1
|
Amin MR, Hasan M, DeGiorgio M. Digital Image Processing to Detect Adaptive Evolution. Mol Biol Evol 2024; 41:msae242. [PMID: 39565932 PMCID: PMC11631197 DOI: 10.1093/molbev/msae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/28/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
In recent years, advances in image processing and machine learning have fueled a paradigm shift in detecting genomic regions under natural selection. Early machine learning techniques employed population-genetic summary statistics as features, which focus on specific genomic patterns expected by adaptive and neutral processes. Though such engineered features are important when training data are limited, the ease at which simulated data can now be generated has led to the recent development of approaches that take in image representations of haplotype alignments and automatically extract important features using convolutional neural networks. Digital image processing methods termed α-molecules are a class of techniques for multiscale representation of objects that can extract a diverse set of features from images. One such α-molecule method, termed wavelet decomposition, lends greater control over high-frequency components of images. Another α-molecule method, termed curvelet decomposition, is an extension of the wavelet concept that considers events occurring along curves within images. We show that application of these α-molecule techniques to extract features from image representations of haplotype alignments yield high true positive rate and accuracy to detect hard and soft selective sweep signatures from genomic data with both linear and nonlinear machine learning classifiers. Moreover, we find that such models are easy to visualize and interpret, with performance rivaling those of contemporary deep learning approaches for detecting sweeps.
Collapse
Affiliation(s)
- Md Ruhul Amin
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mahmudul Hasan
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
2
|
Cheng X, Steinrücken M. Population Genomic Scans for Natural Selection and Demography. Annu Rev Genet 2024; 58:319-339. [PMID: 39227130 DOI: 10.1146/annurev-genet-111523-102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Uncovering the fundamental processes that shape genomic variation in natural populations is a primary objective of population genetics. These processes include demographic effects such as past changes in effective population size or gene flow between structured populations. Furthermore, genomic variation is affected by selection on nonneutral genetic variants, for example, through the adaptation of beneficial alleles or balancing selection that maintains genetic variation. In this article, we discuss the characterization of these processes using population genetic models, and we review methods developed on the basis of these models to unravel the underlying processes from modern population genomic data sets. We briefly discuss the conditions in which these approaches can be used to infer demography or identify specific nonneutral genetic variants and cases in which caution is warranted. Moreover, we summarize the challenges of jointly inferring demography and selective processes that affect neutral variation genome-wide.
Collapse
Affiliation(s)
- Xiaoheng Cheng
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA;
| | - Matthias Steinrücken
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA;
| |
Collapse
|
3
|
Schield DR, Perry BW, Adams RH, Holding ML, Nikolakis ZL, Gopalan SS, Smith CF, Parker JM, Meik JM, DeGiorgio M, Mackessy SP, Castoe TA. The roles of balancing selection and recombination in the evolution of rattlesnake venom. Nat Ecol Evol 2022; 6:1367-1380. [PMID: 35851850 PMCID: PMC9888523 DOI: 10.1038/s41559-022-01829-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/15/2022] [Indexed: 02/02/2023]
Abstract
The origin of snake venom involved duplication and recruitment of non-venom genes into venom systems. Several studies have predicted that directional positive selection has governed this process. Venom composition varies substantially across snake species and venom phenotypes are locally adapted to prey, leading to coevolutionary interactions between predator and prey. Venom origins and contemporary snake venom evolution may therefore be driven by fundamentally different selection regimes, yet investigations of population-level patterns of selection have been limited. Here, we use whole-genome data from 68 rattlesnakes to test hypotheses about the factors that drive genomic diversity and differentiation in major venom gene regions. We show that selection has resulted in long-term maintenance of genetic diversity within and between species in multiple venom gene families. Our findings are inconsistent with a dominant role of directional positive selection and instead support a role of long-term balancing selection in shaping venom evolution. We also detect rapid decay of linkage disequilibrium due to high recombination rates in venom regions, suggesting that venom genes have reduced selective interference with nearby loci, including other venom paralogues. Our results provide an example of long-term balancing selection that drives trans-species polymorphism and help to explain how snake venom keeps pace with prey resistance.
Collapse
Affiliation(s)
- Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Richard H Adams
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, USA
| | | | | | | | - Cara F Smith
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, USA
| | - Joshua M Parker
- Life Science Department, Fresno City College, Fresno, CA, USA
| | - Jesse M Meik
- Department of Biological Sciences, Tarleton State University, Stephenville, TX, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
4
|
Gupta MK, Vadde R. Genetic Basis of Adaptation and Maladaptation via Balancing Selection. ZOOLOGY 2019; 136:125693. [PMID: 31513936 DOI: 10.1016/j.zool.2019.125693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
|
5
|
Tennessen JA. Gene buddies: linked balanced polymorphisms reinforce each other even in the absence of epistasis. PeerJ 2018; 6:e5110. [PMID: 29967750 PMCID: PMC6026533 DOI: 10.7717/peerj.5110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/05/2018] [Indexed: 01/16/2023] Open
Abstract
The fates of genetic polymorphisms maintained by balancing selection depend on evolutionary dynamics at linked sites. While coevolution across linked, epigenetically-interacting loci has been extensively explored, such supergenes may be relatively rare. However, genes harboring adaptive variation can occur in close physical proximity while generating independent effects on fitness. Here, I present a model in which two linked loci without epistasis are both under balancing selection for unrelated reasons. Using forward-time simulations, I show that recombination rate strongly influences the retention of adaptive polymorphism, especially for intermediate selection coefficients. A locus is more likely to retain adaptive variation if it is closely linked to another locus under balancing selection, even if the two loci have no interaction. Thus, two linked polymorphisms can both be retained indefinitely even when they would both be lost to drift if unlinked. While these results may be intuitive, they have important implications for genetic architecture: clusters of mutually reinforcing genes may underlie phenotypic variation in natural populations, and such genes cannot be assumed to be functionally associated. Future studies that measure selection coefficients and recombination rates among closely linked genes will be fruitful for characterizing the extent of this phenomenon.
Collapse
Affiliation(s)
- Jacob A. Tennessen
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
6
|
Lindtke D, Lucek K, Soria-Carrasco V, Villoutreix R, Farkas TE, Riesch R, Dennis SR, Gompert Z, Nosil P. Long-term balancing selection on chromosomal variants associated with crypsis in a stick insect. Mol Ecol 2017; 26:6189-6205. [DOI: 10.1111/mec.14280] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Dorothea Lindtke
- Department of Biological Sciences; University of Calgary; Calgary AB Canada
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
| | - Kay Lucek
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
- Department of Environmental Sciences; University of Basel; Basel Switzerland
| | | | - Romain Villoutreix
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
| | - Timothy E. Farkas
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT USA
| | - Rüdiger Riesch
- School of Biological Sciences; Royal Holloway; University of London; Egham UK
| | - Stuart R. Dennis
- Department of Aquatic Ecology; Eawag: Swiss Federal Institute of Aquatic Science and Technology; Dübendorf Switzerland
| | - Zach Gompert
- Department of Biology; Utah State University; Logan UT USA
| | - Patrik Nosil
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
| |
Collapse
|
7
|
Teotónio H, Estes S, Phillips PC, Baer CF. Experimental Evolution with Caenorhabditis Nematodes. Genetics 2017; 206:691-716. [PMID: 28592504 PMCID: PMC5499180 DOI: 10.1534/genetics.115.186288] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 03/07/2017] [Indexed: 12/17/2022] Open
Abstract
The hermaphroditic nematode Caenorhabditis elegans has been one of the primary model systems in biology since the 1970s, but only within the last two decades has this nematode also become a useful model for experimental evolution. Here, we outline the goals and major foci of experimental evolution with C. elegans and related species, such as C. briggsae and C. remanei, by discussing the principles of experimental design, and highlighting the strengths and limitations of Caenorhabditis as model systems. We then review three exemplars of Caenorhabditis experimental evolution studies, underlining representative evolution experiments that have addressed the: (1) maintenance of genetic variation; (2) role of natural selection during transitions from outcrossing to selfing, as well as the maintenance of mixed breeding modes during evolution; and (3) evolution of phenotypic plasticity and its role in adaptation to variable environments, including host-pathogen coevolution. We conclude by suggesting some future directions for which experimental evolution with Caenorhabditis would be particularly informative.
Collapse
Affiliation(s)
- Henrique Teotónio
- Institut de Biologie de l´École Normale Supérieure (IBENS), Institut National de la Santé et de la Recherche Médicale U1024, Centre Nationnal de la Recherche Scientifique Unité Mixte de Recherche 8197, Paris Sciences et Lettres Research University, 75005 Paris, France
| | - Suzanne Estes
- Department of Biology, Portland State University, Oregon 97201
| | - Patrick C Phillips
- Institute of Ecology and Evolution, 5289 University of Oregon, Eugene, Oregon 97403, and
| | - Charles F Baer
- Department of Biology, and
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
8
|
Lenz TL, Spirin V, Jordan DM, Sunyaev SR. Excess of Deleterious Mutations around HLA Genes Reveals Evolutionary Cost of Balancing Selection. Mol Biol Evol 2016; 33:2555-64. [PMID: 27436009 PMCID: PMC5026253 DOI: 10.1093/molbev/msw127] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Deleterious mutations are expected to evolve under negative selection and are usually purged from the population. However, deleterious alleles segregate in the human population and some disease-associated variants are maintained at considerable frequencies. Here, we test the hypothesis that balancing selection may counteract purifying selection in neighboring regions and thus maintain deleterious variants at higher frequency than expected from their detrimental fitness effect. We first show in realistic simulations that balancing selection reduces the density of polymorphic sites surrounding a locus under balancing selection, but at the same time markedly increases the population frequency of the remaining variants, including even substantially deleterious alleles. To test the predictions of our simulations empirically, we then use whole-exome sequencing data from 6,500 human individuals and focus on the most established example for balancing selection in the human genome, the major histocompatibility complex (MHC). Our analysis shows an elevated frequency of putatively deleterious coding variants in nonhuman leukocyte antigen (non-HLA) genes localized in the MHC region. The mean frequency of these variants declined with physical distance from the classical HLA genes, indicating dependency on genetic linkage. These results reveal an indirect cost of the genetic diversity maintained by balancing selection, which has hitherto been perceived as mostly advantageous, and have implications both for the evolution of recombination and also for the epidemiology of various MHC-associated diseases.
Collapse
Affiliation(s)
- Tobias L Lenz
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School Evolutionary Immunogenomics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Victor Spirin
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School
| | - Daniel M Jordan
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School
| | - Shamil R Sunyaev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School Program in Medical and Population Genetics, The Broad Institute, Cambridge, MA
| |
Collapse
|
9
|
Sazzini M, De Fanti S, Cherubini A, Quagliariello A, Profiti G, Martelli PL, Casadio R, Ricci C, Campieri M, Lanzini A, Volta U, Caio G, Franceschi C, Spisni E, Luiselli D. Ancient pathogen-driven adaptation triggers increased susceptibility to non-celiac wheat sensitivity in present-day European populations. GENES & NUTRITION 2016; 11:15. [PMID: 27551316 PMCID: PMC4968434 DOI: 10.1186/s12263-016-0532-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 05/11/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Non-celiac wheat sensitivity is an emerging wheat-related syndrome showing peak prevalence in Western populations. Recent studies hypothesize that new gliadin alleles introduced in the human diet by replacement of ancient wheat with modern varieties can prompt immune responses mediated by the CXCR3-chemokine axis potentially underlying such pathogenic inflammation. This cultural shift may also explain disease epidemiology, having turned European-specific adaptive alleles previously targeted by natural selection into disadvantageous ones. METHODS To explore this evolutionary scenario, we performed ultra-deep sequencing of genes pivotal in the CXCR3-inflammatory pathway on individuals diagnosed for non-celiac wheat sensitivity and we applied anthropological evolutionary genetics methods to sequence data from worldwide populations to investigate the genetic legacy of natural selection on these loci. RESULTS Our results indicate that balancing selection has maintained two divergent CXCL10/CXCL11 haplotypes in Europeans, one responsible for boosting inflammatory reactions and another for encoding moderate chemokine expression. CONCLUSIONS This led to considerably higher occurrence of the former haplotype in Western people than in Africans and East Asians, suggesting that they might be more prone to side effects related to the consumption of modern wheat varieties. Accordingly, this study contributed to shed new light on some of the mechanisms potentially involved in the disease etiology and on the evolutionary bases of its present-day epidemiological patterns. Moreover, overrepresentation of disease homozygotes for the dis-adaptive haplotype plausibly accounts for their even more enhanced CXCR3-axis expression and for their further increase in disease risk, representing a promising finding to be validated by larger follow-up studies.
Collapse
Affiliation(s)
- Marco Sazzini
- Laboratory of Molecular Anthropology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
- Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
| | - Sara De Fanti
- Laboratory of Molecular Anthropology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
- Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
| | - Anna Cherubini
- Laboratory of Molecular Anthropology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
- Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
| | - Andrea Quagliariello
- Laboratory of Molecular Anthropology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
- Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
| | - Giuseppe Profiti
- Department of Biological, Biocomputing Group, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
- CIRI Health Science and Technologies, University of Bologna, 40064 Ozzano dell’Emilia, Bologna, Italy
| | - Pier Luigi Martelli
- Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
- Department of Biological, Biocomputing Group, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Rita Casadio
- Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
- Department of Biological, Biocomputing Group, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Chiara Ricci
- Department of Clinical and Experimental Sciences, Gastroenterology Unit, Spedali Civili, University of Brescia, 25123 Brescia, Italy
| | - Massimo Campieri
- Department of Medical and Surgical Sciences, Digestive Diseases and Internal Medicine Unit, St. Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy
| | - Alberto Lanzini
- Department of Clinical and Experimental Sciences, Gastroenterology Unit, Spedali Civili, University of Brescia, 25123 Brescia, Italy
| | - Umberto Volta
- Department of Medical and Surgical Sciences, Digestive Diseases and Internal Medicine Unit, St. Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy
| | - Giacomo Caio
- Department of Medical and Surgical Sciences, Digestive Diseases and Internal Medicine Unit, St. Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Enzo Spisni
- Department of Biological, Unit of Gut Physiopathology and Nutrition, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- Laboratory of Molecular Anthropology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
- Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
| |
Collapse
|
10
|
Lapierre M, Blin C, Lambert A, Achaz G, Rocha EPC. The Impact of Selection, Gene Conversion, and Biased Sampling on the Assessment of Microbial Demography. Mol Biol Evol 2016; 33:1711-25. [PMID: 26931140 PMCID: PMC4915353 DOI: 10.1093/molbev/msw048] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent studies have linked demographic changes and epidemiological patterns in bacterial populations using coalescent-based approaches. We identified 26 studies using skyline plots and found that 21 inferred overall population expansion. This surprising result led us to analyze the impact of natural selection, recombination (gene conversion), and sampling biases on demographic inference using skyline plots and site frequency spectra (SFS). Forward simulations based on biologically relevant parameters from Escherichia coli populations showed that theoretical arguments on the detrimental impact of recombination and especially natural selection on the reconstructed genealogies cannot be ignored in practice. In fact, both processes systematically lead to spurious interpretations of population expansion in skyline plots (and in SFS for selection). Weak purifying selection, and especially positive selection, had important effects on skyline plots, showing patterns akin to those of population expansions. State-of-the-art techniques to remove recombination further amplified these biases. We simulated three common sampling biases in microbiological research: uniform, clustered, and mixed sampling. Alone, or together with recombination and selection, they further mislead demographic inferences producing almost any possible skyline shape or SFS. Interestingly, sampling sub-populations also affected skyline plots and SFS, because the coalescent rates of populations and their sub-populations had different distributions. This study suggests that extreme caution is needed to infer demographic changes solely based on reconstructed genealogies. We suggest that the development of novel sampling strategies and the joint analyzes of diverse population genetic methods are strictly necessary to estimate demographic changes in populations where selection, recombination, and biased sampling are present.
Collapse
Affiliation(s)
- Marguerite Lapierre
- Atelier de Bioinformatique, UMR7205 ISYEB, MNHN-UPMC-CNRS-EPHE, Muséum National d'Histoire Naturelle, Paris, France Collège de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, Paris, France
| | - Camille Blin
- Sorbonne Universités, UPMC Univ Paris06, IFD, 4 Place Jussieu, Paris Cedex05, France Institut Pasteur, Microbial Evolutionary Genomics, Paris, France CNRS, UMR3525, Paris, France
| | - Amaury Lambert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, Paris, France UPMC Univ Paris 06, Laboratoire de Probabilités et Modèles Aléatoires (LPMA), CNRS UMR 7599, Paris, France
| | - Guillaume Achaz
- Atelier de Bioinformatique, UMR7205 ISYEB, MNHN-UPMC-CNRS-EPHE, Muséum National d'Histoire Naturelle, Paris, France Collège de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Microbial Evolutionary Genomics, Paris, France CNRS, UMR3525, Paris, France
| |
Collapse
|
11
|
Sasazuki T, Inoko H, Morishima S, Morishima Y. Gene Map of the HLA Region, Graves’ Disease and Hashimoto Thyroiditis, and Hematopoietic Stem Cell Transplantation. Adv Immunol 2016; 129:175-249. [DOI: 10.1016/bs.ai.2015.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Sheehan MJ, Nachman MW. Morphological and population genomic evidence that human faces have evolved to signal individual identity. Nat Commun 2014; 5:4800. [PMID: 25226282 PMCID: PMC4257785 DOI: 10.1038/ncomms5800] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/24/2014] [Indexed: 12/21/2022] Open
Abstract
Facial recognition plays a key role in human interactions, and there has been great interest in understanding the evolution of human abilities for individual recognition and tracking social relationships. Individual recognition requires sufficient cognitive abilities and phenotypic diversity within a population for discrimination to be possible. Despite the importance of facial recognition in humans, the evolution of facial identity has received little attention. Here we demonstrate that faces evolved to signal individual identity under negative frequency-dependent selection. Faces show elevated phenotypic variation and lower between-trait correlations compared with other traits. Regions surrounding face-associated single nucleotide polymorphisms show elevated diversity consistent with frequency-dependent selection. Genetic variation maintained by identity signalling tends to be shared across populations and, for some loci, predates the origin of Homo sapiens. Studies of human social evolution tend to emphasize cognitive adaptations, but we show that social evolution has shaped patterns of human phenotypic and genetic diversity as well.
Collapse
Affiliation(s)
- Michael J Sheehan
- Museum of Comparative Zoology and Integrative Biology, University of California, 3101 Valley Life Science Building, Berkeley, California 94720, USA
| | - Michael W Nachman
- Museum of Comparative Zoology and Integrative Biology, University of California, 3101 Valley Life Science Building, Berkeley, California 94720, USA
| |
Collapse
|
13
|
Risso D, Tofanelli S, Morini G, Luiselli D, Drayna D. Genetic variation in taste receptor pseudogenes provides evidence for a dynamic role in human evolution. BMC Evol Biol 2014; 14:198. [PMID: 25216916 PMCID: PMC4172856 DOI: 10.1186/s12862-014-0198-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/01/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Human bitter taste receptors are encoded by a gene family consisting of 25 functional TAS2R loci. In addition, humans carry 11 TAS2R pseudogenes, some of which display evidence for substantial diversification among species, showing lineage-specific loss of function. Since bitter taste is thought to help prevent the intake of toxic substances, diversity at TAS2R genes could reflect the action of natural selection on the ability to recognize some bitter compounds rather than others. Whether species-specific variation in TAS2R pseudogenes is solely the result of genetic drift or whether it may have been influenced by selection due to different feeding behaviors has been an open question. RESULTS In this study, we analyzed patterns of variation at human TAS2R pseudogenes in both African and non-African populations, and compared them to those observable in nonhuman primates and archaic human species. Our results showed a similar worldwide distribution of allelic variation for most of the pseudogenes, with the exception of the TAS2R6P and TAS2R18P loci, both of which presented an unexpected higher frequency of derived alleles outside Africa. At the TAS2R6P locus, two SNPs were found in strong linkage disequilibrium (r2 > 0.9) with variants in the functional TAS2R5 gene, which showed signatures of selection. The human TAS2R18P carried a species-specific stop-codon upstream of four polymorphic insertions in the reading frame. SNPs at this locus showed significant positive values in a number of neutrality statistics, and age estimates indicated that they arose after the homo-chimp divergence. CONCLUSIONS The similar distribution of variation of many human bitter receptor pseudogenes among human populations suggests that they arose from the ancestral forms by a unidirectional loss of function. However we explain the higher frequency of TAS2R6P derived alleles outside Africa as the effect of the balancing selection acting on the closely linked TAS2R5 gene. In contrast, TAS2R18P displayed a more complex history, suggesting an acquired function followed by a recent pseudogenization that predated the divergence of human modern and archaic species, which we hypothesize was associated with adaptions to dietary changes.
Collapse
|
14
|
de Simoni Gouveia JJ, da Silva MVGB, Paiva SR, de Oliveira SMP. Identification of selection signatures in livestock species. Genet Mol Biol 2014; 37:330-42. [PMID: 25071397 PMCID: PMC4094609 DOI: 10.1590/s1415-47572014000300004] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 02/27/2014] [Indexed: 11/22/2022] Open
Abstract
The identification of regions that have undergone selection is one of the principal goals of theoretical and applied evolutionary genetics. Such studies can also provide information about the evolutionary processes involved in shaping genomes, as well as physical and functional information about genes/genomic regions. Domestication followed by breed formation and selection schemes has allowed the formation of very diverse livestock breeds adapted to a wide variety of environments and with special characteristics. The advances in genomics in the last five years have enabled the development of several methods to detect selection signatures and have resulted in the publication of a considerable number of studies involving livestock species. The aims of this review are to describe the principal effects of natural/artificial selection on livestock genomes, to present the main methods used to detect selection signatures and to discuss some recent results in this area. This review should be useful also to research scientists working with wild animals/non-domesticated species and plant biologists working with breeding and evolutionary biology.
Collapse
Affiliation(s)
- João José de Simoni Gouveia
- Colegiado Acadêmico de Zootecnia , Universidade Federal do Vale do São Francisco , Petrolina, PE , Brazil . ; Programa de Doutorado Integrado em Zootecnia , Universidade Federal do Ceará , Fortaleza, CE , Brazil
| | | | | | | |
Collapse
|
15
|
Timmermans MJTN, Baxter SW, Clark R, Heckel DG, Vogel H, Collins S, Papanicolaou A, Fukova I, Joron M, Thompson MJ, Jiggins CD, ffrench-Constant RH, Vogler AP. Comparative genomics of the mimicry switch in Papilio dardanus. Proc Biol Sci 2014; 281:rspb.2014.0465. [PMID: 24920480 PMCID: PMC4071540 DOI: 10.1098/rspb.2014.0465] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The African Mocker Swallowtail, Papilio dardanus, is a textbook example in evolutionary genetics. Classical breeding experiments have shown that wing pattern variation in this polymorphic Batesian mimic is determined by the polyallelic H locus that controls a set of distinct mimetic phenotypes. Using bacterial artificial chromosome (BAC) sequencing, recombination analyses and comparative genomics, we show that H co-segregates with an interval of less than 500 kb that is collinear with two other Lepidoptera genomes and contains 24 genes, including the transcription factor genes engrailed (en) and invected (inv). H is located in a region of conserved gene order, which argues against any role for genomic translocations in the evolution of a hypothesized multi-gene mimicry locus. Natural populations of P. dardanus show significant associations of specific morphs with single nucleotide polymorphisms (SNPs), centred on en. In addition, SNP variation in the H region reveals evidence of non-neutral molecular evolution in the en gene alone. We find evidence for a duplication potentially driving physical constraints on recombination in the lamborni morph. Absence of perfect linkage disequilibrium between different genes in the other morphs suggests that H is limited to nucleotide positions in the regulatory and coding regions of en. Our results therefore support the hypothesis that a single gene underlies wing pattern variation in P. dardanus.
Collapse
Affiliation(s)
- Martijn J T N Timmermans
- Department of Life Science, Natural History Museum London, London SW7 5BD, UK Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Simon W Baxter
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Rebecca Clark
- Department of Life Science, Natural History Museum London, London SW7 5BD, UK Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - David G Heckel
- Max Planck Institute for Chemical Ecology, Beutenberg Campus, Jena 07745, Germany
| | - Heiko Vogel
- Max Planck Institute for Chemical Ecology, Beutenberg Campus, Jena 07745, Germany
| | - Steve Collins
- African Butterfly Research Institute, 0800 Westlands, Nairobi 14308, Kenya
| | - Alexie Papanicolaou
- School of Biosciences, University of Exeter, Cornwall Campus, Daphne du Maurier Building, Penryn TR10 9EZ, UK CSIRO Ecosystem Sciences, Black Mountain Laboratories, Canberra 2601, Australia
| | - Iva Fukova
- School of Biosciences, University of Exeter, Cornwall Campus, Daphne du Maurier Building, Penryn TR10 9EZ, UK
| | - Mathieu Joron
- Muséum National d'Histoire Naturelle, CNRS UMR 7205, CP50, 45 Rue Buffon, Paris 75005, France
| | - Martin J Thompson
- Department of Life Science, Natural History Museum London, London SW7 5BD, UK Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Richard H ffrench-Constant
- School of Biosciences, University of Exeter, Cornwall Campus, Daphne du Maurier Building, Penryn TR10 9EZ, UK
| | - Alfried P Vogler
- Department of Life Science, Natural History Museum London, London SW7 5BD, UK Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
16
|
Chelo IM, Carvalho S, Roque M, Proulx SR, Teotónio H. The genetic basis and experimental evolution of inbreeding depression in Caenorhabditis elegans. Heredity (Edinb) 2013; 112:248-54. [PMID: 24129606 PMCID: PMC3931175 DOI: 10.1038/hdy.2013.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 01/24/2023] Open
Abstract
Determining the genetic basis of inbreeding depression is important for understanding the
role of selection in the evolution of mixed breeding systems. Here, we investigate how
androdioecy (a breeding system characterized by partial selfing and outcrossing) and
dioecy (characterized by obligatory outcrossing) influence the experimental evolution of
inbreeding depression in Caenorhabditis elegans. We derived inbred lines from
ancestral and evolved populations and found that the dioecious lineages underwent more
extinction than androdioecious lineages. For both breeding systems, however, there was
selection during inbreeding because the diversity patterns of 337 single-nucleotide
polymorphisms (SNPs) among surviving inbred lines deviated from neutral expectations. In
parallel, we also followed the evolution of embryo to adult viability, which revealed
similar starting levels of inbreeding depression in both breeding systems, but also
outbreeding depression. Under androdioecy, diversity at a neutral subset of 134 SNPs
correlated well with the viability trajectories, showing that the population genetic
structure imposed by partial selfing affected the opportunity for different forms of
selection. Our findings suggest that the interplay between the disruptions of coevolved
sets of loci by outcrossing, the efficient purging of deleterious recessive alleles with
selfing and overdominant selection with outcrossing can help explain mixed breeding
systems.
Collapse
Affiliation(s)
- I M Chelo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - S Carvalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - M Roque
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - S R Proulx
- Department of Ecology Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - H Teotónio
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
17
|
Testing single-sample estimators of effective population size in genetically structured populations. CONSERV GENET 2013. [DOI: 10.1007/s10592-013-0518-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Chelo IM, Teotónio H. The opportunity for balancing selection in experimental populations of Caenorhabditis elegans. Evolution 2012; 67:142-56. [PMID: 23289568 DOI: 10.1111/j.1558-5646.2012.01744.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of balancing selection in maintaining diversity during the evolution of sexual populations to novel environments is poorly understood. To address this issue, we studied the impact of two mating systems, androdioecy and dioecy, on genotype distributions during the experimental evolution of Caenorhabditis elegans. We analyzed the temporal trajectories of 334 single nucleotide polymorphisms, covering 1/3 of the genome, and found extensive allele frequency changes and little loss of heterozygosities after 100 generations. As modeled with numerical simulations, SNP differentiation was consistent with genetic drift and average fitness effects of 2%, assuming that selection acted independently at each locus. Remarkably, inbreeding by self-fertilization was of little consequence to SNP differentiation. Modeling selection on deleterious recessive alleles suggests that the initial evolutionary dynamics can be explained by associative overdominance, but not the later stages because much lower heterozygosities would be maintained during experimental evolution. By contrast, models with selection on true overdominant loci can explain the heterozygote excess observed at all periods, particularly when negative epistasis or independent fitness effects were considered. Overall, these findings indicate that selection at single loci, including purging of recessive alleles, underlies most of the genetic differentiation accomplished during the experiment. Nonetheless, they also imply that maintenance of genetic diversity may in large part be due to balancing selection at multiple loci.
Collapse
Affiliation(s)
- Ivo M Chelo
- Instituto Gulbenkian de Ciência, Apartado 14, P-2781-901 Oeiras, Portugal
| | | |
Collapse
|
19
|
Abstract
Molecules involved in leukocyte trafficking have a central role in the development of inflammatory and immune responses. We performed F(ST) analysis of the selectin cluster, as well as of SELPLG, ICAM1 and VCAM1. Peaks of significantly high population genetic differentiation were restricted to two regions in SELP and one in SELPLG. Resequencing data indicated that the region covering SELP exons 11-13 displays high nucleotide diversity in Africans and Europeans (CEU), and a high level of within-species diversity compared with inter-specific divergence. Analysis of inferred haplotypes revealed a complex phylogeny with two deeply separated clades that coalesce at ~3.5 million years (MY) plus a minor clade with a TMRCA (time to the most recent common ancestor) of ~2.2 MY. A splicing assay indicated no haplotype-specific effect on SELP exon 14 inclusion. These data are consistent with a model of multiallelic balancing selection; single-nucleotide polymorphism analysis indicated that the Val640Leu variant represents a likely selection target. In populations of Asian ancestry a distinct haplotype, possibly carrying regulatory variants, has been driven to high frequency by positive selection. No deviation from neutrality was observed for the SELPLG region. Resequencing of SELP in chimpanzees revealed a haplotype phylogeny with extremely deep basal branches, suggesting either long-standing balancing selection or ancestral population structure. Thus, SELP has experienced a complex selective history, possibly as a result of local adaptation. Variants in the gene have been associated with autoimmune and cardiovascular diseases. Association studies would benefit from both taking the complex SELP haplotype structure into account and from analysis of possible regulatory variants in the gene.
Collapse
|
20
|
Altitudinal variation at duplicated β-globin genes in deer mice: effects of selection, recombination, and gene conversion. Genetics 2011; 190:203-16. [PMID: 22042573 DOI: 10.1534/genetics.111.134494] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spatially varying selection on a given polymorphism is expected to produce a localized peak in the between-population component of nucleotide diversity, and theory suggests that the chromosomal extent of elevated differentiation may be enhanced in cases where tandemly linked genes contribute to fitness variation. An intriguing example is provided by the tandemly duplicated β-globin genes of deer mice (Peromyscus maniculatus), which contribute to adaptive differentiation in blood-oxygen affinity between high- and low-altitude populations. Remarkably, the two β-globin genes segregate the same pair of functionally distinct alleles due to a history of interparalog gene conversion and alleles of the same functional type are in perfect coupling-phase linkage disequilibrium (LD). Here we report a multilocus analysis of nucleotide polymorphism and LD in highland and lowland mice with different genetic backgrounds at the β-globin genes. The analysis of haplotype structure revealed a paradoxical pattern whereby perfect LD between the two β-globin paralogs (which are separated by 16.2 kb) is maintained in spite of the fact that LD within both paralogs decays to background levels over physical distances of less than 1 kb. The survey of nucleotide polymorphism revealed that elevated levels of altitudinal differentiation at each of the β-globin genes drop away quite rapidly in the external flanking regions (upstream of the 5' paralog and downstream of the 3' paralog), but the level of differentiation remains unexpectedly high across the intergenic region. Observed patterns of diversity and haplotype structure are difficult to reconcile with expectations of a two-locus selection model with multiplicative fitness.
Collapse
|
21
|
Abstract
SummaryPopulation genomics is the study of the amount and causes of genome-wide variability in natural populations, a topic that has been under discussion since Darwin. This paper first briefly reviews the early development of molecular approaches to the subject: the pioneering unbiased surveys of genetic variability at multiple loci by means of gel electrophoresis and restriction enzyme mapping. The results of surveys of levels of genome-wide variability using DNA resequencing studies are then discussed. Studies of the extent to which variability for different classes of variants (non-synonymous, synonymous and non-coding) are affected by natural selection, or other directional forces such as biased gene conversion, are also described. Finally, the effects of deleterious mutations on population fitness and the possible role of Hill–Robertson interference in shaping patterns of sequence variability are discussed.
Collapse
|
22
|
Abstract
The prevalence of recombination in eukaryotes poses one of the most puzzling questions in biology. The most compelling general explanation is that recombination facilitates selection by breaking down the negative associations generated by random drift (i.e. Hill-Robertson interference, HRI). I classify the effects of HRI owing to: deleterious mutation, balancing selection and selective sweeps on: neutral diversity, rates of adaptation and the mutation load. These effects are mediated primarily by the density of deleterious mutations and of selective sweeps. Sequence polymorphism and divergence suggest that these rates may be high enough to cause significant interference even in genomic regions of high recombination. However, neither seems able to generate enough variance in fitness to select strongly for high rates of recombination. It is plausible that spatial and temporal fluctuations in selection generate much more fitness variance, and hence selection for recombination, than can be explained by uniformly deleterious mutations or species-wide selective sweeps.
Collapse
Affiliation(s)
- N H Barton
- Institute of Science and Technology, Am Campus 1, A-3400 Klosterneuburg, Austria.
| |
Collapse
|
23
|
Engh IB, Skrede I, Sætre GP, Kauserud H. High variability in a mating type linked region in the dry rot fungus Serpula lacrymans caused by frequency-dependent selection? BMC Genet 2010; 11:64. [PMID: 20624315 PMCID: PMC2909151 DOI: 10.1186/1471-2156-11-64] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 07/12/2010] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The mating type loci that govern the mating process in fungi are thought to be influenced by negative frequency-dependent selection due to rare allele advantage. In this study we used a mating type linked DNA marker as a proxy to indirectly study the allelic richness and geographic distribution of mating types of one mating type locus (MAT A) in worldwide populations of the dry rot fungus Serpula lacrymans. This fungus, which causes serious destruction to wooden constructions in temperate regions worldwide, has recently expanded its geographic range with a concomitant genetic bottleneck. RESULTS High allelic richness and molecular variation was detected in the mating type linked marker as compared to other presumably neutral markers. Comparable amounts of genetic variation appeared in the mating type linked marker in populations from nature and buildings, which contrast the pattern observed with neutral genetic markers where natural populations were far more variable. Some geographic structuring of the allelic variation in the mating type linked marker appeared, but far less than that observed with neutral markers. In founder populations of S. lacrymans, alleles co-occurring in heterokaryotic individuals were more divergent than expected by chance, which agrees with the expectation for populations where few mating alleles exists. The analyzed DNA marker displays trans-species polymorphism wherein some alleles from the closely related species S. himantoides are more similar to those of S. lacrymans than other alleles from S. himantoides. CONCLUSIONS Our results support the idea that strong negative frequency-dependent selection maintains high levels of genetic variation in MAT-linked genomic regions, even in recently bottlenecked populations of S. lacrymans.
Collapse
Affiliation(s)
- Ingeborg Bjorvand Engh
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway
| | - Inger Skrede
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway
| | - Glenn-Peter Sætre
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway
| | - Håvard Kauserud
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway
| |
Collapse
|
24
|
Lambert CA, Tishkoff SA. Genetic structure in African populations: implications for human demographic history. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2010; 74:395-402. [PMID: 20453204 DOI: 10.1101/sqb.2009.74.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The continent of Africa is the source of all anatomically modern humans that dispersed across the planet during the past 100,000 years. As such, African populations are characterized by high genetic diversity and low levels of linkage disequilibrium (LD) among loci, as compared to populations from other continents. African populations also possess a number of genetic adaptations that have evolved in response to the diverse climates, diets, geographic environments, and infectious agents that characterize the African continent. Recently, Tishkoff et al. (2009) performed a genome-wide analysis of substructure based on DNA from 2432 Africans from 121 geographically diverse populations. The authors analyzed patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers and identified 14 ancestral population clusters that correlate well with self-described ethnicity and shared cultural or linguistic properties. The results suggest that African populations may have maintained a large and subdivided population structure throughout much of their evolutionary history. In this chapter, we synthesize recent work documenting evidence of African population structure and discuss the implications for inferences about evolutionary history in both African populations and anatomically modern humans as a whole.
Collapse
Affiliation(s)
- C A Lambert
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
25
|
Remarkably ancient balanced polymorphisms in a multi-locus gene network. Nature 2010; 464:54-8. [PMID: 20164837 PMCID: PMC2834422 DOI: 10.1038/nature08791] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 12/15/2009] [Indexed: 11/25/2022]
Abstract
Local adaptations within species are often governed by several interacting genes scattered throughout the genome. Single-locus models of selection cannot explain the maintenance of such complex variation because recombination separates co-adapted alleles. Here we report a novel type of intraspecific multi-locus genetic variation that has been maintained over a vast period of time. The galactose (GAL) utilization gene network of the brewer’s yeast relative Saccharomyces kudriavzevii exists in two distinct states: a functional gene network in Portuguese strains and, in Japanese strains, a non-functional gene network of allelic pseudogenes. Genome sequencing of all available S. kudriavzevii strains revealed that none of the functional GAL genes were acquired from other species. Rather, these polymorphisms have been maintained for nearly the entire history of the species, despite more recent gene flow genome-wide. Experimental evidence suggests that inactivation of the GAL3 and GAL80 regulatory genes facilitated the origin and long-term maintenance of the two gene network states. This striking example of a balanced unlinked gene network polymorphism introduces a remarkable type of intraspecific variation that may be widespread.
Collapse
|
26
|
O'Fallon BD, Seger J, Adler FR. A continuous-state coalescent and the impact of weak selection on the structure of gene genealogies. Mol Biol Evol 2010; 27:1162-72. [PMID: 20097659 DOI: 10.1093/molbev/msq006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Coalescent theory provides an elegant and powerful method for understanding the shape of gene genealogies and resulting patterns of genetic diversity. However, the coalescent does not naturally accommodate the effects of heritable variation in fitness. Although some methods are available for studying the effects of strong selection (Ns >> 1), few tools beyond forward simulation are available for quantifying the impact of weak selection at many sites. Here, we introduce a continuous-state coalescent capable of accurately describing the distortions to genealogies caused by moderate to weak natural selection affecting many linked sites. We calculate approximately the full distribution of pairwise coalescent times, the lengths of coalescent intervals, and the time to the most recent common ancestor of a sample. Weak selection (Ns approximately 1) is found to substantially decrease the tree depth, primarily through a shortening of the lengths of the basal coalescent intervals. Additionally, we demonstrate that only two parameters, population size and the variance of the distribution describing fitness heritability, are sufficient to describe most changes.
Collapse
|
27
|
Andrés AM, Hubisz MJ, Indap A, Torgerson DG, Degenhardt JD, Boyko AR, Gutenkunst RN, White TJ, Green ED, Bustamante CD, Clark AG, Nielsen R. Targets of balancing selection in the human genome. Mol Biol Evol 2009; 26:2755-64. [PMID: 19713326 PMCID: PMC2782326 DOI: 10.1093/molbev/msp190] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2009] [Indexed: 12/29/2022] Open
Abstract
Balancing selection is potentially an important biological force for maintaining advantageous genetic diversity in populations, including variation that is responsible for long-term adaptation to the environment. By serving as a means to maintain genetic variation, it may be particularly relevant to maintaining phenotypic variation in natural populations. Nevertheless, its prevalence and specific targets in the human genome remain largely unknown. We have analyzed the patterns of diversity and divergence of 13,400 genes in two human populations using an unbiased single-nucleotide polymorphism data set, a genome-wide approach, and a method that incorporates demography in neutrality tests. We identified an unbiased catalog of genes with signatures of long-term balancing selection, which includes immunity genes as well as genes encoding keratins and membrane channels; the catalog also shows enrichment in functional categories involved in cellular structure. Patterns are mostly concordant in the two populations, with a small fraction of genes showing population-specific signatures of selection. Power considerations indicate that our findings represent a subset of all targets in the genome, suggesting that although balancing selection may not have an obvious impact on a large proportion of human genes, it is a key force affecting the evolution of a number of genes in humans.
Collapse
Affiliation(s)
- Aida M Andrés
- Department of Molecular Biology and Genetics, Cornell University, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wheat CW, Haag CR, Marden JH, Hanski I, Frilander MJ. Nucleotide Polymorphism at a Gene (Pgi) under Balancing Selection in a Butterfly Metapopulation. Mol Biol Evol 2009; 27:267-81. [PMID: 19793833 DOI: 10.1093/molbev/msp227] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Christopher W Wheat
- Department of Biological and Environmental Sciences, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
29
|
Abstract
The genealogical consequences of within-generation fecundity variance polymorphism are studied using coalescent processes structured by genetic backgrounds. I show that these processes have three distinctive features. The first is that the coalescent rates within backgrounds are not jointly proportional to the infinitesimal variance, but instead depend only on the frequencies and traits of genotypes containing each allele. Second, the coalescent processes at unlinked loci are correlated with the genealogy at the selected locus; i.e., fecundity variance polymorphism has a genomewide impact on genealogies. Third, in diploid models, there are infinitely many combinations of fecundity distributions that have the same diffusion approximation but distinct coalescent processes; i.e., in this class of models, ancestral processes and allele frequency dynamics are not in one-to-one correspondence. Similar properties are expected to hold in models that allow for heritable variation in other traits that affect the coalescent effective population size, such as sex ratio or fecundity and survival schedules.
Collapse
|
30
|
Shiina T, Hosomichi K, Inoko H, Kulski JK. The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet 2009; 54:15-39. [PMID: 19158813 DOI: 10.1038/jhg.2008.5] [Citation(s) in RCA: 515] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human leukocyte antigen (HLA) super-locus is a genomic region in the chromosomal position 6p21 that encodes the six classical transplantation HLA genes and at least 132 protein coding genes that have important roles in the regulation of the immune system as well as some other fundamental molecular and cellular processes. This small segment of the human genome has been associated with more than 100 different diseases, including common diseases, such as diabetes, rheumatoid arthritis, psoriasis, asthma and various other autoimmune disorders. The first complete and continuous HLA 3.6 Mb genomic sequence was reported in 1999 with the annotation of 224 gene loci, including coding and non-coding genes that were reviewed extensively in 2004. In this review, we present (1) an updated list of all the HLA gene symbols, gene names, expression status, Online Mendelian Inheritance in Man (OMIM) numbers, including new genes, and latest changes to gene names and symbols, (2) a regional analysis of the extended class I, class I, class III, class II and extended class II subregions, (3) a summary of the interspersed repeats (retrotransposons and transposons), (4) examples of the sequence diversity between different HLA haplotypes, (5) intra- and extra-HLA gene interactions and (6) some of the HLA gene expression profiles and HLA genes associated with autoimmune and infectious diseases. Overall, the degrees and types of HLA super-locus coordinated gene expression profiles and gene variations have yet to be fully elucidated, integrated and defined for the processes involved with normal cellular and tissue physiology, inflammatory and immune responses, and autoimmune and infectious diseases.
Collapse
Affiliation(s)
- Takashi Shiina
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan.
| | | | | | | |
Collapse
|
31
|
Effects of spatially varying selection on nucleotide diversity and linkage disequilibrium: insights from deer mouse globin genes. Genetics 2008; 180:367-79. [PMID: 18716337 DOI: 10.1534/genetics.108.088732] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An important goal of population genetics is to elucidate the effects of natural selection on patterns of DNA sequence variation. Here we report results of a study to assess the joint effects of selection, recombination, and gene flow in shaping patterns of nucleotide variation at genes involved in local adaptation. We first describe a new summary statistic, Z(g), that measures the between-sample component of linkage disequilibrium (LD). We then report results of a multilocus survey of nucleotide diversity and LD between high- and low-altitude populations of deer mice, Peromyscus maniculatus. The multilocus survey included two closely linked alpha-globin genes, HBA-T1 and HBA-T2, that underlie adaptation to different elevational zones. The primary goals were to assess whether the alpha-globin genes exhibit the hallmarks of spatially varying selection that are predicted by theory (i.e., sharply defined peaks in the between-population components of nucleotide diversity and LD) and to assess whether peaks in diversity and LD may be useful for identifying specific sites that distinguish selectively maintained alleles. Consistent with theoretical expectations, HBA-T1 and HBA-T2 were characterized by highly elevated levels of diversity between populations and between allele classes. Simulation and empirical results indicate that sliding-window analyses of Z(g) between allele classes may provide an effective means of pinpointing causal substitutions.
Collapse
|
32
|
Ferrer-Admetlla A, Bosch E, Sikora M, Marquès-Bonet T, Ramírez-Soriano A, Muntasell A, Navarro A, Lazarus R, Calafell F, Bertranpetit J, Casals F. Balancing selection is the main force shaping the evolution of innate immunity genes. THE JOURNAL OF IMMUNOLOGY 2008; 181:1315-22. [PMID: 18606686 DOI: 10.4049/jimmunol.181.2.1315] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The evolutionarily recent geographic expansion of humans, and the even more recent development of large, relatively dense human settlements, has exposed our species to new pathogenic environments. Potentially lethal pathogens are likely to have exerted important selective pressures on our genome, so immunity genes can be expected to show molecular signatures of the adaptation of human populations to these recent conditions. While genes related to the acquired immunity system have indeed been reported to show traces of local adaptation, little is known about the response of the innate immunity system. In this study, we analyze the variability patterns in different human populations of fifteen genes related to innate immunity. We have used both single nucleotide polymorphism and sequence data, and through the analysis of interpopulation differentiation, the linkage disequilibrium pattern, and intrapopulation diversity, we have discovered some signatures of positive and especially balancing selection in these genes, thus confirming the importance of the immune system genetic plasticity in the evolutionary adaptive process. Interestingly, the strongest evidence is found in three TLR genes and CD14. These innate immunity genes play a pivotal role, being involved in the primary recognition of pathogens. In general, more evidences of selection appear in the European populations, in some case possibly related to severe population specific pressures. However, we also describe evidence from African populations, which may reflect parallel or long-term selective forces acting in different geographic areas.
Collapse
Affiliation(s)
- Anna Ferrer-Admetlla
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Unitat de Biologia Evolutiva, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Carbone I, Jakobek JL, Ramirez-Prado JH, Horn BW. Recombination, balancing selection and adaptive evolution in the aflatoxin gene cluster of Aspergillus parasiticus. Mol Ecol 2007; 16:4401-17. [PMID: 17725568 DOI: 10.1111/j.1365-294x.2007.03464.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aflatoxins are toxic and carcinogenic polyketides produced by several Aspergillus species that are known to contaminate agricultural commodities, posing a serious threat to animal and human health. Aflatoxin (AF) biosynthesis is almost fully characterized and involves the coordinated expression of approximately 25 genes clustered in a 70-kb DNA region. Aspergillus parasiticus is an economically important and common agent of AF contamination. Naturally occurring nonaflatoxigenic strains of A. parasiticus are rarely found and generally produce O-methylsterigmatocystin (OMST), the immediate precursor of AF. To elucidate the evolutionary forces acting to retain AF and OMST pathway extrolites (chemotypes), we sequenced 21 intergenic regions spanning the entire cluster in 24 A. parasiticus isolates chosen to represent the genetic diversity within a single Georgia field population. Linkage disequilibrium analyses revealed five distinct recombination blocks in the A. parasiticus cluster. Phylogenetic network analyses showed a history of recombination between chemotype-specific haplotypes, as well as evidence of contemporary recombination. We performed coalescent simulations of variation in recombination blocks and found an approximately twofold deeper coalescence for cluster genealogies compared to noncluster genealogies, our internal standard of neutral evolution. Significantly deeper cluster genealogies are indicative of balancing selection in the AF cluster of A. parasiticus and are further corroborated by the existence of trans-species polymorphisms and common haplotypes in the cluster for several closely related species. Estimates of Ka/Ks for representative cluster genes provide evidence of selection for OMST and AF chemotypes, and indicate a possible role of chemotypes in ecological adaptation and speciation.
Collapse
Affiliation(s)
- Ignazio Carbone
- Center for Integrated Fungal Research, Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | |
Collapse
|
34
|
Kamau E, Charlesworth B, Charlesworth D. Linkage disequilibrium and recombination rate estimates in the self-incompatibility region of Arabidopsis lyrata. Genetics 2007; 176:2357-69. [PMID: 17565949 PMCID: PMC1950637 DOI: 10.1534/genetics.107.072231] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 05/17/2007] [Indexed: 11/18/2022] Open
Abstract
Genetic diversity is unusually high at loci in the S-locus region of the self-incompatible species of the flowering plant, Arabidopsis lyrata, not just in the S loci themselves, but also at two nearby loci. In a previous study of a single natural population from Iceland, we attributed this elevated polymorphism to linkage disequilibrium (LD) between variants at loci close to the S locus and the S alleles, which are maintained in the population by balancing selection. With the four S-flanking loci whose diversity we previously studied, we could not determine the extent of the region linked to the S loci in which neutral sites are affected. We also could not exclude the possibility of a population bottleneck, or of admixture, as causes of the LD. We have now studied four more distant loci flanking the S-locus region, and more populations, and we analyze the results using a theoretical model of the effect of balancing selection on diversity at linked neutral sites within and between different functional S-allelic classes. In the model, diversity is a function of the number of selectively maintained alleles and the recombination distances from the selectively maintained sites. We use the model to estimate the number of different functional S alleles, their turnover rate, and recombination rates between the S-locus region and other loci. Our estimates suggest that there is a small region of very low recombination surrounding the S-locus region.
Collapse
Affiliation(s)
- Esther Kamau
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, W. Mains Road, Edinburgh, United Kingdom
| | | | | |
Collapse
|
35
|
Storz JF, Baze M, Waite JL, Hoffmann FG, Opazo JC, Hayes JP. Complex signatures of selection and gene conversion in the duplicated globin genes of house mice. Genetics 2007; 177:481-500. [PMID: 17660536 PMCID: PMC2013706 DOI: 10.1534/genetics.107.078550] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Results of electrophoretic surveys have suggested that hemoglobin polymorphism may be maintained by balancing selection in natural populations of house mice, Mus musculus. Here we report a survey of nucleotide variation in the adult globin genes of house mice from South America. We surveyed nucleotide polymorphism in two closely linked alpha-globin paralogs and two closely linked beta-globin paralogs to test whether patterns of variation are consistent with a model of long-term balancing selection. Surprisingly high levels of nucleotide polymorphism at the two beta-globin paralogs were attributable to the segregation of two highly divergent haplotypes, Hbbs (which carries two identical beta-globin paralogs) and Hbbd (which carries two functionally divergent beta-globin paralogs). Interparalog gene conversion on the Hbbs haplotype has produced a highly unusual situation in which the two paralogs are more similar to one another than either one is to its allelic counterpart on the Hbbd haplotype. Levels of nucleotide polymorphism and linkage disequilibrium at the two beta-globin paralogs suggest a complex history of diversity-enhancing selection that may be responsible for long-term maintenance of alternative protein alleles. The alternative two-locus beta-globin haplotypes are associated with pronounced differences in intraerythrocyte glutathione and nitric oxide metabolism, suggesting a possible mechanism for selection on hemoglobin function.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Storz JF, Sabatino SJ, Hoffmann FG, Gering EJ, Moriyama H, Ferrand N, Monteiro B, Nachman MW. The molecular basis of high-altitude adaptation in deer mice. PLoS Genet 2007; 3:e45. [PMID: 17397259 PMCID: PMC1839143 DOI: 10.1371/journal.pgen.0030045] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 02/13/2007] [Indexed: 11/19/2022] Open
Abstract
Elucidating genetic mechanisms of adaptation is a goal of central importance in evolutionary biology, yet few empirical studies have succeeded in documenting causal links between molecular variation and organismal fitness in natural populations. Here we report a population genetic analysis of a two-locus alpha-globin polymorphism that underlies physiological adaptation to high-altitude hypoxia in natural populations of deer mice, Peromyscus maniculatus. This system provides a rare opportunity to examine the molecular underpinnings of fitness-related variation in protein function that can be related to a well-defined selection pressure. We surveyed DNA sequence variation in the duplicated alpha-globin genes of P. maniculatus from high- and low-altitude localities (i) to identify the specific mutations that may be responsible for the divergent fine-tuning of hemoglobin function and (ii) to test whether the genes exhibit the expected signature of diversifying selection between populations that inhabit different elevational zones. Results demonstrate that functionally distinct protein alleles are maintained as a long-term balanced polymorphism and that adaptive modifications of hemoglobin function are produced by the independent or joint effects of five amino acid mutations that modulate oxygen-binding affinity.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
McAllister BF, Evans AL. Increased nucleotide diversity with transient Y linkage in Drosophila americana. PLoS One 2006; 1:e112. [PMID: 17205116 PMCID: PMC1762432 DOI: 10.1371/journal.pone.0000112] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 11/21/2006] [Indexed: 11/19/2022] Open
Abstract
Recombination shapes nucleotide variation within genomes. Patterns are thought to arise from the local recombination landscape, influencing the degree to which neutral variation experiences hitchhiking with selected variation. This study examines DNA polymorphism along Chromosome 4 (element B) of Drosophila americana to identify effects of hitchhiking arising as a consequence of Y-linked transmission. A centromeric fusion between the X and 4(th) chromosomes segregates in natural populations of D. americana. Frequency of the X-4 fusion exhibits a strong positive correlation with latitude, which has explicit consequences for unfused 4(th) chromosomes. Unfused Chromosome 4 exists as a non-recombining Y chromosome or as an autosome proportional to the frequency of the X-4 fusion. Furthermore, Y linkage along the unfused 4 is disrupted as a function of the rate of recombination with the centromere. Inter-population and intra-chromosomal patterns of nucleotide diversity were assayed using six regions distributed along unfused 4(th) chromosomes derived from populations with different frequencies of the X-4 fusion. No difference in overall level of nucleotide diversity was detected among populations, yet variation along the chromosome exhibits a distinct pattern in relation to the X-4 fusion. Sequence diversity is inflated at loci experiencing the strongest Y linkage. These findings are inconsistent with the expected reduction in nucleotide diversity resulting from hitchhiking due to background selection or selective sweeps. In contrast, excessive polymorphism is accruing in association with transient Y linkage, and furthermore, hitchhiking with sexually antagonistic alleles is potentially responsible.
Collapse
Affiliation(s)
- Bryant F McAllister
- Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, Iowa, United States of America.
| | | |
Collapse
|
38
|
Kawabe A, Nasuda S, Charlesworth D. Duplication of centromeric histone H3 (HTR12) gene in Arabidopsis halleri and A. lyrata, plant species with multiple centromeric satellite sequences. Genetics 2006; 174:2021-32. [PMID: 17028323 PMCID: PMC1698631 DOI: 10.1534/genetics.106.063628] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Arabidopsis halleri and lyrata have three different major centromeric satellite sequences, a unique finding for a diploid Arabidopsis species. Since centromeric histones coevolve with centromeric satellites, these proteins would be predicted to show signs of selection when new centromere satellites have recently arisen. We isolated centromeric protein genes from A. halleri and lyrata and found that one of them, HTR12 (CENP-A), is duplicated, while CENP-C is not. Phylogenetic analysis indicates that the HTR12 duplication occurred after these species diverged from A. thaliana. Genetic mapping shows that HTR12 copy B has the same genomic location as the A. thaliana gene; the other copy (A, at the other end of the same chromosome) is probably the new copy. To test for selection since the duplication, we surveyed diversity at both HTR12 loci within A. lyrata. Overall, there is no strong evidence for an "evolutionary arms race" causing multiple replacement substitutions. The A. lyrata HTR12B sequences fall into three classes of haplotypes, apparently maintained for a long time, but they all encode the same amino acid sequence. In contrast, HTR12A has low diversity, but many variants are amino acid replacements, possibly due to independent selective sweeps within populations of the species.
Collapse
Affiliation(s)
- Akira Kawabe
- Institute of Evolutionary Biology, Edinburgh University, UK.
| | | | | |
Collapse
|
39
|
Abstract
Our understanding of balancing selection is currently becoming greatly clarified by new sequence data being gathered from genes in which polymorphisms are known to be maintained by selection. The data can be interpreted in conjunction with results from population genetics models that include recombination between selected sites and nearby neutral marker variants. This understanding is making possible tests for balancing selection using molecular evolutionary approaches. Such tests do not necessarily require knowledge of the functional types of the different alleles at a locus, but such information, as well as information about the geographic distribution of alleles and markers near the genes, can potentially help towards understanding what form of balancing selection is acting, and how long alleles have been maintained.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
40
|
Kamau E, Charlesworth D. Balancing selection and low recombination affect diversity near the self-incompatibility loci of the plant Arabidopsis lyrata. Curr Biol 2006; 15:1773-8. [PMID: 16213826 DOI: 10.1016/j.cub.2005.08.062] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 08/24/2005] [Accepted: 08/24/2005] [Indexed: 10/25/2022]
Abstract
The self-incompatibility (S-) locus region of plants in the Brassica family is a small genome region. In Arabidopsis lyrata, the S-genes, SRK and SCR, encode the functional female and pollen recognition proteins, which must be coadapted to maintain correct associations between the two component genes, and thus self-incompatibility (SI). Recombinants would be self-compatible and thus probably disadvantageous in self-incompatible species. Therefore, tight linkage between the two genes in incompatibility systems is predicted to evolve to avoid producing such recombinant haplotypes. The evolution of low recombination in S-locus regions has not been rigorously tested. To test whether these regions' per-nucleotide recombination rates differ from those elsewhere in the genome, and to investigate whether the A. lyrata S-loci have the predicted effect on diversity in their immediate genome region, we studied diversity in genes that are linked to the S-loci but are not involved in incompatibility and are not under balancing selection. Compared with other A. lyrata loci, genes linked to the S-loci have extraordinarily high polymorphism. Our estimated recombination in this region, from fitting a model of the effects of S-allele polymorphism on linked neutral sites, supports the hypothesis of locally suppressed recombination around the S-locus.
Collapse
Affiliation(s)
- Esther Kamau
- Institute of Evolutionary Biology, University of Edinburgh, UK
| | | |
Collapse
|
41
|
Abstract
There are a number of polymorphism-based statistical tests of neutrality, but most of them focus on either the amount or the pattern of polymorphism. In this article, a new test called the two-dimensional (2D) test is developed. This test evaluates a pair of summary statistics in a two-dimensional field. One statistic should summarize the pattern of polymorphism, while the other could be a measure of the level of polymorphism. For the latter summary statistic, the polymorphism-divergence ratio is used following the idea of the Hudson-Kreitman-Aguadé (HKA) test. To incorporate the HKA test in the 2D test, a summary statistic-based version of the HKA test is developed such that the polymorphism-divergence ratio at a particular region of interest is examined if it is consistent with the average of those in other independent regions.
Collapse
Affiliation(s)
- Hideki Innan
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, Texas 77030, USA.
| |
Collapse
|
42
|
Abstract
When comparing the immune genome to the genome in general, a higher prevalence for association with disease is the only genetic feature significant in immune genes as a group. However, some genetic features, such as marked levels of polymorphism and gene duplication, are present in subsets of immune genes, namely the Major Histocompatibility Complex (MHC) and Natural Killer (NK) cell receptor gene complexes. In this review, we discuss features of MHC and NK receptor gene clusters, their epistatic interactions, and the impact of both on association to disease.
Collapse
Affiliation(s)
- James Kelley
- Department of Pathology, Immunology Division, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | | |
Collapse
|
43
|
Takebayashi N, Newbigin E, Uyenoyama MK. Maximum-likelihood estimation of rates of recombination within mating-type regions. Genetics 2005; 167:2097-109. [PMID: 15342543 PMCID: PMC1471000 DOI: 10.1534/genetics.103.021535] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Features common to many mating-type regions include recombination suppression over large genomic tracts and cosegregation of genes of various functions, not necessarily related to reproduction. Model systems for homomorphic self-incompatibility (SI) in flowering plants share these characteristics. We introduce a method for the exact computation of the joint probability of numbers of neutral mutations segregating at the determinant of mating type and at a linked marker locus. The underlying Markov model incorporates strong balancing selection into a two-locus coalescent. We apply the method to obtain a maximum-likelihood estimate of the rate of recombination between a marker locus, 48A, and S-RNase, the determinant of SI specificity in pistils of Nicotiana alata. Even though the sampled haplotypes show complete allelic linkage disequilibrium and recombinants have never been detected, a highly significant deficiency of synonymous substitutions at 48A compared to S-RNase suggests a history of recombination. Our maximum-likelihood estimate indicates a rate of recombination of perhaps 3 orders of magnitude greater than the rate of synonymous mutation. This approach may facilitate the construction of genetic maps of regions tightly linked to targets of strong balancing selection.
Collapse
Affiliation(s)
- Naoki Takebayashi
- Department of Biology, Duke University, Durham, North Carolina 27708-0338, USA
| | | | | |
Collapse
|
44
|
Clauss MJ, Mitchell-Olds T. Functional divergence in tandemly duplicated Arabidopsis thaliana trypsin inhibitor genes. Genetics 2004; 166:1419-36. [PMID: 15082560 PMCID: PMC1470761 DOI: 10.1534/genetics.166.3.1419] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In multigene families, variation among loci and alleles can contribute to trait evolution. We explored patterns of functional and genetic variation in six duplicated Arabidopsis thaliana trypsin inhibitor (ATTI) loci. We demonstrate significant variation in constitutive and herbivore-induced transcription among ATTI loci that show, on average, 65% sequence divergence. Significant variation in ATTI expression was also found between two molecularly defined haplotype classes. Population genetic analyses for 17 accessions of A. thaliana showed that six ATTI loci arranged in tandem within 10 kb varied 10-fold in nucleotide diversity, from 0.0009 to 0.0110, and identified a minimum of six recombination events throughout the tandem array. We observed a significant peak in nucleotide and indel polymorphism spanning ATTI loci in the interior of the array, due primarily to divergence between the two haplotype classes. Significant deviation from the neutral equilibrium model for individual genes was interpreted within the context of intergene linkage disequilibrium and correlated patterns of functional differentiation. In contrast to the outcrosser Arabidopsis lyrata for which recombination is observed even within ATTI loci, our data suggest that response to selection was slowed in the inbreeding, annual A. thaliana because of interference among functionally divergent ATTI loci.
Collapse
Affiliation(s)
- M J Clauss
- Department of Genetics and Evolution, Max Planck Institute of Chemical Ecology, 07745 Jena, Germany.
| | | |
Collapse
|
45
|
Turelli M, Barton NH. Polygenic variation maintained by balancing selection: pleiotropy, sex-dependent allelic effects and G x E interactions. Genetics 2004; 166:1053-79. [PMID: 15020487 PMCID: PMC1470722 DOI: 10.1534/genetics.166.2.1053] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigate three alternative selection-based scenarios proposed to maintain polygenic variation: pleiotropic balancing selection, G x E interactions (with spatial or temporal variation in allelic effects), and sex-dependent allelic effects. Each analysis assumes an additive polygenic trait with n diallelic loci under stabilizing selection. We allow loci to have different effects and consider equilibria at which the population mean departs from the stabilizing-selection optimum. Under weak selection, each model produces essentially identical, approximate allele-frequency dynamics. Variation is maintained under pleiotropic balancing selection only at loci for which the strength of balancing selection exceeds the effective strength of stabilizing selection. In addition, for all models, polymorphism requires that the population mean be close enough to the optimum that directional selection does not overwhelm balancing selection. This balance allows many simultaneously stable equilibria, and we explore their properties numerically. Both spatial and temporal G x E can maintain variation at loci for which the coefficient of variation (across environments) of the effect of a substitution exceeds a critical value greater than one. The critical value depends on the correlation between substitution effects at different loci. For large positive correlations (e.g., rho(ij)2>3/4), even extreme fluctuations in allelic effects cannot maintain variation. Surprisingly, this constraint on correlations implies that sex-dependent allelic effects cannot maintain polygenic variation. We present numerical results that support our analytical approximations and discuss our results in connection to relevant data and alternative variance-maintaining mechanisms.
Collapse
Affiliation(s)
- Michael Turelli
- Section of Evolution and Ecology and Center for Population Biology, University of California, Davis 95616, USA.
| | | |
Collapse
|
46
|
Kuang H, Woo SS, Meyers BC, Nevo E, Michelmore RW. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. THE PLANT CELL 2004; 16:2870-94. [PMID: 15494555 PMCID: PMC527186 DOI: 10.1105/tpc.104.025502] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 09/02/2004] [Indexed: 05/05/2023]
Abstract
Resistance Gene Candidate2 (RGC2) genes belong to a large, highly duplicated family of nucleotide binding site-leucine rich repeat (NBS-LRR) encoding disease resistance genes located at a single locus in lettuce (Lactuca sativa). To investigate the genetic events occurring during the evolution of this locus, approximately 1.5- to 2-kb 3' fragments of 126 RGC2 genes from seven genotypes were sequenced from three species of Lactuca, and 107 additional RGC2 sequences were obtained from 40 wild accessions of Lactuca spp. The copy number of RGC2 genes varied from 12 to 32 per genome in the seven genotypes studied extensively. LRR number varied from 40 to 47; most of this variation had resulted from 13 events duplicating two to five LRRs because of unequal crossing-over within or between RGC2 genes at one of two recombination hot spots. Two types of RGC2 genes (Type I and Type II) were initially distinguished based on the pattern of sequence identities between their 3' regions. The existence of two types of RGC2 genes was further supported by intron similarities, the frequency of sequence exchange, and their prevalence in natural populations. Type I genes are extensive chimeras caused by frequent sequence exchanges. Frequent sequence exchanges between Type I genes homogenized intron sequences, but not coding sequences, and obscured allelic/orthologous relationships. Sequencing of Type I genes from additional wild accessions confirmed the high frequency of sequence exchange and the presence of numerous chimeric RGC2 genes in nature. Unlike Type I genes, Type II genes exhibited infrequent sequence exchange between paralogous sequences. Type II genes from different genotype/species within the genus Lactuca showed obvious allelic/orthologous relationships. Trans-specific polymorphism was observed for different groups of orthologs, suggesting balancing selection. Unequal crossover, insertion/deletion, and point mutation events were distributed unequally through the gene. Different evolutionary forces have impacted different parts of the LRR.
Collapse
Affiliation(s)
- Hanhui Kuang
- Department of Vegetable Crops, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
47
|
Bertranpetit J, Calafell F, Comas D, González-Neira A, Navarro A. Structure of linkage disequilibrium in humans: genome factors and population stratification. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:79-88. [PMID: 15338606 DOI: 10.1101/sqb.2003.68.79] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- J Bertranpetit
- Unitat de Biologia Evolutiva, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | | | | | | | | |
Collapse
|
48
|
Verrelli BC, Tishkoff SA. Signatures of selection and gene conversion associated with human color vision variation. Am J Hum Genet 2004; 75:363-75. [PMID: 15252758 PMCID: PMC1182016 DOI: 10.1086/423287] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 06/10/2004] [Indexed: 11/03/2022] Open
Abstract
Trichromatic color vision in humans results from the combination of red, green, and blue photopigment opsins. Although color vision genes have been the targets of active molecular and psychophysical research on color vision abnormalities, little is known about patterns of normal genetic variation in these genes among global human populations. The current study presents nucleotide sequence analyses and tests of neutrality for a 5.5-kb region of the X-linked long-wave "red" opsin gene (OPN1LW) in 236 individuals from ethnically diverse human populations. Our analysis of the recombination landscape across OPN1LW reveals an unusual haplotype structure associated with amino acid replacement variation in exon 3 that is consistent with gene conversion. Compared with the absence of OPN1LW amino acid replacement fixation since divergence from chimpanzee, the human population exhibits a significant excess of high-frequency OPN1LW replacements. Our results suggest that subtle changes in L-cone opsin wavelength absorption may have been adaptive during human evolution.
Collapse
Affiliation(s)
- Brian C Verrelli
- Department of Biology, University of Maryland, College Park 20742, USA
| | | |
Collapse
|
49
|
Turelli M, Barton NH. Polygenic Variation Maintained by Balancing Selection: Pleiotropy, Sex-Dependent Allelic Effects and G × E Interactions. Genetics 2004. [DOI: 10.1093/genetics/166.2.1053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
We investigate three alternative selection-based scenarios proposed to maintain polygenic variation: pleiotropic balancing selection, G × E interactions (with spatial or temporal variation in allelic effects), and sex-dependent allelic effects. Each analysis assumes an additive polygenic trait with n diallelic loci under stabilizing selection. We allow loci to have different effects and consider equilibria at which the population mean departs from the stabilizing-selection optimum. Under weak selection, each model produces essentially identical, approximate allele-frequency dynamics. Variation is maintained under pleiotropic balancing selection only at loci for which the strength of balancing selection exceeds the effective strength of stabilizing selection. In addition, for all models, polymorphism requires that the population mean be close enough to the optimum that directional selection does not overwhelm balancing selection. This balance allows many simultaneously stable equilibria, and we explore their properties numerically. Both spatial and temporal G × E can maintain variation at loci for which the coefficient of variation (across environments) of the effect of a substitution exceeds a critical value greater than one. The critical value depends on the correlation between substitution effects at different loci. For large positive correlations (e.g., ρij2>3∕4), even extreme fluctuations in allelic effects cannot maintain variation. Surprisingly, this constraint on correlations implies that sex-dependent allelic effects cannot maintain polygenic variation. We present numerical results that support our analytical approximations and discuss our results in connection to relevant data and alternative variance-maintaining mechanisms.
Collapse
Affiliation(s)
- Michael Turelli
- Section of Evolution and Ecology and Center for Population Biology, University of California, Davis, California 95616
| | - N H Barton
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| |
Collapse
|
50
|
Tishkoff SA, Verrelli BC. Patterns of human genetic diversity: implications for human evolutionary history and disease. Annu Rev Genomics Hum Genet 2003; 4:293-340. [PMID: 14527305 DOI: 10.1146/annurev.genom.4.070802.110226] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the completion of the human genome sequencing project, the discovery and characterization of human genetic variation is a principal focus for future research. Comparative studies across ethnically diverse human populations and across human and nonhuman primate species is important for reconstructing human evolutionary history and for understanding the genetic basis of human disease. In this review, we summarize data on patterns of human genetic diversity and the evolutionary forces (mutation, genetic drift, migration, and selection) that have shaped these patterns of variation across both human populations and the genome. African population samples typically have higher levels of genetic diversity, a complex population substructure, and low levels of linkage disequilibrium (LD) relative to non-African populations. We discuss these differences and their implications for mapping disease genes and for understanding how population and genomic diversity have been important in the evolution, differentiation, and adaptation of humans.
Collapse
Affiliation(s)
- Sarah A Tishkoff
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|