1
|
Sokolov AS, Latypov OR, Kolosov PM, Shlyapnikov MG, Bezlepkina TA, Kholod NS, Kadyrov FA, Granovsky IE. Phage T4 endonuclease SegD that is similar to group I intron endonucleases does not initiate homing of its own gene. Virology 2018; 515:215-222. [PMID: 29306059 DOI: 10.1016/j.virol.2017.12.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022]
Abstract
Homing endonucleases are a group of site-specific endonucleases that initiate homing, a nonreciprocal transfer of its own gene into a new allele lacking this gene. This work describes a novel phage T4 endonuclease, SegD, which is homologous to the GIY-YIG family of homing endonucleases. Like other T4 homing endonucleases SegD recognizes an extended, 16bp long, site, cleaves it asymmetrically to form 3'-protruding ends and digests both unmodified DNA and modified T-even phage DNA with similar efficiencies. Surprisingly, we revealed that SegD cleavage site was identical in the genomes of segD- and segD+ phages. We found that segD gene was expressed during the T4 developmental cycle. Nevertheless, endonuclease SegD was not able to initiate homing of its own gene as well as genetic recombination between phages in its site inserted into the rII locus.
Collapse
Affiliation(s)
- Andrey S Sokolov
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Oleg R Latypov
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Peter M Kolosov
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Michael G Shlyapnikov
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Tamara A Bezlepkina
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Natalia S Kholod
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Farid A Kadyrov
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Igor E Granovsky
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia; Laboratory of Molecular and Cellular Biology, Pushchino State Institute of Natural Sciences, 3 Prospekt Nauki, Pushchino 142290, Russia.
| |
Collapse
|
2
|
Shcherbakov VP, Kudryashova E. Double-strand break repair and genetic recombination in topoisomerase and primase mutants of bacteriophage T4. DNA Repair (Amst) 2014; 21:120-30. [PMID: 24811919 DOI: 10.1016/j.dnarep.2014.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/13/2014] [Accepted: 04/17/2014] [Indexed: 11/18/2022]
Abstract
The effects of primase and topoisomerase II deficiency on the double-strand break (DSB) repair and genetic recombination in bacteriophage T4 were studied in vivo using focused recombination. Site-specific DSBs were induced by SegC endonuclease in the rIIB gene of one of the parents. The frequency/distance relationship was determined in crosses of the wild-type phage, topoisomerase II mutant amN116 (gene 39), and primase mutant E219 (gene 61). Ordinary two-factor (i×j) and three-factor (i k×j) crosses between point rII mutations were also performed. These data provide information about the frequency and distance distribution of the single-exchange (splice) and double-exchange (patch) events. In two-factor crosses ets1×i, the topoisomerase and primase mutants had similar recombinant frequencies in crosses at ets1-i distances longer than 1000 bp, comprising about 80% of the corresponding wild-type values. They, however, differ remarkably in crosses at shorter distances. In the primase mutant, the recombinant frequencies are similar to those in the wild-type crosses at distances less than 100 bp, being a bit diminished at longer distances. In two-factor crosses ets1×i of the topoisomerase mutant, the recombinant frequencies were reduced ten-fold at the shortest distances. In three-factor crosses a6 ets1×i, where we measure patch-related recombination, the primase mutant was quite proficient across the entire range of distances. The topoisomerase mutant crosses demonstrated virtually complete absence of rII(+) recombinants at distances up to 33 bp, with the frequencies increasing steadily at longer distances. The data were interpreted as follows. The primase mutant is fully recombination-proficient. An obvious difference from the wild-type state is some shortage of EndoVII function leading to prolonged existence of HJs and thus stretched out ds-branch migration. This is also true for the topoisomerase mutant. However, the latter is deficient in the ss-branch migration step of the DSB repair pathway and partially deficient in HJ initiation. In apparent contradiction to their effects on the DSB-induced site-specific recombination, the topoisomerase and primase mutants demonstrated about 3-8-fold increase in the recombinant frequencies in the ordinary crosses, with the recombination running exclusively via patches. This implies that most of the spontaneous recombination events are not initiated by dsDNA ends in these mutants.
Collapse
Affiliation(s)
- Victor P Shcherbakov
- Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region 142432, Russia.
| | - Elena Kudryashova
- Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region 142432, Russia
| |
Collapse
|
3
|
Shcherbakov VP, Plugina L, Shcherbakova T, Kudryashova E, Sizova S. Double-strand break repair and recombination-dependent replication of DNA in bacteriophage T4 in the absence of UvsX recombinase: replicative resolution pathway. DNA Repair (Amst) 2012; 11:470-9. [PMID: 22365497 DOI: 10.1016/j.dnarep.2012.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/23/2012] [Accepted: 01/30/2012] [Indexed: 11/19/2022]
Abstract
The effects of mutations in bacteriophage T4 genes uvsX and 49 on the double-strand break (DSB)-promoted recombination were studied in crosses, in which DSBs were induced site-specifically within the rIIB gene by SegC endonuclease in the DNA of only one of the parents. Frequency of rII+ recombinants was measured in two-factor crosses of the type i×ets1 and in three-factor crosses of the type i×ets1 a6, where ets1 is an insertion in the rIIB gene carrying the cleavage site for SegC; i's are rIIB or rIIA point mutations located at various distances (12-2040 bp) from the ets1 site, and a6 is rIIA point mutation located at 2040 bp from ets1. The frequency/distance relationships were obtained in crosses of the wild-type phage and of the amber mutant S17 (gene uvsX) and the double mutant S17 E727 (genes uvsX and 49). These data provide information about the frequency and distance distribution of the single-exchange (splices) and double-exchange (patches) events. The extended variant of the splice/patch coupling (SPC) model of recombination, which includes transition to the replication resolution (RR) alternative is substantiated and used for interpretation of the frequency/distance relationships. We conclude that the uvsX mutant executes recombination-dependent replication but does it by a qualitatively different way. In the absence of UvsX function, the DSB repair runs largely through the RR subpathway because of inability of the mutant to form a Holliday junction. In the two-factor crosses, the double uvsX 49- is recombinationally more proficient than the single uvsX mutant (partial suppression of the uvsX deficiency), while the patch-related double exchanges are virtually eliminated in this background.
Collapse
Affiliation(s)
- Victor P Shcherbakov
- Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region 142432, Russia.
| | | | | | | | | |
Collapse
|
4
|
Shcherbakov VP, Plugina L, Shcherbakova T. Endonuclease VII is a key component of the mismatch repair mechanism in bacteriophage T4. DNA Repair (Amst) 2011; 10:356-62. [PMID: 21237725 DOI: 10.1016/j.dnarep.2010.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 10/18/2022]
Abstract
In previous papers we described an extra recombination mechanism in T4 phage, which contributed to general recombination only when particular mutations were used as geneticmarkers (high recombination or HR markers), whereas it was practically inactive towards other rIIB mutations (low recombination or LR markers). This marker-dependent recombination pathway was identified as a repair of mismatches in recombination heteroduplexes. We suggested that the first step in this pathway, recognition and incision of the mismatch, is performed by endonuclease VII (endo VII) encoded by the T4 gene 49. In the present paper, we tested this hypothesis in vivo. We used an experimental model system that combines site-specific double-strand breaks with the famous advantages of the recombination analysis of bacteriophage T4 rII mutants. We compared recombination of homoallelic HR and LR markers in the S17 and S17 E727 background (amber mutations in the uvsX and in the uvsX and 49 genes, respectively). In S17-crosses, the HR and LR markers retain their respective high-recombination and low-recombination behavior. In S17 E727-crosses, however, the HR and LR markers show no difference in the recombination frequency and both behave as LR markers. We conclude that endo VII is the enzyme that recognizes mismatches in recombinational heteroduplexes and performs their incision. This role for endo VII was suggested previously from biochemical studies, but this is its first in vivo demonstration.
Collapse
Affiliation(s)
- Victor P Shcherbakov
- Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region 142432, Russia.
| | | | | |
Collapse
|
5
|
Kreuzer KN, Brister JR. Initiation of bacteriophage T4 DNA replication and replication fork dynamics: a review in the Virology Journal series on bacteriophage T4 and its relatives. Virol J 2010; 7:358. [PMID: 21129203 PMCID: PMC3016281 DOI: 10.1186/1743-422x-7-358] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 12/03/2010] [Indexed: 11/10/2022] Open
Abstract
Bacteriophage T4 initiates DNA replication from specialized structures that form in its genome. Immediately after infection, RNA-DNA hybrids (R-loops) occur on (at least some) replication origins, with the annealed RNA serving as a primer for leading-strand synthesis in one direction. As the infection progresses, replication initiation becomes dependent on recombination proteins in a process called recombination-dependent replication (RDR). RDR occurs when the replication machinery is assembled onto D-loop recombination intermediates, and in this case, the invading 3' DNA end is used as a primer for leading strand synthesis. Over the last 15 years, these two modes of T4 DNA replication initiation have been studied in vivo using a variety of approaches, including replication of plasmids with segments of the T4 genome, analysis of replication intermediates by two-dimensional gel electrophoresis, and genomic approaches that measure DNA copy number as the infection progresses. In addition, biochemical approaches have reconstituted replication from origin R-loop structures and have clarified some detailed roles of both replication and recombination proteins in the process of RDR and related pathways. We will also discuss the parallels between T4 DNA replication modes and similar events in cellular and eukaryotic organelle DNA replication, and close with some current questions of interest concerning the mechanisms of replication, recombination and repair in phage T4.
Collapse
Affiliation(s)
- Kenneth N Kreuzer
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 USA
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| |
Collapse
|
6
|
Edgell DR, Gibb EA, Belfort M. Mobile DNA elements in T4 and related phages. Virol J 2010; 7:290. [PMID: 21029434 PMCID: PMC2988022 DOI: 10.1186/1743-422x-7-290] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/28/2010] [Indexed: 12/30/2022] Open
Abstract
Mobile genetic elements are common inhabitants of virtually every genome where they can exert profound influences on genome structure and function in addition to promoting their own spread within and between genomes. Phage T4 and related phage have long served as a model system for understanding the molecular mechanisms by which a certain class of mobile DNA, homing endonucleases, promote their spread. Homing endonucleases are site-specific DNA endonucleases that initiate mobility by introducing double-strand breaks at defined positions in genomes lacking the endonuclease gene, stimulating repair and recombination pathways that mobilize the endonuclease coding region. In phage T4, homing endonucleases were first discovered as encoded within the self-splicing td, nrdB and nrdD introns of T4. Genomic data has revealed that homing endonucleases are extremely widespread in T-even-like phage, as evidenced by the astounding fact that ~11% of the T4 genome encodes homing endonuclease genes, with most of them located outside of self-splicing introns. Detailed studies of the mobile td intron and its encoded endonuclease, I-TevI, have laid the foundation for genetic, biochemical and structural aspects that regulate the mobility process, and more recently have provided insights into regulation of homing endonuclease function. Here, we summarize the current state of knowledge regarding T4-encoded homing endonucleases, with particular emphasis on the td/I-TevI model system. We also discuss recent progress in the biology of free-standing endonucleases, and present areas of future research for this fascinating class of mobile genetic elements.
Collapse
Affiliation(s)
- David R Edgell
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada.
| | | | | |
Collapse
|
7
|
Bonocora RP, Shub DA. A likely pathway for formation of mobile group I introns. Curr Biol 2009; 19:223-8. [PMID: 19200727 DOI: 10.1016/j.cub.2009.01.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 01/11/2009] [Accepted: 01/12/2009] [Indexed: 11/20/2022]
Abstract
Mobile group I introns are RNA splicing elements that have been invaded by endonuclease genes. These endonucleases facilitate intron mobility by a unidirectional, duplicative gene-conversion process known as homing [1]. Survival of the invading endonuclease depends upon its ability to promote intron mobility. Therefore, the endonuclease must either quickly change its cleavage specificity to match the site of intron insertion, or it must already be preadapted to cleave this sequence. Here we show that the group I intron in the DNA polymerase gene of T7-like bacteriophage PhiI is mobile, dependent upon its intronic HNH homing endonuclease gene, I-TslI. We also show that gene 5.3 of phage T3, located adjacent to its intronless DNA polymerase gene, is a homologous homing endonuclease gene whose protein product initiates efficient spread of gene 5.3 into empty sites in related phages. Both of these endonucleases cleave intronless DNA polymerase genes at identical positions. This shared feature between an intronic and free-standing endonuclease is unprecedented. Based on this evidence, we propose that introns and their homing endonucleases evolve separately to target the same highly conserved sequences, uniting afterwards to create a composite mobile element.
Collapse
Affiliation(s)
- Richard P Bonocora
- Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222, USA
| | | |
Collapse
|
8
|
Shcherbakov VP, Sizova ST, Shcherbakova TS, Granovsky IE, Popad’in KY. In vivo study of fidelity of DNA double-strand break repair in bacteriophage T4. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408090032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Genetic recombination induced by DNA double-strand break in bacteriophage T4: nature of the left/right bias. DNA Repair (Amst) 2008; 7:890-901. [PMID: 18400566 DOI: 10.1016/j.dnarep.2008.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/24/2008] [Accepted: 02/28/2008] [Indexed: 11/21/2022]
Abstract
The experimental system combining double-strand breaks (DSBs), produced site-specifically by SegC endonuclease, with the famous advantages of the bacteriophage T4 rII mutant recombination analysis was used here to elucidate the origin of the recombination bias on two sides of the DSB, especially pronounced in gene 39 (topoisomerase II) and gene 59 (41-helicase loader) mutants. Three sources were found to contribute to the bias: (1) the SegC endonuclease may remain bound to the end of the broken DNA and thus protect it from exonuclease degradation; (2) in heteroduplex heterozygotes (HHs), arising as the recombinant products in the left-hand crosses, the transcribed strands are of rII mutant phenotype, so they, in contrast to the right-hand HHs, do not produce plaques on the lawn of the lambda-lysogenic host; and (3) the intrinsic polarity of T4 chromosome, reflected in transcription, may be a cause for discrimination of promoter-proximal and promoter-distal DNA sequences. It is shown that the apparent recombination bias does not imply one-sidedness of the DSB repair but just reflects a different depth of the end processing. It is inferred that the cause, underlying the "intrinsic" bias, might be interference between strand exchange and transcription. Topoisomerase and helicase functions are necessary to turn the process in favor of strand exchange. The idea is substantiated that the double-stranded to single-stranded DNA transition edge (not ss-DNA tip) serves as an actual recombinogenic element.
Collapse
|
10
|
Shcherbakov VP, Kudryashova EA, Shcherbakova TS, Sizova ST, Plugina LA. Double-strand break repair in bacteriophage T4: recombination effects of 3'-5' exonuclease mutations. Genetics 2006; 174:1729-36. [PMID: 17028319 PMCID: PMC1698623 DOI: 10.1534/genetics.106.063891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 09/14/2006] [Indexed: 11/18/2022] Open
Abstract
The role of 3'-5' exonucleases in double-strand break (DSB)-promoted recombination was studied in crosses of bacteriophage T4, in which DSBs were induced site specifically within the rIIB gene by SegC endonuclease in the DNA of only one of the parents. Frequency of rII+ recombinants was measured in two-factor crosses of the type i x ets1, where ets1 designates an insertion in the rIIB gene carrying the cleavage site for SegC and i's are rIIB or rIIA point mutations located at various distances (12-2040 bp) from the ets1 site. The frequency/distance relationship was obtained in crosses of the wild-type phage and dexA1 (deficiency in deoxyribonuclease A), D219A (deficiency in the proofreading exonuclease of DNA polymerase), and tsL42 (antimutator allele of DNA polymerase) mutants. In all the mutants, recombinant frequency in crosses with the i-markers located at 12 and 33 bp from ets1 was significantly enhanced, implying better preservation of 3'-terminal sequences at the ends of the broken DNA. The effects of dexA1 and D219A were additive, suggesting an independent action of the corresponding nucleases in the DSB repair pathway. The recombination enhancement in the dexA1 mutant was limited to short distances (<100 bp from ets1), whereas in the D219A mutant a significant enhancement was seen at all the tested distances. From the character of the frequency/distance relationship, it is inferred that the synthesis-dependent strand-annealing pathway may operate in the D219A mutant. The recombination-enhancing effect of the tsL42 mutation could be explained by the hypothesis that the antimutator 43Exo removes a shorter stretch of paired nucleotides than the wild-type enzyme does during hydrolysis of the unpaired terminus in the D-loop intermediate. The role of the proofreading exonuclease in the formation of a robust replicative fork is discussed.
Collapse
Affiliation(s)
- Victor P Shcherbakov
- Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region 142432, Russia.
| | | | | | | | | |
Collapse
|
11
|
Shcherbakov VP, Plugina L, Shcherbakova T, Sizova S, Kudryashova E. Double-strand break repair in bacteriophage T4: Coordination of DNA ends and effects of mutations in recombinational genes. DNA Repair (Amst) 2006; 5:773-87. [PMID: 16716767 DOI: 10.1016/j.dnarep.2006.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 01/31/2006] [Accepted: 03/22/2006] [Indexed: 01/15/2023]
Abstract
Coordination of DNA ends during double-strand break (DSB) repair was studied in crosses of bacteriophage T4 in which DSBs were induced site-specifically by SegC endonuclease in the DNA of only one of the parents. Coupling of the genetic exchanges to the left and to the right of the DSB was measured in the wild-type genetic background as well as in T4 strains bearing mutations in several recombination genes: 47, uvsX, uvsW, 59, 39 and 61. The observed quantitative correlation between the degree of coupling and position of the recombining markers in relation to the DSB point implies that the two variants of the splice/patch-coupling (SPC) pathway, the "sequential SPC" and the "SPC with fork collision", operate during DSB repair. In the 47 mutant with or without a das suppressor, coupling of the exchanges was greatly reduced, indicating a crucial role of the 47/46 complex in coupling of the genetic exchanges on the two sides of the DSB. From the observed dependence of the apparent coupling on the intracellular ratio of breakable and unbreakable chromosomes in different genetic backgrounds it is inferred that linking of the DNA ends by 47/46 protein is the mechanism that accounts for their concerted action during DSB repair. A mechanism of replicative resolution of D-loop intermediate (RR pathway) is suggested to explain the phenomenology of DSB repair in DNA arrest and uvsW mutants. A "left"-"right" bias in the recombinogenic action of two DNA ends of the broken chromosome was observed which was particularly prominent in the 59 (41-helicase loader) and 39 (topoisomerase) mutants. Phage topoisomerase II (gp39-52-60) is indispensable for growth in the DNA arrest mutants: the doubles 47(-)39(-), uvsX 39(-) and 59(-)39(-) are lethal.
Collapse
Affiliation(s)
- Victor P Shcherbakov
- Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region 142432, Russia.
| | | | | | | | | |
Collapse
|
12
|
Abstract
The processes of DNA replication and recombination are intertwined at many different levels. In diverse systems, extensive DNA replication can be triggered by genetic recombination, with assembly of a replication complex onto a D-loop recombination intermediate. This and related pathways of replisome assembly allow the completion of DNA replication when forks initiated at a conventional replication origin fail before completing replication of the genome. In addition, the repair of double-strand breaks or gaps by homologous recombination requires at least limited DNA replication to replace the missing information. An intricate interplay between replication and recombination is also evident during the termination of bacterial DNA replication and during the induction of the bacterial SOS response to DNA damage.
Collapse
Affiliation(s)
- Kenneth N Kreuzer
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
13
|
Adhya S, Black L, Friedman D, Hatfull G, Kreuzer K, Merril C, Oppenheim A, Rohwer F, Young R. 2004 ASM Conference on the New Phage Biology: the 'Phage Summit'. Mol Microbiol 2005; 55:1300-14. [PMID: 15720541 DOI: 10.1111/j.1365-2958.2005.04509.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In August, more than 350 conferees from 24 countries attended the ASM Conference on the New Phage Biology, in Key Biscayne, Florida. This meeting, also called the Phage Summit, was the first major international gathering in decades devoted exclusively to phage biology. What emerged from the 5 days of the Summit was a clear perspective on the explosive resurgence of interest in all aspects of bacteriophage biology. The classic phage systems like lambda and T4, reinvigorated by structural biology, bioinformatics and new molecular and cell biology tools, remain model systems of unequalled power and facility for studying fundamental biological issues. In addition, the New Phage Biology is also populated by basic and applied scientists focused on ecology, evolution, nanotechnology, bacterial pathogenesis and phage-based immunologics, therapeutics and diagnostics, resulting in a heightened interest in bacteriophages per se, rather than as a model system. Besides constituting another landmark in the long history of a field begun by d'Herelle and Twort during the early 20th century, the Summit provided a unique venue for establishment of new interactive networks for collaborative efforts between scientists of many different backgrounds, interests and expertise.
Collapse
Affiliation(s)
- Sankar Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, 37 Convent Dr., Rm 5138, Bethesda, MD 20892-4264, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 562] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|