1
|
Hengel SR, Oppenheimer KG, Smith CM, Schaich MA, Rein HL, Martino J, Darrah KE, Witham M, Ezekwenna OC, Burton KR, Van Houten B, Spies M, Bernstein KA. The human Shu complex promotes RAD51 activity by modulating RPA dynamics on ssDNA. Nat Commun 2024; 15:7197. [PMID: 39169038 PMCID: PMC11339404 DOI: 10.1038/s41467-024-51595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Templated DNA repair that occurs during homologous recombination and replication stress relies on RAD51. RAD51 activity is positively regulated by BRCA2 and the RAD51 paralogs. The Shu complex is a RAD51 paralog-containing complex consisting of SWSAP1, SWS1, and SPIDR. We demonstrate that SWSAP1-SWS1 binds RAD51, maintains RAD51 filament stability, and enables strand exchange. Using single-molecule confocal fluorescence microscopy combined with optical tweezers, we show that SWSAP1-SWS1 decorates RAD51 filaments proficient for homologous recombination. We also find SWSAP1-SWS1 enhances RPA diffusion on ssDNA. Importantly, we show human sgSWSAP1 and sgSWS1 knockout cells are sensitive to pharmacological inhibition of PARP and APE1. Lastly, we identify cancer variants in SWSAP1 that alter Shu complex formation. Together, we show that SWSAP1-SWS1 stimulates RAD51-dependent high-fidelity repair and may be an important new cancer therapeutic target.
Collapse
Affiliation(s)
- Sarah R Hengel
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, UPMC-Hillman Cancer Center, Pittsburgh, PA, USA.
- Tufts University, Department of Biology, Medford, MA, USA.
| | - Katherine G Oppenheimer
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, UPMC-Hillman Cancer Center, Pittsburgh, PA, USA
| | - Chelsea M Smith
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, UPMC-Hillman Cancer Center, Pittsburgh, PA, USA
- University of North Carolina at Chapel Hill, Department of Pathology and Laboratory Medicine, Chapel Hill, NC, USA
| | - Matthew A Schaich
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, UPMC-Hillman Cancer Center, Pittsburgh, PA, USA
| | - Hayley L Rein
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, UPMC-Hillman Cancer Center, Pittsburgh, PA, USA
| | - Julieta Martino
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, UPMC-Hillman Cancer Center, Pittsburgh, PA, USA
- GeneDx, Gaithersburg, MD, USA
| | - Kristie E Darrah
- University of Pennsylvania School of Medicine, Penn Center for Genome Integrity, Department of Biochemistry and Biophysics, 421 Curie Boulevard, Philadelphia, PA, USA
| | - Maggie Witham
- Tufts University, Department of Biology, Medford, MA, USA
| | | | - Kyle R Burton
- Tufts University, Department of Biology, Medford, MA, USA
| | - Bennett Van Houten
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, UPMC-Hillman Cancer Center, Pittsburgh, PA, USA
| | - Maria Spies
- University of Iowa, Department of Biochemistry and Molecular Biology, Iowa City, IA, USA
| | - Kara A Bernstein
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, UPMC-Hillman Cancer Center, Pittsburgh, PA, USA.
- University of Pennsylvania School of Medicine, Penn Center for Genome Integrity, Department of Biochemistry and Biophysics, 421 Curie Boulevard, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Hengel SR, Oppenheimer K, Smith C, Schaich MA, Rein HL, Martino J, Darrah K, Ezekwenna O, Burton K, Van Houten B, Spies M, Bernstein KA. The human Shu complex promotes RAD51 activity by modulating RPA dynamics on ssDNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580393. [PMID: 38405734 PMCID: PMC10888808 DOI: 10.1101/2024.02.14.580393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Templated DNA repair that occurs during homologous recombination and replication stress relies on RAD51. RAD51 activity is positively regulated by BRCA2 and the RAD51 paralogs. The Shu complex is a RAD51 paralog-containing complex consisting of SWSAP1 and SWS1. We demonstrate that SWSAP1-SWS1 binds RAD51, maintains RAD51 filament stability, and enables strand exchange. Using single molecule confocal fluorescence microscopy combined with optical tweezers, we show that SWSAP1-SWS1 decorates RAD51 filaments proficient for homologous recombination. We also find SWSAP1-SWS1 enhances RPA diffusion on ssDNA. Importantly, we show human sgSWSAP1 and sgSWS1 knockout cells are sensitive to pharmacological inhibition of PARP and APE1. Lastly, we identify cancer variants in SWSAP1 that alter SWS1 complex formation. Together, we show that SWSAP1-SWS1 stimulates RAD51-dependent high-fidelity repair and may be an important new cancer therapeutic target.
Collapse
|
3
|
Kaur H, Gn K, Lichten M. Unresolved Recombination Intermediates Cause a RAD9-Dependent Cell Cycle Arrest in Saccharomyces cerevisiae. Genetics 2019; 213:805-818. [PMID: 31562181 PMCID: PMC6827386 DOI: 10.1534/genetics.119.302632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
In Saccharomyces cerevisiae, the conserved Sgs1-Top3-Rmi1 helicase-decatenase regulates homologous recombination by limiting accumulation of recombination intermediates that are crossover precursors. In vitro studies have suggested that this may be due to dissolution of double-Holliday junction joint molecules by Sgs1-driven convergent junction migration and Top3-Rmi1 mediated strand decatenation. To ask whether dissolution occurs in vivo, we conditionally depleted Sgs1 and/or Rmi1 during return to growth (RTG), a procedure where recombination intermediates formed during meiosis are resolved when cells resume the mitotic cell cycle. Sgs1 depletion during RTG delayed joint molecule resolution, but, ultimately, most were resolved and cells divided normally. In contrast, Rmi1 depletion resulted in delayed and incomplete joint molecule resolution, and most cells did not divide. rad9 ∆ mutation restored cell division in Rmi1-depleted cells, indicating that the DNA damage checkpoint caused this cell cycle arrest. Restored cell division in Rmi1-depleted rad9 ∆ cells frequently produced anucleate cells, consistent with the suggestion that persistent recombination intermediates prevented chromosome segregation. Our findings indicate that Sgs1-Top3-Rmi1 acts in vivo, as it does in vitro, to promote recombination intermediate resolution by dissolution. They also indicate that, in the absence of Top3-Rmi1 activity, unresolved recombination intermediates persist and activate the DNA damage response, which is usually thought to be activated by much earlier DNA damage-associated lesions.
Collapse
Affiliation(s)
- Hardeep Kaur
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Krishnaprasad Gn
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| |
Collapse
|
4
|
Lanz MC, Oberly S, Sanford EJ, Sharma S, Chabes A, Smolka MB. Separable roles for Mec1/ATR in genome maintenance, DNA replication, and checkpoint signaling. Genes Dev 2018; 32:822-835. [PMID: 29899143 PMCID: PMC6049512 DOI: 10.1101/gad.308148.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/27/2018] [Indexed: 02/02/2023]
Abstract
In this study, Lanz et al. investigated how the Mec1/ATR kinase functions in genome maintenance and replication and, using a novel genetic system to spatially manipulate Mec1 activation and action, show that the ability of Mec1 to suppress genomic instabilities is separate from a novel role in promoting DNA replication. These findings establish that the Mec1/ATR kinase initiates checkpoint signaling, promotes DNA replication, and maintains genetic stability through distinct modes of action. The Mec1/ATR kinase coordinates multiple cellular responses to replication stress. In addition to its canonical role in activating the checkpoint kinase Rad53, Mec1 also plays checkpoint-independent roles in genome maintenance that are not well understood. Here we used a combined genetic–phosphoproteomic approach to manipulate Mec1 activation and globally monitor Mec1 signaling, allowing us to delineate distinct checkpoint-independent modes of Mec1 action. Using cells in which endogenous Mec1 activators were genetically ablated, we found that expression of “free” Mec1 activation domains (MADs) can robustly activate Mec1 and rescue the severe DNA replication and growth defects of these cells back to wild-type levels. However, unlike the activation mediated by endogenous activator proteins, “free” MADs are unable to stimulate Mec1-mediated suppression of gross chromosomal rearrangements (GCRs), revealing that Mec1's role in genome maintenance is separable from a previously unappreciated proreplicative function. Both Mec1's functions in promoting replication and suppressing GCRs are independent of the downstream checkpoint kinases. Additionally, Mec1-dependent GCR suppression seems to require localized Mec1 action at DNA lesions, which correlates with the phosphorylation of activator-proximal substrates involved in homologous recombination-mediated DNA repair. These findings establish that Mec1 initiates checkpoint signaling, promotes DNA replication, and maintains genetic stability through distinct modes of action.
Collapse
Affiliation(s)
- Michael Charles Lanz
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
| | - Susannah Oberly
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
| | - Ethan James Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics.,Laboratory for Molecular Infection Medicine (MIMS), Umeå University, Umeå SE 90187, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics.,Laboratory for Molecular Infection Medicine (MIMS), Umeå University, Umeå SE 90187, Sweden
| | - Marcus Bustamante Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
5
|
Wright WD, Shah SS, Heyer WD. Homologous recombination and the repair of DNA double-strand breaks. J Biol Chem 2018; 293:10524-10535. [PMID: 29599286 DOI: 10.1074/jbc.tm118.000372] [Citation(s) in RCA: 473] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination enables the cell to access and copy intact DNA sequence information in trans, particularly to repair DNA damage affecting both strands of the double helix. Here, we discuss the DNA transactions and enzymatic activities required for this elegantly orchestrated process in the context of the repair of DNA double-strand breaks in somatic cells. This includes homology search, DNA strand invasion, repair DNA synthesis, and restoration of intact chromosomes. Aspects of DNA topology affecting individual steps are highlighted. Overall, recombination is a dynamic pathway with multiple metastable and reversible intermediates designed to achieve DNA repair with high fidelity.
Collapse
Affiliation(s)
| | | | - Wolf-Dietrich Heyer
- From the Departments of Microbiology and Molecular Genetics and .,Molecular and Cellular Biology, University of California, Davis, Davis, California 95616-8665
| |
Collapse
|
6
|
Claussin C, Porubský D, Spierings DCJ, Halsema N, Rentas S, Guryev V, Lansdorp PM, Chang M. Genome-wide mapping of sister chromatid exchange events in single yeast cells using Strand-seq. eLife 2017; 6:e30560. [PMID: 29231811 PMCID: PMC5734873 DOI: 10.7554/elife.30560] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
Homologous recombination involving sister chromatids is the most accurate, and thus most frequently used, form of recombination-mediated DNA repair. Despite its importance, sister chromatid recombination is not easily studied because it does not result in a change in DNA sequence, making recombination between sister chromatids difficult to detect. We have previously developed a novel DNA template strand sequencing technique, called Strand-seq, that can be used to map sister chromatid exchange (SCE) events genome-wide in single cells. An increase in the rate of SCE is an indicator of elevated recombination activity and of genome instability, which is a hallmark of cancer. In this study, we have adapted Strand-seq to detect SCE in the yeast Saccharomyces cerevisiae. We provide the first quantifiable evidence that most spontaneous SCE events in wild-type cells are not due to the repair of DNA double-strand breaks.
Collapse
Affiliation(s)
- Clémence Claussin
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| | - David Porubský
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| | - Diana CJ Spierings
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| | - Nancy Halsema
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| | | | - Victor Guryev
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| | - Peter M Lansdorp
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
- Terry Fox LaboratoryBC Cancer AgencyVancouverCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| |
Collapse
|
7
|
Sgs1 Binding to Rad51 Stimulates Homology-Directed DNA Repair in Saccharomyces cerevisiae. Genetics 2017; 208:125-138. [PMID: 29162625 PMCID: PMC5753853 DOI: 10.1534/genetics.117.300545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/16/2017] [Indexed: 12/23/2022] Open
Abstract
Accurate repair of DNA breaks is essential to maintain genome integrity and cellular fitness. Sgs1, the sole member of the RecQ family of DNA helicases in Saccharomyces cerevisiae, is important for both early and late stages of homology-dependent repair. Its large number of physical and genetic interactions with DNA recombination, repair, and replication factors has established Sgs1 as a key player in the maintenance of genome integrity. To determine the significance of Sgs1 binding to the strand-exchange factor Rad51, we have identified a single amino acid change at the C-terminal of the helicase core of Sgs1 that disrupts Rad51 binding. In contrast to an SGS1 deletion or a helicase-defective sgs1 allele, this new separation-of-function allele, sgs1-FD, does not cause DNA damage hypersensitivity or genome instability, but exhibits negative and positive genetic interactions with sae2Δ, mre11Δ, exo1Δ, srs2Δ, rrm3Δ, and pol32Δ that are distinct from those of known sgs1 mutants. Our findings suggest that the Sgs1-Rad51 interaction stimulates homologous recombination (HR). However, unlike sgs1 mutations, which impair the resection of DNA double-strand ends, negative genetic interactions of the sgs1-FD allele are not suppressed by YKU70 deletion. We propose that the Sgs1-Rad51 interaction stimulates HR by facilitating the formation of the presynaptic Rad51 filament, possibly by Sgs1 competing with single-stranded DNA for replication protein A binding during resection.
Collapse
|
8
|
Li F, Ball LG, Fan L, Hanna M, Xiao W. Sgs1 helicase is required for efficient PCNA monoubiquitination and translesion DNA synthesis in Saccharomyces cerevisiae. Curr Genet 2017; 64:459-468. [DOI: 10.1007/s00294-017-0753-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
|
9
|
Martino J, Bernstein KA. The Shu complex is a conserved regulator of homologous recombination. FEMS Yeast Res 2016; 16:fow073. [PMID: 27589940 DOI: 10.1093/femsyr/fow073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2016] [Indexed: 02/06/2023] Open
Abstract
Homologous recombination (HR) is an error-free DNA repair mechanism that maintains genome integrity by repairing double-strand breaks (DSBs). Defects in HR lead to genomic instability and are associated with cancer predisposition. A key step in HR is the formation of Rad51 nucleoprotein filaments which are responsible for the homology search and strand invasion steps that define HR. Recently, the budding yeast Shu complex has emerged as an important regulator of Rad51 along with the other Rad51 mediators including Rad52 and the Rad51 paralogs, Rad55-Rad57. The Shu complex is a heterotetramer consisting of two novel Rad51 paralogs, Psy3 and Csm2, along with Shu1 and a SWIM domain-containing protein, Shu2. Studies done primarily in yeast have provided evidence that the Shu complex regulates HR at several types of DNA DSBs (i.e. replication-associated and meiotic DSBs) and that its role in HR is highly conserved across eukaryotic lineages. This review highlights the main findings of these studies and discusses the proposed specific roles of the Shu complex in many aspects of recombination-mediated DNA repair.
Collapse
Affiliation(s)
- Julieta Martino
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| |
Collapse
|
10
|
PCNA SUMOylation protects against PCNA polyubiquitination-mediated, Rad59-dependent, spontaneous, intrachromosomal gene conversion. Mutat Res 2016; 791-792:10-18. [PMID: 27505077 DOI: 10.1016/j.mrfmmm.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/29/2016] [Accepted: 08/01/2016] [Indexed: 11/23/2022]
Abstract
Homologous recombination is crucial in both the maintenance of genome stability and the generation of genetic diversity. Recently, multiple aspects of the recombination machinery functioning at arrested DNA replication forks have been established, yet the roles of diverse modifications of PCNA, the key platform organizing the replication complex, in intrachromosomal recombination have not been comprehensively elucidated. Here, we report how PCNA SUMOylation and/or polyubiquitination affects recombination between direct repeats in S. cerevisiae. Our results show that these PCNA modifications primarily affect gene conversion, whereas their effect on the recombination-mediated deletion of intervening sequence is much less obvious. Siz1-dependent PCNA SUMOylation strongly limits Rad52/Rad51/Rad59-dependent gene conversion. A 5- to 10-fold increase in the frequency of such recombination events is observed in Siz1-defective strains, but this increase is fully suppressed when PCNA polyubiquitination is also compromised. PCNA polyubiquitination can stimulate gene conversion in both PCNA SUMOylation-proficient and SUMOylation-deficient strains. On the other hand, in PCNA polyubiquitination-deficient strains, the lack of PCNA SUMOylation does not affect GC levels. Therefore, we postulate that the antirecombinogenic activity of Siz1 mainly concerns recombination induced by PCNA polyubiquitination. In the absence of PCNA SUMOylation, the frequency of PCNA polyubiquitination-mediated gene conversion is not only increased, but it is also channeled into the Rad59-dependent pathway. Additionally, we show a weak inhibitory effect of Rad5 on Rad52/Rad59-directed single-strand annealing.
Collapse
|
11
|
A Delicate Balance Between Repair and Replication Factors Regulates Recombination Between Divergent DNA Sequences in Saccharomyces cerevisiae. Genetics 2015; 202:525-40. [PMID: 26680658 DOI: 10.1534/genetics.115.184093] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022] Open
Abstract
Single-strand annealing (SSA) is an important homologous recombination mechanism that repairs DNA double strand breaks (DSBs) occurring between closely spaced repeat sequences. During SSA, the DSB is acted upon by exonucleases to reveal complementary sequences that anneal and are then repaired through tail clipping, DNA synthesis, and ligation steps. In baker's yeast, the Msh DNA mismatch recognition complex and the Sgs1 helicase act to suppress SSA between divergent sequences by binding to mismatches present in heteroduplex DNA intermediates and triggering a DNA unwinding mechanism known as heteroduplex rejection. Using baker's yeast as a model, we have identified new factors and regulatory steps in heteroduplex rejection during SSA. First we showed that Top3-Rmi1, a topoisomerase complex that interacts with Sgs1, is required for heteroduplex rejection. Second, we found that the replication processivity clamp proliferating cell nuclear antigen (PCNA) is dispensable for heteroduplex rejection, but is important for repairing mismatches formed during SSA. Third, we showed that modest overexpression of Msh6 results in a significant increase in heteroduplex rejection; this increase is due to a compromise in Msh2-Msh3 function required for the clipping of 3' tails. Thus 3' tail clipping during SSA is a critical regulatory step in the repair vs. rejection decision; rejection is favored before the 3' tails are clipped. Unexpectedly, Msh6 overexpression, through interactions with PCNA, disrupted heteroduplex rejection between divergent sequences in another recombination substrate. These observations illustrate the delicate balance that exists between repair and replication factors to optimize genome stability.
Collapse
|
12
|
Top2 and Sgs1-Top3 Act Redundantly to Ensure rDNA Replication Termination. PLoS Genet 2015; 11:e1005697. [PMID: 26630413 PMCID: PMC4668019 DOI: 10.1371/journal.pgen.1005697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/02/2015] [Indexed: 11/19/2022] Open
Abstract
Faithful DNA replication with correct termination is essential for genome stability and transmission of genetic information. Here we have investigated the potential roles of Topoisomerase II (Top2) and the RecQ helicase Sgs1 during late stages of replication. We find that cells lacking Top2 and Sgs1 (or Top3) display two different characteristics during late S/G2 phase, checkpoint activation and accumulation of asymmetric X-structures, which are both independent of homologous recombination. Our data demonstrate that checkpoint activation is caused by a DNA structure formed at the strongest rDNA replication fork barrier (RFB) during replication termination, and consistently, checkpoint activation is dependent on the RFB binding protein, Fob1. In contrast, asymmetric X-structures are formed independent of Fob1 at less strong rDNA replication fork barriers. However, both checkpoint activation and formation of asymmetric X-structures are sensitive to conditions, which facilitate fork merging and progression of replication forks through replication fork barriers. Our data are consistent with a redundant role of Top2 and Sgs1 together with Top3 (Sgs1-Top3) in replication fork merging at rDNA barriers. At RFB either Top2 or Sgs1-Top3 is essential to prevent formation of a checkpoint activating DNA structure during termination, but at less strong rDNA barriers absence of the enzymes merely delays replication fork merging, causing an accumulation of asymmetric termination structures, which are solved over time. Replication termination is the final step of the replication process, where the two replication forks converge and finally merge to form fully replicated sister chromatids. During this process topological strain in the form of DNA overwinding is generated between forks, and if not removed this strain will inhibit replication of the remaining DNA and thus faithful termination. In this study, we demonstrate that the cell has two redundant pathways to overcome topological problems during rDNA replication termination, one involving Top2 and the other involving the RecQ helicase Sgs1, in concert with Top3. In the absence of both pathways a checkpoint is activated in late S/G2 phase due to faulty replication termination at the strongest rDNA replication fork barrier (RFB). At less strong barriers termination is merely delayed under these conditions resulting in an accumulation of termination X-structures, which are solved over time.
Collapse
|
13
|
Abstract
Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell.
Collapse
|
14
|
Tang S, Wu MKY, Zhang R, Hunter N. Pervasive and essential roles of the Top3-Rmi1 decatenase orchestrate recombination and facilitate chromosome segregation in meiosis. Mol Cell 2015; 57:607-621. [PMID: 25699709 DOI: 10.1016/j.molcel.2015.01.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/03/2014] [Accepted: 01/12/2015] [Indexed: 11/30/2022]
Abstract
The Bloom's helicase ortholog, Sgs1, plays central roles to coordinate the formation and resolution of joint molecule intermediates (JMs) during meiotic recombination in budding yeast. Sgs1 can associate with type-I topoisomerase Top3 and its accessory factor Rmi1 to form a conserved complex best known for its unique ability to decatenate double-Holliday junctions. Contrary to expectations, we show that the strand-passage activity of Top3-Rmi1 is required for all known functions of Sgs1 in meiotic recombination, including channeling JMs into physiological crossover and noncrossover pathways, and suppression of non-allelic recombination. We infer that Sgs1 always functions in the context of the Sgs1-Top3-Rmi1 complex to regulate meiotic recombination. In addition, we reveal a distinct late role for Top3-Rmi1 in resolving recombination-dependent chromosome entanglements to allow segregation at anaphase. Surprisingly, Sgs1 does not share this essential role of Top3-Rmi1. These data reveal an essential and pervasive role for the Top3-Rmi1 decatenase during meiosis.
Collapse
Affiliation(s)
- Shangming Tang
- Howard Hughes Medical Institute and the Departments of Microbiology & Molecular Genetics, Molecular & Cellular Biology and Cell Biology & Human Anatomy, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Michelle Ka Yan Wu
- Howard Hughes Medical Institute and the Departments of Microbiology & Molecular Genetics, Molecular & Cellular Biology and Cell Biology & Human Anatomy, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Ruoxi Zhang
- Howard Hughes Medical Institute and the Departments of Microbiology & Molecular Genetics, Molecular & Cellular Biology and Cell Biology & Human Anatomy, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Neil Hunter
- Howard Hughes Medical Institute and the Departments of Microbiology & Molecular Genetics, Molecular & Cellular Biology and Cell Biology & Human Anatomy, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
15
|
Kaur H, De Muyt A, Lichten M. Top3-Rmi1 DNA single-strand decatenase is integral to the formation and resolution of meiotic recombination intermediates. Mol Cell 2015; 57:583-594. [PMID: 25699707 DOI: 10.1016/j.molcel.2015.01.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/06/2014] [Accepted: 01/12/2015] [Indexed: 11/26/2022]
Abstract
The topoisomerase III (Top3)-Rmi1 heterodimer, which catalyzes DNA single-strand passage, forms a conserved complex with the Bloom's helicase (BLM, Sgs1 in budding yeast). This complex has been proposed to regulate recombination by disassembling double Holliday junctions in a process called dissolution. Top3-Rmi1 has been suggested to act at the end of this process, resolving hemicatenanes produced by earlier BLM/Sgs1 activity. We show here that, to the contrary, Top3-Rmi1 acts in all meiotic recombination functions previously associated with Sgs1, most notably as an early recombination intermediate chaperone, promoting regulated crossover and noncrossover recombination and preventing aberrant recombination intermediate accumulation. In addition, we show that Top3-Rmi1 has important Sgs1-independent functions that ensure complete recombination intermediate resolution and chromosome segregation. These findings indicate that Top3-Rmi1 activity is important throughout recombination to resolve strand crossings that would otherwise impede progression through both early steps of pathway choice and late steps of intermediate resolution.
Collapse
Affiliation(s)
- Hardeep Kaur
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Arnaud De Muyt
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Xu X, Blackwell S, Lin A, Li F, Qin Z, Xiao W. Error-free DNA-damage tolerance in Saccharomyces cerevisiae. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:43-50. [DOI: 10.1016/j.mrrev.2015.02.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/07/2015] [Accepted: 02/06/2015] [Indexed: 12/18/2022]
|
17
|
Fasching CL, Cejka P, Kowalczykowski SC, Heyer WD. Top3-Rmi1 dissolve Rad51-mediated D loops by a topoisomerase-based mechanism. Mol Cell 2015; 57:595-606. [PMID: 25699708 PMCID: PMC4338411 DOI: 10.1016/j.molcel.2015.01.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/03/2014] [Accepted: 01/02/2015] [Indexed: 11/19/2022]
Abstract
The displacement loop (D loop) is a DNA strand invasion product formed during homologous recombination. Disruption of nascent D loops prevents recombination, and during synthesis-dependent strand annealing (SDSA), disruption of D loops extended by DNA polymerase ensures a non-crossover outcome. The proteins implicated in D loop disruption are DNA motor proteins/helicases that act by moving DNA junctions. Here we report that D loops can also be disrupted by DNA topoisomerase 3 (Top3), and this disruption depends on Top3's catalytic activity. Yeast Top3 specifically disrupts D loops mediated by yeast Rad51/Rad54; protein-free D loops or D loop mediated by bacterial RecA protein or human RAD51/RAD54 resist dissolution. Also, the human Topoisomerase IIIa-RMI1-RMI2 complex is capable of dissolving D loops. Consistent with genetic data, we suggest that the extreme growth defect and hyper-recombination phenotype of Top3-deficient yeast cells is partially a result of unprocessed D loops.
Collapse
Affiliation(s)
- Clare L Fasching
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| | - Petr Cejka
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| | - Stephen C Kowalczykowski
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA; Department of Molecular & Cellular Biology, University of California, Davis, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA; Department of Molecular & Cellular Biology, University of California, Davis, Davis, CA 95616-8665, USA.
| |
Collapse
|
18
|
Usongo V, Drolet M. Roles of type 1A topoisomerases in genome maintenance in Escherichia coli. PLoS Genet 2014; 10:e1004543. [PMID: 25102178 PMCID: PMC4125114 DOI: 10.1371/journal.pgen.1004543] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 06/17/2014] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, type 1A topoisomerases (topos) act with RecQ-like helicases to maintain the stability of the genome. Despite having been the first type 1A enzymes to be discovered, much less is known about the involvement of the E. coli topo I (topA) and III (topB) enzymes in genome maintenance. These enzymes are thought to have distinct cellular functions: topo I regulates supercoiling and R-loop formation, and topo III is involved in chromosome segregation. To better characterize their roles in genome maintenance, we have used genetic approaches including suppressor screens, combined with microscopy for the examination of cell morphology and nucleoid shape. We show that topA mutants can suffer from growth-inhibitory and supercoiling-dependent chromosome segregation defects. These problems are corrected by deleting recA or recQ but not by deleting recJ or recO, indicating that the RecF pathway is not involved. Rather, our data suggest that RecQ acts with a type 1A topo on RecA-generated recombination intermediates because: 1-topo III overproduction corrects the defects and 2-recQ deletion and topo IIII overproduction are epistatic to recA deletion. The segregation defects are also linked to over-replication, as they are significantly alleviated by an oriC::aph suppressor mutation which is oriC-competent in topA null but not in isogenic topA+ cells. When both topo I and topo III are missing, excess supercoiling triggers growth inhibition that correlates with the formation of extremely long filaments fully packed with unsegregated and diffuse DNA. These phenotypes are likely related to replication from R-loops as they are corrected by overproducing RNase HI or by genetic suppressors of double topA rnhA mutants affecting constitutive stable DNA replication, dnaT::aph and rne::aph, which initiates from R-loops. Thus, bacterial type 1A topos maintain the stability of the genome (i) by preventing over-replication originating from oriC (topo I alone) and R-loops and (ii) by acting with RecQ. DNA topoisomerases are ubiquitous enzymes that solve the topological problems associated with replication, transcription and recombination. Eukaryotic enzymes of the type 1A family work with RecQ-like helicases such as BLM and Sgs1 and are involved in genome maintenance. Interestingly, E. coli topo I, a type 1A enzyme and the first topoisomerase to be discovered, appears to have distinct cellular functions that are related to supercoiling regulation and to the inhibition of R-loop formation. Here we present data strongly suggesting that these cellular functions are required to inhibit inappropriate replication originating from either oriC, the normal origin of replication, or R-loops that can otherwise lead to severe chromosome segregation defects. Avoiding such inappropriate replication appears to be a key cellular function for genome maintenance, since the other E. coli type 1A topo, topo III, is also involved. Furthermore, our data suggest that bacterial type 1A topos, like their eukaryotic counterparts, can act with RecQ in genome maintenance. Altogether, our data provide new insight into the role of type 1A topos in genome maintenance and reveal an interplay between these enzymes and R-loops, structures that can also significantly affect the stability of the genome as recently shown in numerous studies.
Collapse
Affiliation(s)
- Valentine Usongo
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Succ. Centre-ville, Montréal, Québec, Canada
| | - Marc Drolet
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Succ. Centre-ville, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
19
|
Kramarz K, Litwin I, Cal-Bąkowska M, Szakal B, Branzei D, Wysocki R, Dziadkowiec D. Swi2/Snf2-like protein Uls1 functions in the Sgs1-dependent pathway of maintenance of rDNA stability and alleviation of replication stress. DNA Repair (Amst) 2014; 21:24-35. [PMID: 25091157 DOI: 10.1016/j.dnarep.2014.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 05/05/2014] [Accepted: 05/25/2014] [Indexed: 10/25/2022]
Abstract
The Saccharomyces cerevisiae Uls1 belongs to the Swi2/Snf2 family of DNA-dependent ATPases and a new protein family of SUMO-targeted ubiquitin ligases. Here we show that Uls1 is implicated in DNA repair independently of the replication stress response pathways mediated by the endonucleases Mus81 and Yen1 and the helicases Mph1 and Srs2. Uls1 works together with Sgs1 and we demonstrate that the attenuation of replication stress-related defects in sgs1Δ by deletion of ULS1 depends on a functional of Rad51 recombinase and post-replication repair pathway mediated by Rad18 and Rad5, but not on the translesion polymerase, Rev3. The higher resistance of sgs1Δ uls1Δ mutants to genotoxic stress compared to single sgs1Δ cells is not the result of decreased formation or accelerated resolution of recombination-dependent DNA structures. Instead, deletion of ULS1 restores stability of the rDNA region in sgs1Δ cells. Our data suggest that Uls1 may contribute to genomic stability during DNA synthesis and channel the repair of replication lesions into the Sgs1-dependent pathway, with DNA translocase and SUMO binding activities of Uls1 as well as a RING domain being essential for its functions in replication stress response.
Collapse
Affiliation(s)
- Karol Kramarz
- Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, 50-328 Wrocław, Poland
| | - Ireneusz Litwin
- Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, 50-328 Wrocław, Poland
| | - Magdalena Cal-Bąkowska
- Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, 50-328 Wrocław, Poland
| | - Barnabas Szakal
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, Milan 20139, Italy
| | - Dana Branzei
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, Milan 20139, Italy
| | - Robert Wysocki
- Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, 50-328 Wrocław, Poland
| | - Dorota Dziadkowiec
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland.
| |
Collapse
|
20
|
Allen-Soltero S, Martinez SL, Putnam CD, Kolodner RD. A saccharomyces cerevisiae RNase H2 interaction network functions to suppress genome instability. Mol Cell Biol 2014; 34:1521-34. [PMID: 24550002 PMCID: PMC3993591 DOI: 10.1128/mcb.00960-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/23/2013] [Accepted: 02/04/2014] [Indexed: 11/20/2022] Open
Abstract
Errors during DNA replication are one likely cause of gross chromosomal rearrangements (GCRs). Here, we analyze the role of RNase H2, which functions to process Okazaki fragments, degrade transcription intermediates, and repair misincorporated ribonucleotides, in preventing genome instability. The results demonstrate that rnh203 mutations result in a weak mutator phenotype and cause growth defects and synergistic increases in GCR rates when combined with mutations affecting other DNA metabolism pathways, including homologous recombination (HR), sister chromatid HR, resolution of branched HR intermediates, postreplication repair, sumoylation in response to DNA damage, and chromatin assembly. In some cases, a mutation in RAD51 or TOP1 suppressed the increased GCR rates and/or the growth defects of rnh203Δ double mutants. This analysis suggests that cells with RNase H2 defects have increased levels of DNA damage and depend on other pathways of DNA metabolism to overcome the deleterious effects of this DNA damage.
Collapse
Affiliation(s)
- Stephanie Allen-Soltero
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, California, USA
| | - Sandra L. Martinez
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, USA
| | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, California, USA
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, California, USA
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, California, USA
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, California, USA
| |
Collapse
|
21
|
Xu X, Ball L, Chen W, Tian X, Lambrecht A, Hanna M, Xiao W. The yeast Shu complex utilizes homologous recombination machinery for error-free lesion bypass via physical interaction with a Rad51 paralogue. PLoS One 2013; 8:e81371. [PMID: 24339919 PMCID: PMC3855272 DOI: 10.1371/journal.pone.0081371] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/11/2013] [Indexed: 12/20/2022] Open
Abstract
DNA-damage tolerance (DDT) is defined as a mechanism by which eukaryotic cells resume DNA synthesis to fill the single-stranded DNA gaps left by replication-blocking lesions. Eukaryotic cells employ two different means of DDT, namely translesion DNA synthesis (TLS) and template switching, both of which are coordinately regulated through sequential ubiquitination of PCNA at the K164 residue. In the budding yeast Saccharomyces cerevisiae, the same PCNA-K164 residue can also be sumoylated, which recruits the Srs2 helicase to prevent undesired homologous recombination (HR). While the mediation of TLS by PCNA monoubiquitination has been extensively characterized, the method by which K63-linked PCNA polyubiquitination leads to template switching remains unclear. We recently identified a yeast heterotetrameric Shu complex that couples error-free DDT to HR as a critical step of template switching. Here we report that the Csm2 subunit of Shu physically interacts with Rad55, an accessory protein involved in HR. Rad55 and Rad57 are Rad51 paralogues and form a heterodimer to promote Rad51-ssDNA filament formation by antagonizing Srs2 activity. Although Rad55-Rad57 and Shu function in the same pathway and both act to inhibit Srs2 activity, Shu appears to be dedicated to error-free DDT while the Rad55-Rad57 complex is also involved in double-strand break repair. This study reveals the detailed steps of error-free lesion bypass and also brings to light an intrinsic interplay between error-free DDT and Srs2-mediated inhibition of HR.
Collapse
Affiliation(s)
- Xin Xu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Lindsay Ball
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Wangyang Chen
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xuelei Tian
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Amanda Lambrecht
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Michelle Hanna
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, China
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
- * E-mail:
| |
Collapse
|
22
|
Maruyama S, Ohkita N, Nakayama M, Akaboshi E, Shibata T, Funakoshi E, Takeuchi K, Ito F, Kawasaki K. RecQ5 interacts with Rad51 and is involved in resistance of Drosophila to cisplatin treatment. Biol Pharm Bull 2013; 35:2017-22. [PMID: 23123473 DOI: 10.1248/bpb.b12-00551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RecQ5 is a member of the RecQ family of DNA helicases. There are 5 RecQ members in humans. Defects in 3 of them, i.e., BLM, WRN, and RTS, cause Bloom, Werner, and Rothmund-Thomson syndromes, respectively. RECQL1 and RECQL5 have not been associated with any human disease, and their precise roles are unknown. Our previous study suggests that the lack of RecQ5, which is the Drosophila homolog of RECQL5, leads to the accumulation of DNA double-stranded breaks (DSBs). It is possible that RecQ5 is involved in DSB repair. However, little is known about this possible function of RecQ5 in DSB repair. Here, we report that Rad51 protein, which plays a critical role in DSB repair, interacted with RecQ5 in vitro and in vivo in Drosophila. The Rad51 protein interacted with the C-terminal region of RecQ5, as shown by the yeast two-hybrid method. Moreover, the C-terminal region of the RecQ5 protein and the central region of Rad51 interacted directly and specifically when examined by the glutathione-S-transferase pull-down method. Consistent with these results, when RecQ5 and Rad51 were co-expressed in Drosophila cells in culture, they became co-localized in nuclei and could be co-immunoprecipitated. Furthermore, RecQ5-deficient flies (recq5) were more sensitive to the chemotherapeutic agent cisplatin compared with wild-type ones. Also, Rad51 mutants (rad51) were more sensitive to cisplatin, with sensitivity similar to that of recq5 rad51 double mutants. These data suggest that RecQ5 and Rad51 in Drosophila functioned for survival after the flies had been treated with cisplatin.
Collapse
Affiliation(s)
- Sayako Maruyama
- Cellular and Molecular Biology Laboratory, RIKEN, 2–1 Hirosawa, Wako, Saitama 351–0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Identification of Trypanosoma brucei RMI1/BLAP75 homologue and its roles in antigenic variation. PLoS One 2011; 6:e25313. [PMID: 21980422 PMCID: PMC3182221 DOI: 10.1371/journal.pone.0025313] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/31/2011] [Indexed: 11/30/2022] Open
Abstract
At any time, each cell of the protozoan parasite Trypanosoma brucei expresses a single species of its major antigenic protein, the variant surface glycoprotein (VSG), from a repertoire of >2,000 VSG genes and pseudogenes. The potential to express different VSGs by transcription and recombination allows the parasite to escape the antibody-mediated host immune response, a mechanism known as antigenic variation. The active VSG is transcribed from a sub-telomeric polycistronic unit called the expression site (ES), whose promoter is 40–60 kb upstream of the VSG. While the mechanisms that initiate recombination remain unclear, the resolution phase of these reactions results in the recombinational replacement of the expressed VSG with a donor from one of three distinct chromosomal locations; sub-telomeric loci on the 11 essential chromosomes, on minichromosomes, or at telomere-distal loci. Depending on the type of recombinational replacement (single or double crossover, duplicative gene conversion, etc), several DNA-repair pathways have been thought to play a role. Here we show that VSG recombination relies on at least two distinct DNA-repair pathways, one of which requires RMI1-TOPO3α to suppress recombination and one that is dependent on RAD51 and RMI1. These genetic interactions suggest that both RAD51-dependent and RAD51-independent recombination pathways operate in antigenic switching and that trypanosomes differentially utilize recombination factors for VSG switching, depending on currently unknown parameters within the ES.
Collapse
|
24
|
Cal-Bakowska M, Litwin I, Bocer T, Wysocki R, Dziadkowiec D. The Swi2-Snf2-like protein Uls1 is involved in replication stress response. Nucleic Acids Res 2011; 39:8765-77. [PMID: 21764775 PMCID: PMC3203583 DOI: 10.1093/nar/gkr587] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Saccharomyces cerevisiae Uls1 belongs to the Swi2–Snf2 family of DNA-dependent ATPases and a new protein family of SUMO-targeted ubiquitin ligases. Here, we examine a physiological role of Uls1 and report for the first time its involvement in response to replication stress. We found that deletion of ULS1 in cells lacking RAD52 caused a synthetic growth defect accompanied by prolonged S phase and aberrant cell morphology. uls1Δ also progressed slower through S phase upon MMS treatment and took longer to resolve replication intermediates during recovery. This suggests an important function for Uls1 during replication stress. Consistently, cells lacking Uls1 and endonuclease Mus81 were more sensitive to HU, MMS and CPT than single mus81Δ. Interestingly, deletion of ULS1 attenuated replication stress-related defects in sgs1Δ, such as sensitivity to HU and MMS while increasing the level of PCNA ubiquitination and Rad53 phosphorylation. Importantly, Uls1 interactions with Mus81 and Sgs1 were dependent on its helicase domain. We propose that Uls1 directs a subset of DNA structures arising during replication into the Sgs1-dependent pathway facilitating S phase progression. Thus, in the absence of Uls1 other modes of replication fork processing and repair are employed.
Collapse
Affiliation(s)
- Magdalena Cal-Bakowska
- Institute of Plant Biology, Faculty of Biological Sciences, University of Wrocław, 50-328 Wrocław, Poland
| | | | | | | | | |
Collapse
|
25
|
Epistasis analysis between homologous recombination genes in Saccharomyces cerevisiae identifies multiple repair pathways for Sgs1, Mus81-Mms4 and RNase H2. Mutat Res 2011; 714:33-43. [PMID: 21741981 DOI: 10.1016/j.mrfmmm.2011.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/06/2011] [Accepted: 06/23/2011] [Indexed: 11/21/2022]
Abstract
The DNA repair genes SGS1 and MUS81 of Saccharomyces cerevisiae are thought to control alternative pathways for the repair of toxic recombination intermediates based on the fact that sgs1Δ mus81Δ synthetic lethality is suppressed in the absence of homologous recombination (HR). Although these genes appear to functionally overlap in yeast and other model systems, the specific pathways controlled by SGS1 and MUS81 are poorly defined. Epistasis analyses based on DNA damage sensitivity previously indicated that SGS1 functioned primarily downstream of RAD51, and that MUS81 was independent of RAD51. To further define these genetic pathways, we carried out a systematic epistasis analysis between the RAD52-epistasis group genes and SGS1, MUS81, and RNH202, which encodes a subunit of RNase H2. Based on synthetic-fitness interactions and DNA damage sensitivities, we find that RAD52 is epistatic to MUS81 but not SGS1. In contrast, RAD54, RAD55 and RAD57 are epistatic to SGS1, MUS81 and RNH202. As expected, SHU2 is epistatic to SGS1, while both SHU1 and SHU2 are epistatic to MUS81. Importantly, loss of any RNase H2 subunit on its own resulted in increased recombination using a simple marker-excision assay. RNase H2 is thus needed to maintain genome stability consistent with the sgs1Δ rnh202Δ synthetic fitness defect. We conclude that SGS1 and MUS81 act in parallel pathways downstream of RAD51 and RAD52, respectively. The data further indicate these pathways share common components and display complex interactions.
Collapse
|
26
|
Li B, Cao W, Zhou J, Luo F. Understanding and predicting synthetic lethal genetic interactions in Saccharomyces cerevisiae using domain genetic interactions. BMC SYSTEMS BIOLOGY 2011; 5:73. [PMID: 21586150 PMCID: PMC3113237 DOI: 10.1186/1752-0509-5-73] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 05/17/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Synthetic lethal genetic interactions among proteins have been widely used to define functional relationships between proteins and pathways. However, the molecular mechanism of synthetic lethal genetic interactions is still unclear. RESULTS In this study, we demonstrated that yeast synthetic lethal genetic interactions can be explained by the genetic interactions between domains of those proteins. The domain genetic interactions rarely overlap with the domain physical interactions from iPfam database and provide a complementary view about domain relationships. Moreover, we found that domains in multidomain yeast proteins contribute to their genetic interactions differently. The domain genetic interactions help more precisely define the function related to the synthetic lethal genetic interactions, and then help understand how domains contribute to different functionalities of multidomain proteins. Using the probabilities of domain genetic interactions, we were able to predict novel yeast synthetic lethal genetic interactions. Furthermore, we had also identified novel compensatory pathways from the predicted synthetic lethal genetic interactions. CONCLUSION The identification of domain genetic interactions helps the understanding of originality of functional relationship in SLGIs at domain level. Our study significantly improved the understanding of yeast mulitdomain proteins, the synthetic lethal genetic interactions and the functional relationships between proteins and pathways.
Collapse
Affiliation(s)
- Bo Li
- School of Computing, Clemson University, Clemson, SC 29634, USA
| | | | | | | |
Collapse
|
27
|
Amiard S, Charbonnel C, Allain E, Depeiges A, White CI, Gallego ME. Distinct roles of the ATR kinase and the Mre11-Rad50-Nbs1 complex in the maintenance of chromosomal stability in Arabidopsis. THE PLANT CELL 2010; 22:3020-33. [PMID: 20876831 PMCID: PMC2965537 DOI: 10.1105/tpc.110.078527] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/04/2010] [Accepted: 09/13/2010] [Indexed: 05/17/2023]
Abstract
Signaling of chromosomal DNA breaks is of primary importance for initiation of repair and, thus, for global genomic stability. Although the Mre11-Rad50-Nbs1 (MRN) complex is the first sensor of double-strand breaks, its role in double-strand break (DSB) signaling is not fully understood. We report the absence of γ-ray-induced, ATM/ATR-dependent histone H2AX phosphorylation in Arabidopsis thaliana rad50 and mre11 mutants, confirming that the MRN complex is required for H2AX phosphorylation by the ATM and ATR kinases in response to irradiation-induced DSB in Arabidopsis. rad50 and mre11 mutants spontaneously activate a DNA damage response, as shown by the presence of γ-H2AX foci and activation of cell cycle arrest in nonirradiated plants. This response is ATR dependent as shown both by the absence of these spontaneous foci and by the wild-type mitotic indices of double rad50 atr and mre11 atr plants. EdU S-phase labeling and fluorescence in situ hybridization analysis using specific subtelomeric probes point to a replicative S-phase origin of this chromosome damage in the double mutants and not to telomere destabilization. Thus, the data presented here show the exclusive involvement of ATR in DNA damage signaling in MRN mutants and provide evidence for a role for ATR in the avoidance of S-phase DNA damage.
Collapse
|
28
|
TOPO3alpha influences antigenic variation by monitoring expression-site-associated VSG switching in Trypanosoma brucei. PLoS Pathog 2010; 6:e1000992. [PMID: 20628569 PMCID: PMC2900300 DOI: 10.1371/journal.ppat.1000992] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 06/08/2010] [Indexed: 12/24/2022] Open
Abstract
Homologous recombination (HR) mediates one of the major mechanisms of trypanosome antigenic variation by placing a different variant surface glycoprotein (VSG) gene under the control of the active expression site (ES). It is believed that the majority of VSG switching events occur by duplicative gene conversion, but only a few DNA repair genes that are central to HR have been assigned a role in this process. Gene conversion events that are associated with crossover are rarely seen in VSG switching, similar to mitotic HR. In other organisms, TOPO3alpha (Top3 in yeasts), a type IA topoisomerase, is part of a complex that is involved in the suppression of crossovers. We therefore asked whether a related mechanism might suppress VSG recombination. Using a set of reliable recombination and switching assays that could score individual switching mechanisms, we discovered that TOPO3alpha function is conserved in Trypanosoma brucei and that TOPO3alpha plays a critical role in antigenic switching. Switching frequency increased 10-40-fold in the absence of TOPO3alpha and this hyper-switching phenotype required RAD51. Moreover, the preference of 70-bp repeats for VSG recombination was mitigated, while homology regions elsewhere in ES were highly favored, in the absence of TOPO3alpha. Our data suggest that TOPO3alpha may remove undesirable recombination intermediates constantly arising between active and silent ESs, thereby balancing ES integrity against VSG recombination.
Collapse
|
29
|
Aggarwal M, Brosh RM. Genetic studies of human DNA repair proteins using yeast as a model system. J Vis Exp 2010:1639. [PMID: 20300059 DOI: 10.3791/1639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding the roles of human DNA repair proteins in genetic pathways is a formidable challenge to many researchers. Genetic studies in mammalian systems have been limited due to the lack of readily available tools including defined mutant genetic cell lines, regulatory expression systems, and appropriate selectable markers. To circumvent these difficulties, model genetic systems in lower eukaryotes have become an attractive choice for the study of functionally conserved DNA repair proteins and pathways. We have developed a model yeast system to study the poorly defined genetic functions of the Werner syndrome helicase-nuclease (WRN) in nucleic acid metabolism. Cellular phenotypes associated with defined genetic mutant backgrounds can be investigated to clarify the cellular and molecular functions of WRN through its catalytic activities and protein interactions. The human WRN gene and associated variants, cloned into DNA plasmids for expression in yeast, can be placed under the control of a regulatory plasmid element. The expression construct can then be transformed into the appropriate yeast mutant background, and genetic function assayed by a variety of methodologies. Using this approach, we determined that WRN, like its related RecQ family members BLM and Sgs1, operates in a Top3-dependent pathway that is likely to be important for genomic stability. This is described in our recent publication at www.impactaging.com. Detailed methods of specific assays for genetic complementation studies in yeast are provided in this paper.
Collapse
Affiliation(s)
- Monika Aggarwal
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, USA
| | | |
Collapse
|
30
|
Moore DM, Karlin J, González-Barrera S, Mardiros A, Lisby M, Doughty A, Gilley J, Rothstein R, Friedberg EC, Fischhaber PL. Rad10 exhibits lesion-dependent genetic requirements for recruitment to DNA double-strand breaks in Saccharomyces cerevisiae. Nucleic Acids Res 2009; 37:6429-38. [PMID: 19729509 PMCID: PMC2770674 DOI: 10.1093/nar/gkp709] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the Rad1–Rad10 protein complex participates in nucleotide excision repair (NER) and homologous recombination (HR). During HR, the Rad1–Rad10 endonuclease cleaves 3′ branches of DNA and aberrant 3′ DNA ends that are refractory to other 3′ processing enzymes. Here we show that yeast strains expressing fluorescently labeled Rad10 protein (Rad10-YFP) form foci in response to double-strand breaks (DSBs) induced by a site-specific restriction enzyme, I-SceI or by ionizing radiation (IR). Additionally, for endonuclease-induced DSBs, Rad10-YFP localization to DSB sites depends on both RAD51 and RAD52, but not MRE11 while IR-induced breaks do not require RAD51. Finally, Rad10-YFP colocalizes with Rad51-CFP and with Rad52-CFP at DSB sites, indicating a temporal overlap of Rad52, Rad51 and Rad10 functions at DSBs. These observations are consistent with a putative role of Rad10 protein in excising overhanging DNA ends after homology searching and refine the potential role(s) of the Rad1–Rad10 complex in DSB repair in yeast.
Collapse
Affiliation(s)
- Destaye M Moore
- Department of Chemistry and Biochemistry, California State University, Northridge, CA 91330-8262, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ball LG, Zhang K, Cobb JA, Boone C, Xiao W. The yeast Shu complex couples error-free post-replication repair to homologous recombination. Mol Microbiol 2009; 73:89-102. [PMID: 19496932 DOI: 10.1111/j.1365-2958.2009.06748.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA post-replication repair (PRR) functions to bypass replication-blocking lesions and prevent damage-induced cell death. PRR employs two different mechanisms to bypass damaged DNA. While translesion synthesis has been well characterized, little is known about the molecular events involved in error-free bypass, although it has been assumed that homologous recombination (HR) is required for such a mode of lesion bypass. We undertook a genome-wide synthetic genetic array screen for novel genes involved in error-free PRR and observed evidence of genetic interactions between error-free PRR and HR. Furthermore, this screen identified and assigned four genes, CSM2, PSY3, SHU1 and SHU2, whose products form a stable Shu complex, to the error-free PRR pathway. Previous studies have indicated that the Shu complex is required for efficient HR and that inactivation of any of these genes is able to suppress the severe phenotypes of top3 and sgs1. We confirmed and further extended some of the reported observations and demonstrated that error-free PRR mutations are also epistatic to sgs1. Based on the above analyses, we propose a model in which error-free PRR utilizes the Shu complex to recruit HR to facilitate template switching, followed by double-Holliday junction resolution by Sgs1-Top3. This mechanism appears to be conserved throughout eukaryotes.
Collapse
Affiliation(s)
- Lindsay G Ball
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | | | | | | | | |
Collapse
|
32
|
Bhattacharyya S, Keirsey J, Russell B, Kavecansky J, Lillard-Wetherell K, Tahmaseb K, Turchi JJ, Groden J. Telomerase-associated protein 1, HSP90, and topoisomerase IIalpha associate directly with the BLM helicase in immortalized cells using ALT and modulate its helicase activity using telomeric DNA substrates. J Biol Chem 2009; 284:14966-77. [PMID: 19329795 PMCID: PMC2685679 DOI: 10.1074/jbc.m900195200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/13/2009] [Indexed: 11/06/2022] Open
Abstract
The BLM helicase associates with the telomere structural proteins TRF1 and TRF2 in immortalized cells using the alternative lengthening of telomere (ALT) pathways. This work focuses on identifying protein partners of BLM in cells using ALT. Mass spectrometry and immunoprecipitation techniques have identified three proteins that bind directly to BLM and TRF2 in ALT cells: telomerase-associated protein 1 (TEP1), heat shock protein 90 (HSP90), and topoisomerase IIalpha (TOPOIIalpha). BLM predominantly co-localizes with these proteins in foci actively synthesizing DNA during late S and G(2)/M phases of the cell cycle when ALT is thought to occur. Immunoprecipitation studies also indicate that only HSP90 and TOPOIIalpha are components of a specific complex containing BLM, TRF1, and TRF2 but that this complex does not include TEP1. TEP1, TOPOIIalpha, and HSP90 interact directly with BLM in vitro and modulate its helicase activity on telomere-like DNA substrates but not on non-telomeric substrates. Initial studies suggest that knockdown of BLM in ALT cells reduces average telomere length but does not do so in cells using telomerase.
Collapse
Affiliation(s)
- Saumitri Bhattacharyya
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, Ohio 43210-2207, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Role of Blm and collaborating factors in recombination and survival following replication stress in Ustilago maydis. DNA Repair (Amst) 2009; 8:752-9. [PMID: 19349216 DOI: 10.1016/j.dnarep.2009.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/16/2009] [Accepted: 02/06/2009] [Indexed: 11/20/2022]
Abstract
Inactivation of the structural gene for the RecQ family member, BLM in human, Sgs1 in budding yeast, or Rqh1 in fission yeast leads to inappropriate recombination, chromosome abnormalities, and disturbed replication fork progression. Studies with yeasts have demonstrated that auxiliary gene functions can contribute in overlapping ways with Sgs1 or Rqh1 to circumvent or overcome lesions in DNA caused by certain genotoxic agents. In the combined absence of these functions, recombination-mediated processes lead to severe loss of fitness. Here we performed a genetic study to determine the role of the Ustilago maydis Blm homolog in DNA repair and in alleviating replication stress. We characterized the single mutant as well as double mutants additionally deleted of genes encoding Srs2, Fbh1, Mus81, or Exo1. Unlike yeasts, neither the blm srs2, blm exo1, nor blm mus81 double mutant exhibited extreme loss of fitness. Inactivation of Brh2, the BRCA2 homolog, suppressed toxicity to hydroxyurea caused by loss of Blm function. However, differential suppression by Brh2 derivatives lacking the canonical DNA-binding region suggests that the particular domain structure comprising this DNA-binding region may be instrumental in promoting the observed hydroxyurea toxicity.
Collapse
|
34
|
Bernstein KA, Shor E, Sunjevaric I, Fumasoni M, Burgess RC, Foiani M, Branzei D, Rothstein R. Sgs1 function in the repair of DNA replication intermediates is separable from its role in homologous recombinational repair. EMBO J 2009; 28:915-25. [PMID: 19214189 DOI: 10.1038/emboj.2009.28] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 01/13/2009] [Indexed: 01/04/2023] Open
Abstract
Mutations in human homologues of the bacterial RecQ helicase cause diseases leading to cancer predisposition and/or shortened lifespan (Werner, Bloom, and Rothmund-Thomson syndromes). The budding yeast Saccharomyces cerevisiae has one RecQ helicase, Sgs1, which functions with Top3 and Rmi1 in DNA repair. Here, we report separation-of-function alleles of SGS1 that suppress the slow growth of top3Delta and rmi1Delta cells similar to an SGS1 deletion, but are resistant to DNA damage similar to wild-type SGS1. In one allele, the second acidic region is deleted, and in the other, only a single aspartic acid residue 664 is deleted. sgs1-D664Delta, unlike sgs1Delta, neither disrupts DNA recombination nor has synthetic growth defects when combined with DNA repair mutants. However, during S phase, it accumulates replication-associated X-shaped structures at damaged replication forks. Furthermore, fluorescent microscopy reveals that the sgs1-D664Delta allele exhibits increased spontaneous RPA foci, suggesting that the persistent X-structures may contain single-stranded DNA. Taken together, these results suggest that the Sgs1 function in repair of DNA replication intermediates can be uncoupled from its role in homologous recombinational repair.
Collapse
Affiliation(s)
- Kara A Bernstein
- Department of Genetics & Development, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Aggarwal M, Brosh RM. WRN helicase defective in the premature aging disorder Werner syndrome genetically interacts with topoisomerase 3 and restores the top3 slow growth phenotype of sgs1 top3. Aging (Albany NY) 2009; 1:219-33. [PMID: 20157511 PMCID: PMC2806000 DOI: 10.18632/aging.100020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 02/02/2009] [Indexed: 11/25/2022]
Abstract
Werner syndrome (WS) is a premature aging disorder characterized by genomic instability. The WRN gene defective in WS encodes a protein with both helicase and exonuclease activities that interacts with proteins implicated in DNA metabolism. To understand its genetic functions, we examined the ability of human WRN to rescue phenotypes associated with sgs1, the sole RecQ helicase in Saccharomyces cerevisiae. WRN failed to rescue sgs1 sensitivity to the DNA damaging agent methylmethane sulfonate or replication inhibitor hydroxyurea, suggesting divergent functions of human and yeast RecQ helicases. However, physiological expression of WRN in sgs1 top3 restored top3 slow growth phenotype, whereas no effect on growth was observed with wild-type or sgs1 strains. Slow growth of WRN-transformed sgs1 top3 correlated with an elevated population of large-budded cells with undivided nuclei, indicating restoration of cell cycle delay in late S/G2 characteristic of top3. WRN helicase but not exonuclease activity was genetically required for restoration of top3 growth phenotype, demonstrating separation of function of WRN catalytic activities. A naturally occurring missense polymorphism in WRN that interferes with helicase activity abolished its ability to restore top3 slow growth phenotype. Proposed roles of WRN in genetic pathways important for the suppression of genomic instability are discussed.
Collapse
Affiliation(s)
- Monika Aggarwal
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH, NIH Biomedical Research Center, 251 Bayview Blvd, Suite 100, Rm #06B125, Baltimore, MD 21224, USA
| | | |
Collapse
|
36
|
Sollier J, Driscoll R, Castellucci F, Foiani M, Jackson SP, Branzei D. The Saccharomyces cerevisiae Esc2 and Smc5-6 proteins promote sister chromatid junction-mediated intra-S repair. Mol Biol Cell 2009; 20:1671-82. [PMID: 19158389 DOI: 10.1091/mbc.e08-08-0875] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recombination is important for DNA repair, but it can also contribute to genome rearrangements. RecQ helicases, including yeast Sgs1 and human BLM, safeguard genome integrity through their functions in DNA recombination. Sgs1 prevents the accumulation of Rad51-dependent sister chromatid junctions at damaged replication forks, and its functionality seems to be regulated by Ubc9- and Mms21-dependent sumoylation. We show that mutations in Smc5-6 and Esc2 also lead to an accumulation of recombinogenic structures at damaged replication forks. Because Smc5-6 is sumoylated in an Mms21-dependent manner, this finding suggests that Smc5-6 may be a crucial target of Mms21 implicated in this process. Our data reveal that Smc5-6 and Esc2 are required to tolerate DNA damage and that their functionality is critical in genotoxic conditions in the absence of Sgs1. As reported previously for Sgs1 and Smc5-6, we find that Esc2 physically interacts with Ubc9 and SUMO. This interaction is correlated with the ability of Esc2 to promote DNA damage tolerance. Collectively, these data suggest that Esc2 and Smc5-6 act in concert with Sgs1 to prevent the accumulation of recombinogenic structures at damaged replication forks, likely by integrating sumoylation activities to regulate the repair pathways in response to damaged DNA.
Collapse
Affiliation(s)
- Julie Sollier
- IFOM, The FIRC Institute for Molecular Oncology Foundation, IFOM-IEO Campus, 20139 Milan, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Double functions for the Mre11 complex during DNA double-strand break repair and replication. Int J Biochem Cell Biol 2008; 41:1249-53. [PMID: 19150506 DOI: 10.1016/j.biocel.2008.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 11/08/2008] [Accepted: 12/18/2008] [Indexed: 11/22/2022]
Abstract
Defining the factors that lead to genomic instability is one of the most important fields in cancer biology. DNA damage can arise from exogenous sources or as a result of normal cellular metabolism. Regardless of the cause, when damaged DNA is not properly repaired the genome acquires mutation(s). Under normal circumstances, to prevent such chromosome instability the cell activates the checkpoint response, which inhibits cell cycle progression until DNA repair is complete. The Mre11 complex is formed by three components: Mre11, Rad50, and Nbs1/Xrs2 and is involved in the signaling pathways that lead to both checkpoint activation and DNA repair. In response to DNA damage two functions of the complex will be discussed, one involves its role in initiating kinase activation and the second involves its ability to tether and link DNA strands. This review will highlight the functions of the Mre11 complex during the process of DNA double strand break recognition and repair, and during the process of replication. Understanding how the Mre11 complex is working at the molecular level is important for understanding why disruptions in components of the complex lead to genomic instability and cancer predisposition syndromes in humans.
Collapse
|
38
|
Suski C, Marians KJ. Resolution of converging replication forks by RecQ and topoisomerase III. Mol Cell 2008; 30:779-89. [PMID: 18570879 PMCID: PMC2459239 DOI: 10.1016/j.molcel.2008.04.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 02/23/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
Abstract
RecQ-like DNA helicases pair with cognate topoisomerase III enzymes to function in the maintenance of genomic integrity in many organisms. These proteins play roles in stabilizing stalled replication forks, the S phase checkpoint response, and suppressing genetic crossovers, and their inactivation results in hyper-recombination, gross chromosomal rearrangements, chromosome segregation defects, and human disease. Biochemical activities associated with these enzymes include the ability to resolve double Holliday junctions, a process thought to lead to the suppression of crossover formation. Using Escherichia coli RecQ and topoisomerase III, we demonstrate a second activity for this pair of enzymes that could account for their role in maintaining genomic stability: resolution of converging replication forks. This resolution reaction is specific for the RecQ-topoisomerase III pair and is mediated by interaction of both of these enzymes with the single-stranded DNA-binding protein SSB.
Collapse
Affiliation(s)
| | - Kenneth J. Marians
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
| |
Collapse
|
39
|
Rad50 is not essential for the Mre11-dependent repair of DNA double-strand breaks in Halobacterium sp. strain NRC-1. J Bacteriol 2008; 190:5210-6. [PMID: 18502851 DOI: 10.1128/jb.00292-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The genome of the halophilic archaeon Halobacterium sp. strain NRC-1 encodes homologs of the eukaryotic Mre11 and Rad50 proteins, which are involved in the recognition and end processing of DNA double-strand breaks in the homologous recombination repair pathway. We have analyzed the phenotype of Halobacterium deletion mutants lacking mre11 and/or rad50 after exposure to UV-C radiation, an alkylating agent (N-methyl-N'-nitro-N-nitrosoguanidine), and gamma radiation, none of which resulted in a decrease in survival of the mutant strains compared to that of the background strain. However, a decreased rate of repair of DNA double-strand breaks in strains lacking the mre11 gene was observed using pulsed-field gel electrophoresis. These observations led to the hypothesis that Mre11 is essential for the repair of DNA double-strand breaks in Halobacterium, whereas Rad50 is dispensable. This is the first identification of a Rad50-independent function for the Mre11 protein, and it represents a shift in the Archaea away from the eukaryotic model of homologous recombination repair of DNA double-strand breaks.
Collapse
|
40
|
Weinstein J, Rothstein R. The genetic consequences of ablating helicase activity and the Top3 interaction domain of Sgs1. DNA Repair (Amst) 2008; 7:558-71. [PMID: 18272435 PMCID: PMC2359228 DOI: 10.1016/j.dnarep.2007.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 12/08/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
Abstract
Sgs1, the RecQ helicase homolog, and Top3, the type-IA topoisomerase, physically interact and are required for genomic stability in budding yeast. Similarly, topoisomerase III genes physically pair with homologs of SGS1 in humans that are involved in the cancer predisposition and premature aging diseases Bloom, Werner, and Rothmund-Thompson syndromes. In the absence of Top1 activity, sgs1 mutants are severely growth impaired. Here, we investigate the role of Sgs1 helicase activity and its N-terminal Top3 interaction domain by using an allele-replacement technique to integrate mutant alleles at the native SGS1 genomic locus. We compare the phenotype of helicase-defective (sgs1-hd) and N-terminal deletion (sgs1-NDelta) strains to wild-type and sgs1 null strains. Like the sgs1 null, sgs1-hd mutations suppress top3 slow growth, cause a growth defect in the absence of Srs2 helicase, and impair meiosis. However, for recombination and the synthetic interaction with top1Delta mutations, loss of helicase activity exhibits a less severe phenotype than the null. Interestingly, deletion of the Top3 interaction domain of Sgs1 causes a top3-like phenotype, and furthermore, this effect is dependent on helicase activity. These results suggest that the protein-protein interaction between these two DNA-metabolism enzymes, even in the absence of helicase activity, is important for their function in catalyzing specific changes in DNA topology.
Collapse
Affiliation(s)
- Justin Weinstein
- Department of Genetics & Development, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032-2704, USA
| | | |
Collapse
|
41
|
Defective p53 engagement after the induction of DNA damage in cells deficient in topoisomerase 3beta. Proc Natl Acad Sci U S A 2008; 105:5063-8. [PMID: 18367668 DOI: 10.1073/pnas.0801235105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The type IA topoisomerases have been implicated in the repair of dsDNA breaks by homologous recombination and in the resolution of stalled or damaged DNA replication forks; thus, these proteins play important roles in the maintenance of genomic stability. We studied the functions of one of the two mammalian type IA enzymes, Top3beta, using murine embryonic fibroblasts (MEFs) derived from top3beta(-/-) embryos. top3beta(-/-) MEFs proliferated more slowly than TOP3beta(+/+) control MEFs, demonstrated increased sensitivity to DNA-damaging agents such as ionizing and UV radiation, and had increased DNA double-strand breaks as manifested by increased gamma-H2-AX phosphorylation. However, incomplete enforcement of the G(1)-S cell cycle checkpoint was observed in top3beta(-/-) MEFs. Notably, ataxia-telangiectasia, mutated (ATM)/ATM and Rad3-related (ATR)-dependent substrate phosphorylation after UV-B and ionizing radiation was impaired in top3beta(-/-) versus TOP3beta(+/+) control MEFs, and impaired up-regulation of total and Ser-18-phosphorylated p53 was observed in top3beta(-/-) cells. Taken together, these results suggest an unanticipated role for Top3beta beyond DNA repair in the activation of cellular responses to DNA damage.
Collapse
|
42
|
Abstract
DNA repair pathways can enable tumour cells to survive DNA damage that is induced by chemotherapeutic treatments; therefore, inhibitors of specific DNA repair pathways might prove efficacious when used in combination with DNA-damaging chemotherapeutic drugs. In addition, alterations in DNA repair pathways that arise during tumour development can make some cancer cells reliant on a reduced set of DNA repair pathways for survival. There is evidence that drugs that inhibit one of these pathways in such tumours could prove useful as single-agent therapies, with the potential advantage that this approach could be selective for tumour cells and have fewer side effects.
Collapse
Affiliation(s)
- Thomas Helleday
- Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, off Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK.
| | | | | | | | | |
Collapse
|
43
|
Ii M, Ii T, Brill SJ. Mus81 functions in the quality control of replication forks at the rDNA and is involved in the maintenance of rDNA repeat number in Saccharomyces cerevisiae. Mutat Res 2007; 625:1-19. [PMID: 17555773 PMCID: PMC2100401 DOI: 10.1016/j.mrfmmm.2007.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/25/2007] [Accepted: 04/26/2007] [Indexed: 11/25/2022]
Abstract
Previous studies in yeast have suggested that the SGS1 DNA helicase or the Mus81-Mms4 structure-specific endonuclease is required to suppress the accumulation of lethal recombination intermediates during DNA replication. However, the structure of these intermediates and their mechanism of the suppression are unknown. To examine this reaction, we have isolated and characterized a temperature-sensitive (ts) allele of MUS81. At the non-permissive temperature, sgs1Deltamus81(ts) cells arrest at G(2)/M phase after going through S-phase. Bulk DNA replication appears complete but is defective since the Rad53 checkpoint kinase is strongly phosphorylated under these conditions. In addition, the induction of Rad53 hyper-phosphorylation by MMS was deficient at permissive temperature. Analysis of rDNA replication intermediates at the non-permissive temperature revealed elevated pausing of replication forks at the RFB in the sgs1Deltamus81(ts) mutant and a novel linear structure that was dependent on RAD52. Pulsed-field gel electrophoresis of the mus81Delta mutant revealed an expansion of the rDNA locus depending on RAD52, in addition to fragmentation of Chr XII in the sgs1Deltamus81(ts) mutant at permissive temperature. This is the first evidence that Mus81 functions in quality control of replication forks and that it is involved in the maintenance of rDNA repeats in vivo.
Collapse
Affiliation(s)
- Miki Ii
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, United States.
| | | | | |
Collapse
|
44
|
Examining protein protein interactions using endogenously tagged yeast arrays: the cross-and-capture system. Genome Res 2007; 17:1774-82. [PMID: 17989249 DOI: 10.1101/gr.6667007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Comprehensive approaches to detect protein-protein interactions (PPIs) have been most successful in the yeast model system. Here we present "Cross-and-Capture," a novel assay for rapid, sensitive assessment of PPIs via pulldown of differently tagged yeast strain arrays. About 500 yeast genes that function in DNA replication, repair, and recombination and nuclear proteins of unknown function were chromosomally tagged with six histidine residues or triple VSV epitopes. We demonstrate that the assay can interrogate a wide range of previously known protein complexes with increased resolution and sensitivity. Furthermore, we use "Cross-and-Capture" to identify two novel protein complexes: Rtt101p-Mms1p and Sae2p-Mre11p. The Rtt101p-Mms1p interaction was subsequently characterized by genetic and functional analyses. Our studies establish the "Cross-and-Capture" assay as a novel, versatile tool that provides a valuable complement for the next generation of yeast proteomic studies.
Collapse
|
45
|
Mankouri HW, Ngo HP, Hickson ID. Shu proteins promote the formation of homologous recombination intermediates that are processed by Sgs1-Rmi1-Top3. Mol Biol Cell 2007; 18:4062-73. [PMID: 17671161 PMCID: PMC1995734 DOI: 10.1091/mbc.e07-05-0490] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
CSM2, PSY3, SHU1, and SHU2 (collectively referred to as the SHU genes) were identified in Saccharomyces cerevisiae as four genes in the same epistasis group that suppress various sgs1 and top3 mutant phenotypes when mutated. Although the SHU genes have been implicated in homologous recombination repair (HRR), their precise role(s) within this pathway remains poorly understood. Here, we have identified a specific role for the Shu proteins in a Rad51/Rad54-dependent HRR pathway(s) to repair MMS-induced lesions during S-phase. We show that, although mutation of RAD51 or RAD54 prevented the formation of MMS-induced HRR intermediates (X-molecules) arising during replication in sgs1 cells, mutation of SHU genes attenuated the level of these structures. Similar findings were also observed in shu1 cells in which Rmi1 or Top3 function was impaired. We propose a model in which the Shu proteins act in HRR to promote the formation of HRR intermediates that are processed by the Sgs1-Rmi1-Top3 complex.
Collapse
Affiliation(s)
- Hocine W. Mankouri
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, United Kingdom
| | - Hien-Ping Ngo
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, United Kingdom
| | - Ian D. Hickson
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, United Kingdom
| |
Collapse
|
46
|
Kwan KY, Greenwald RJ, Mohanty S, Sharpe AH, Shaw AC, Wang JC. Development of autoimmunity in mice lacking DNA topoisomerase 3beta. Proc Natl Acad Sci U S A 2007; 104:9242-7. [PMID: 17517607 PMCID: PMC1890479 DOI: 10.1073/pnas.0703587104] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mice lacking DNA topoisomerase 3beta are predisposed to a shortened lifespan, infertility, and lesions in multiple organs resulting from inflammatory responses. Examination of the immune system of 6- and 52-week-old top3beta(-/-) mice revealed no significant aberrations in their central and peripheral tolerance or in T lymphocyte activation. However, the older but not the younger cohort shows a high incidence of serum autoantibodies relative to their TOP3beta(+/+) age-mates. The mutant mice also show an increase in numerical aberrations of chromosomes in splenocytes and bone marrow cells, as well as an increase in apoptotic cells in the thymus. Thus, it appears plausible that the inflammatory lesions in top3beta(-/-) mice are caused by the development of autoimmunity as they age: Chromosomal abnormalities in top3beta(-/-) mice might lead to a persistent increase in apoptotic cells, which might in turn lead to the progression of autoimmunity.
Collapse
Affiliation(s)
- Kelvin Y. Kwan
- *Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
| | - Rebecca J. Greenwald
- Immunology Research Division, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Subhasis Mohanty
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520
| | - Arlene H. Sharpe
- Immunology Research Division, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Albert C. Shaw
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520
- To whom correspondence may be addressed. E-mail: or
| | - James C. Wang
- *Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
47
|
Moore M, Shin M, Bruning A, Schindler K, Vershon A, Winter E. Arg-Pro-X-Ser/Thr is a consensus phosphoacceptor sequence for the meiosis-specific Ime2 protein kinase in Saccharomyces cerevisiae. Biochemistry 2007; 46:271-8. [PMID: 17198398 PMCID: PMC2535912 DOI: 10.1021/bi061858p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ime2 is a meiosis-specific protein kinase in Saccharomyces cerevisiae that is functionally related to cyclin-dependent kinase. Although Ime2 regulates multiple steps in meiosis, only a few of its substrates have been identified. Here we show that Ime2 phosphorylates Sum1, a repressor of meiotic gene transcription, on Thr-306. Ime2 protein kinase assays with Sum1 mutants and synthetic peptides define a consensus Arg-Pro-X-Ser/Thr motif that is required for efficient phosphorylation by Ime2. The carboxyl residue adjacent to the phosphoacceptor (+1 position) also influences the efficiency of Ime2 phosphorylation with alanine being a preferred residue. This information has predictive value in identifying new potential Ime2 targets as shown by the ability of Ime2 to phosphorylate Sgs1 and Gip1 in vitro and could be important in differentiating mitotic and meiotic regulatory pathways.
Collapse
Affiliation(s)
- Michael Moore
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Marcus Shin
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Adrian Bruning
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway New Jersey, 08854
| | - Karen Schindler
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Andrew Vershon
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway New Jersey, 08854
| | - Edward Winter
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
48
|
Wagner M, Price G, Rothstein R. The absence of Top3 reveals an interaction between the Sgs1 and Pif1 DNA helicases in Saccharomyces cerevisiae. Genetics 2006; 174:555-73. [PMID: 16816432 PMCID: PMC1602079 DOI: 10.1534/genetics.104.036905] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 06/30/2006] [Indexed: 12/25/2022] Open
Abstract
RecQ DNA helicases and Topo III topoisomerases have conserved genetic, physical, and functional interactions that are consistent with a model in which RecQ creates a recombination-dependent substrate that is resolved by Topo III. The phenotype associated with Topo III loss suggests that accumulation of a RecQ-created substrate is detrimental. In yeast, mutation of the TOP3 gene encoding Topo III causes pleiotropic defects that are suppressed by deletion of the RecQ homolog Sgs1. We searched for gene dosage suppressors of top3 and identified Pif1, a DNA helicase that acts with polarity opposite to that of Sgs1. Pif1 overexpression suppresses multiple top3 defects, but exacerbates sgs1 and sgs1 top3 defects. Furthermore, Pif1 helicase activity is essential in the absence of Top3 in an Sgs1-dependent manner. These data clearly demonstrate that Pif1 helicase activity is required to counteract Sgs1 helicase activity that has become uncoupled from Top3. Pif1 genetic interactions with the Sgs1-Top3 pathway are dependent upon homologous recombination. We also find that Pif1 is recruited to DNA repair foci and that the frequency of these foci is significantly increased in top3 mutants. Our results support a model in which Pif1 has a direct role in the prevention or repair of Sgs1-induced DNA damage that accumulates in top3 mutants.
Collapse
Affiliation(s)
- Marisa Wagner
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York 10032-2704, USA
| | | | | |
Collapse
|
49
|
Mankouri HW, Hickson ID. Top3 processes recombination intermediates and modulates checkpoint activity after DNA damage. Mol Biol Cell 2006; 17:4473-83. [PMID: 16899506 PMCID: PMC1635375 DOI: 10.1091/mbc.e06-06-0516] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mutation of TOP3 in Saccharomyces cerevisiae causes poor growth, hyperrecombination, and a failure to fully activate DNA damage checkpoints in S phase. Here, we report that overexpression of a dominant-negative allele of TOP3, TOP3(Y356F), which lacks the catalytic (decatenation) activity of Top3, causes impaired S-phase progression and the persistence of abnormal DNA structures (X-shaped DNA molecules) after exposure to methylmethanesulfonate. The impaired S-phase progression is due to a persistent checkpoint-mediated cell cycle delay and can be overridden by addition of caffeine. Hence, the catalytic activity of Top3 is not required for DNA damage checkpoint activation, but it is required for normal S-phase progression after DNA damage. We also present evidence that the checkpoint-mediated cell cycle delay and persistence of X-shaped DNA molecules resulting from overexpression of TOP3(Y356F) are downstream of Rad51 function. We propose that Top3 functions in S phase to both process homologous recombination intermediates and modulate checkpoint activity.
Collapse
Affiliation(s)
- Hocine W. Mankouri
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Ian D. Hickson
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
50
|
Chin JK, Bashkirov VI, Heyer WD, Romesberg FE. Esc4/Rtt107 and the control of recombination during replication. DNA Repair (Amst) 2006; 5:618-28. [PMID: 16569515 PMCID: PMC2881479 DOI: 10.1016/j.dnarep.2006.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 01/26/2006] [Accepted: 02/08/2006] [Indexed: 11/20/2022]
Abstract
When replication forks stall during DNA synthesis, cells respond by assembling multi-protein complexes to control the various pathways that stabilize the replication machinery, repair the replication fork, and facilitate the reinitiation of processive DNA synthesis. Increasing evidence suggests that cells have evolved scaffolding proteins to orchestrate and control the assembly of these repair complexes, typified in mammalian cells by several BRCT-motif containing proteins, such as Brca1, Xrcc1, and 53BP1. In Saccharomyces cerevisiae, Esc4 contains six such BRCT domains and is required for the most efficient response to a variety of agents that damage DNA. We show that Esc4 interacts with several proteins involved in the repair and processing of stalled or collapsed replication forks, including the recombination protein Rad55. However, the function of Esc4 does not appear to be restricted to a Rad55-dependent process, as we observed an increase in sensitivity to the DNA alkylating agent methane methylsulfonate (MMS) in a esc4Deltarad55Delta mutant, as well as in double mutants of esc4Delta and other recombination genes, compared to the corresponding single mutants. In addition, we show that Esc4 forms multiple nuclear foci in response to treatment with MMS. Similar behavior is also observed in the absence of damage when either of the S-phase checkpoint proteins, Tof1 or Mrc1, is deleted. Thus, we propose that Esc4 associates with ssDNA of stalled forks and acts as a scaffolding protein to recruit and/or modulate the function of other proteins required to reinitiate DNA synthesis.
Collapse
Affiliation(s)
- Jodie K. Chin
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California, 92037
| | - Vladimir I. Bashkirov
- Section of Microbiology, Division of Biological Sciences, University of California, Davis, Davis, California, 95616
| | - Wolf-Dietrich Heyer
- Section of Microbiology, Division of Biological Sciences, University of California, Davis, Davis, California, 95616
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California, 92037
| |
Collapse
|