Neurospora circadian system in which a single FRQ-less oscillator drives conidiation and interacts with the FRQ/WCC feedback loop; the output or amplitude of the FRQ-less oscillator can be affected by many gene products and metabolic conditions that reveal FRQ-less rhythmicity. We propose that prd-1 and prd-2 are good candidates for components of the FRQ-less oscillator and that prd-3 and prd-4 act on the system mainly through effects on FRQ/WCC.
Collapse
Affiliation(s)
- Sanshu Li
- Department of Biology, York University, Toronto, Canada
| | | |
Collapse
|
7
|
MEHRA A, SHI M, BAKER CL, COLOT HV, LOROS JJ, DUNLAP JC. CK2 and temperature compensation inNeurospora. Sleep Biol Rhythms 2009. [DOI: 10.1111/j.1479-8425.2009.00406.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Lombardi L, Schneider K, Tsukamoto M, Brody S. Circadian rhythms in Neurospora crassa: clock mutant effects in the absence of a frq-based oscillator. Genetics 2007; 175:1175-83. [PMID: 17237512 PMCID: PMC1840085 DOI: 10.1534/genetics.106.068270] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Neurospora, the circadian rhythm is expressed as rhythmic conidiation driven by a feedback loop involving the protein products of frq (frequency), wc-1 (white collar-1), and wc-2, known as the frq/wc (FWC) oscillator. Although strains carrying null mutations such as frq(10) or wc-2Delta lack a functional FWC oscillator and do not show a rhythm under most conditions, a rhythm can be observed in them by the addition of geraniol or farnesol to the media. Employing this altered media as an assay, the effect of other clock mutations in a frq(10)- or wc-2Delta-null background can be measured. It was found that the existing clock mutations fall into three classes: (1) those, such as prd-3 or prd-4 or frq(1), that showed no effect in a clock null background; (2) those, such as prd-1 or prd-2 or prd-6, that did have a measurable effect in the frq(10) background; and (3) those, such as the new mutation ult, that suppressed the frq(10) or wc-2Delta effect, i.e., geraniol/farnesol was not required for a visible rhythm. This classification suggests that some of the known clock mutations are part of a broader multioscillator system.
Collapse
Affiliation(s)
- Laura Lombardi
- Division of Biological Sciences, University of California, San Diego, California 92093-0116, USA
| | | | | | | |
Collapse
|
9
|
Hong CI, Conrad ED, Tyson JJ. A proposal for robust temperature compensation of circadian rhythms. Proc Natl Acad Sci U S A 2007; 104:1195-200. [PMID: 17229851 PMCID: PMC1773060 DOI: 10.1073/pnas.0601378104] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The internal circadian rhythms of cells and organisms coordinate their physiological properties to the prevailing 24-h cycle of light and dark on earth. The mechanisms generating circadian rhythms have four defining characteristics: they oscillate endogenously with period close to 24 h, entrain to external signals, suffer phase shifts by aberrant pulses of light or temperature, and compensate for changes in temperature over a range of 10 degrees C or more. Most theoretical descriptions of circadian rhythms propose that the underlying mechanism generates a stable limit cycle oscillation (in constant darkness or dim light), because limit cycles quite naturally possess the first three defining properties of circadian rhythms. On the other hand, the period of a limit cycle oscillator is typically very sensitive to kinetic rate constants, which increase markedly with temperature. Temperature compensation is therefore not a general property of limit cycle oscillations but must be imposed by some delicate balance of temperature dependent effects. However, "delicate balances" are unlikely to be robust to mutations. On the other hand, if circadian rhythms arise from a mechanism that concentrates sensitivity into a few rate constants, then the "balancing act" is likely to be more robust and evolvable. We propose a switch-like mechanism for circadian rhythms that concentrates period sensitivity in just two parameters, by forcing the system to alternate between a stable steady state and a stable limit cycle.
Collapse
Affiliation(s)
- Christian I. Hong
- Departments of *Biological Sciences and
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755
| | - Emery D. Conrad
- Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060; and
| | - John J. Tyson
- Departments of *Biological Sciences and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Abstract
Recent advances in understanding circadian (daily) rhythms in the genera Neurospora, Gonyaulax, and Synechococcus are reviewed and new complexities in their circadian systems are described. The previous model, consisting of a unidirectional flow of information from input to oscillator to output, has now expanded to include multiple input pathways, multiple oscillators, multiple outputs; and feedback from oscillator to input and output to oscillator. New posttranscriptional features of the frq/white-collar oscillator (FWC) of Neurospora are described, including protein phosphorylation and degradation, dimerization, and complex formation. Experimental evidence is presented for frq-less oscillator(s) (FLO) downstream of the FWC. Mathematical models of the Neurospora system are also discussed.
Collapse
|
11
|
Morgan LW, Feldman JF, Bell-Pedersen D. Genetic interactions between clock mutations in Neurospora crassa: can they help us to understand complexity? Philos Trans R Soc Lond B Biol Sci 2001; 356:1717-24. [PMID: 11710978 PMCID: PMC1088547 DOI: 10.1098/rstb.2001.0967] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent work on circadian clocks in Neurospora has primarily focused on the frequency (frq) and white-collar (wc) loci. However, a number of other genes are known that affect either the period or temperature compensation of the rhythm. These include the period (no relationship to the period gene of Drosophila) genes and a number of genes that affect cellular metabolism. How these other loci fit into the circadian system is not known, and metabolic effects on the clock are typically not considered in single-oscillator models. Recent evidence has pointed to multiple oscillators in Neurospora, at least one of which is predicted to incorporate metabolic processes. Here, the Neurospora clock-affecting mutations will be reviewed and their genetic interactions discussed in the context of a more complex clock model involving two coupled oscillators: a FRQ/WC-based oscillator and a 'frq-less' oscillator that may involve metabolic components.
Collapse
Affiliation(s)
- L W Morgan
- Department of Biology, Texas A&M University, College Station, TX 77843-3248, USA
| | | | | |
Collapse
|