1
|
Davis JA, Chakrabarti K. Telomerase ribonucleoprotein and genome integrity-An emerging connection in protozoan parasites. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 13:e1710. [PMID: 34973045 DOI: 10.1002/wrna.1710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
Telomerase has an established role in telomere maintenance in eukaryotes. However, recent studies have begun to implicate telomerase in cellular roles beyond telomere maintenance. Specifically, evidence is emerging of cross-talks between telomerase mediated telomere homeostasis and DNA repair pathways. Telomere shortening due to the end replication problem is a constant threat to genome integrity in eukaryotic cells. This poses a particular problem in unicellular parasitic protists because their major virulence genes are located at the subtelomeric loci. Although telomerase is the major regulator of telomere lengthening in eukaryotes, it is less studied in the ancient eukaryotes, including clinically important human pathogens. Recent research is highlighting interplay between telomerase and the DNA damage response in human parasites. The importance of this interplay in pathogen virulence is only beginning to be illuminated, including the potential to highlight novel developmental regulation of telomerase in parasites who transition between multiple developmental stages throughout their life cycle. In this review, we will discuss the telomerase ribonucleoprotein enzyme and DNA repair pathways with emerging views in human parasites to give a broader perspective of the possible connection of telomere, telomerase, and DNA repair pathways across eukaryotic lineages and highlight their potential role in pathogen virulence. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
| | - Kausik Chakrabarti
- University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
2
|
Zappulla DC. Yeast Telomerase RNA Flexibly Scaffolds Protein Subunits: Results and Repercussions. Molecules 2020; 25:E2750. [PMID: 32545864 PMCID: PMC7356895 DOI: 10.3390/molecules25122750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/25/2022] Open
Abstract
It is said that "hindsight is 20-20", so, given the current year, it is an opportune time to review and learn from experiences studying long noncoding RNAs. Investigation of the Saccharomyces cerevisiae telomerase RNA, TLC1, has unveiled striking flexibility in terms of both structural and functional features. Results support the "flexible scaffold" hypothesis for this 1157-nt telomerase RNA. This model describes TLC1 acting as a tether for holoenzyme protein subunits, and it also may apply to a plethora of RNAs beyond telomerase, such as types of lncRNAs. In this short perspective review, I summarize findings from studying the large yeast telomerase ribonucleoprotein (RNP) complex in the hope that this hindsight will sharpen foresight as so many of us seek to mechanistically understand noncoding RNA molecules from vast transcriptomes.
Collapse
Affiliation(s)
- David C Zappulla
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
3
|
Lemon LD, Morris DK, Bertuch AA. Loss of Ku's DNA end binding activity affects telomere length via destabilizing telomere-bound Est1 rather than altering TLC1 homeostasis. Sci Rep 2019; 9:10607. [PMID: 31337791 PMCID: PMC6650470 DOI: 10.1038/s41598-019-46840-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/05/2019] [Indexed: 11/21/2022] Open
Abstract
Saccharomyces cerevisiae telomerase, which maintains telomere length, is comprised of an RNA component, TLC1, the reverse transcriptase, Est2, and regulatory subunits, including Est1. The Yku70/Yku80 (Ku) heterodimer, a DNA end binding (DEB) protein, also contributes to telomere length maintenance. Ku binds TLC1 and telomere ends in a mutually exclusive fashion, and is required to maintain levels and nuclear localization of TLC1. Ku also interacts with Sir4, which localizes to telomeres. Here we sought to determine the role of Ku's DEB activity in telomere length maintenance by utilizing yku70-R456E mutant strains, in which Ku has reduced DEB and telomere association but proficiency in TLC1 and Sir4 binding, and TLC1 nuclear retention. Telomere lengths in a yku70-R456E strain were nearly as short as those in yku∆ strains and shorter than in strains lacking either Sir4, Ku:Sir4 interaction, or Ku:TLC1 interaction. TLC1 levels were decreased in the yku70-R456E mutant, yet overexpression of TLC1 failed to restore telomere length. Reduced DEB activity did not impact Est1's ability to associate with telomerase but did result in decreased association of Est1 with the telomere. These findings suggest Ku's DEB activity maintains telomere length homeostasis by preserving Est1's interaction at the telomere rather than altering TLC1 levels.
Collapse
Affiliation(s)
- Laramie D Lemon
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Danna K Morris
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alison A Bertuch
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Laterreur N, Lemieux B, Neumann H, Berger-Dancause JC, Lafontaine D, Wellinger RJ. The yeast telomerase module for telomere recruitment requires a specific RNA architecture. RNA (NEW YORK, N.Y.) 2018; 24:1067-1079. [PMID: 29777050 PMCID: PMC6049500 DOI: 10.1261/rna.066696.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Telomerases are ribonucleoprotein (RNP) reverse transcriptases. While telomerases maintain genome stability, their composition varies significantly between species. Yeast telomerase RNPs contain an RNA that is comparatively large, and its overall folding shows long helical segments with distal functional parts. Here we investigated the essential stem IVc module of the budding yeast telomerase RNA, called Tlc1. The distal part of stem IVc includes a conserved sequence element CS2a and structurally conserved features for binding Pop1/Pop6/Pop7 proteins, which together function analogously to the P3 domains of the RNase P/MRP RNPs. A more proximal bulged stem with the CS2 element is thought to associate with Est1, a telomerase protein required for telomerase recruitment to telomeres. Previous work found that changes in CS2a cause a loss of all stem IVc proteins, not just the Pop proteins. Here we show that the association of Est1 with stem IVc indeed requires both the proximal bulged stem and the P3 domain with the associated Pop proteins. Separating the P3 domain from the Est1 binding site by inserting only 2 base pairs into the helical stem between the two sites causes a complete loss of Est1 from the RNP and hence a telomerase-negative phenotype in vivo. Still, the distal P3 domain with the associated Pop proteins remains intact. Moreover, the P3 domain ensures Est2 stability on the RNP independently of Est1 association. Therefore, the Tlc1 stem IVc recruitment module of the RNA requires a very tight architectural organization for telomerase function in vivo.
Collapse
Affiliation(s)
- Nancy Laterreur
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, PRAC, Sherbrooke, Québec J1E 4K8, Canada
| | - Bruno Lemieux
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, PRAC, Sherbrooke, Québec J1E 4K8, Canada
| | - Hannah Neumann
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, PRAC, Sherbrooke, Québec J1E 4K8, Canada
| | | | - Daniel Lafontaine
- Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, PRAC, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
5
|
Chen H, Xue J, Churikov D, Hass EP, Shi S, Lemon LD, Luciano P, Bertuch AA, Zappulla DC, Géli V, Wu J, Lei M. Structural Insights into Yeast Telomerase Recruitment to Telomeres. Cell 2017; 172:331-343.e13. [PMID: 29290466 DOI: 10.1016/j.cell.2017.12.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/27/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
Telomerase maintains chromosome ends from humans to yeasts. Recruitment of yeast telomerase to telomeres occurs through its Ku and Est1 subunits via independent interactions with telomerase RNA (TLC1) and telomeric proteins Sir4 and Cdc13, respectively. However, the structures of the molecules comprising these telomerase-recruiting pathways remain unknown. Here, we report crystal structures of the Ku heterodimer and Est1 complexed with their key binding partners. Two major findings are as follows: (1) Ku specifically binds to telomerase RNA in a distinct, yet related, manner to how it binds DNA; and (2) Est1 employs two separate pockets to bind distinct motifs of Cdc13. The N-terminal Cdc13-binding site of Est1 cooperates with the TLC1-Ku-Sir4 pathway for telomerase recruitment, whereas the C-terminal interface is dispensable for binding Est1 in vitro yet is nevertheless essential for telomere maintenance in vivo. Overall, our results integrate previous models and provide fundamentally valuable structural information regarding telomere biology.
Collapse
Affiliation(s)
- Hongwen Chen
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201210 Shanghai, China
| | - Jing Xue
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201210 Shanghai, China
| | - Dmitri Churikov
- Marseille Cancer Research Center (CRCM), U1068 INSERM, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes (Equipe labellisée Ligue), 13009 Marseille, France
| | - Evan P Hass
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Shaohua Shi
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201210 Shanghai, China
| | - Laramie D Lemon
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM225, Houston, TX 77030, USA
| | - Pierre Luciano
- Marseille Cancer Research Center (CRCM), U1068 INSERM, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes (Equipe labellisée Ligue), 13009 Marseille, France
| | - Alison A Bertuch
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM225, Houston, TX 77030, USA
| | - David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vincent Géli
- Marseille Cancer Research Center (CRCM), U1068 INSERM, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes (Equipe labellisée Ligue), 13009 Marseille, France
| | - Jian Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201210 Shanghai, China.
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| |
Collapse
|
6
|
Using Separation-of-Function Mutagenesis To Define the Full Spectrum of Activities Performed by the Est1 Telomerase Subunit in Vivo. Genetics 2017; 208:97-110. [PMID: 29187507 PMCID: PMC5753878 DOI: 10.1534/genetics.117.300145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/15/2017] [Indexed: 01/04/2023] Open
Abstract
A leading objective in biology is to identify the complete set of activities performed by each gene. Identification of a comprehensive set of separation... A leading objective in biology is to identify the complete set of activities that each gene performs in vivo. In this study, we have asked whether a genetic approach can provide an efficient means of achieving this goal, through the identification and analysis of a comprehensive set of separation-of-function (sof−) mutations in a gene. Toward this goal, we have subjected the Saccharomyces cerevisiae EST1 gene, which encodes a regulatory subunit of telomerase, to intensive mutagenesis (with an average coverage of one mutation for every 4.5 residues), using strategies that eliminated those mutations that disrupted protein folding/stability. The resulting set of sof− mutations defined four biochemically distinct activities for the Est1 telomerase protein: two temporally separable steps in telomerase holoenzyme assembly, a telomerase recruitment activity, and a fourth newly discovered regulatory function. Although biochemically distinct, impairment of each of these four different activities nevertheless conferred a common phenotype (critically short telomeres) comparable to that of an est1-∆ null strain. This highlights the limitations of gene deletions, even for nonessential genes; we suggest that employing a representative set of sof− mutations for each gene in future high- and low-throughput investigations will provide deeper insights into how proteins interact inside the cell.
Collapse
|
7
|
Abstract
Eukaryotic chromosomal ends are protected by telomeres from fusion, degradation, and unwanted double-strand break repair events. Therefore, telomeres preserve genome stability and integrity. Telomere length can be maintained by telomerase, which is expressed in most human primary tumors but is not expressed in the majority of somatic cells. Thus, telomerase may be a highly relevant anticancer drug target. Genome-wide studies in the yeast Saccharomyces cerevisiae identified a set of genes associated with telomere length maintenance (TLM genes). Among the tlm mutants with short telomeres, we found a strong enrichment for those affecting vacuolar and endosomal traffic (particularly the endosomal sorting complex required for transport [ESCRT] pathway). Here, we present our results from investigating the surprising link between telomere shortening and the ESCRT machinery. Our data show that the whole ESCRT system is required to safeguard proper telomere length maintenance. We propose a model of impaired end resection resulting in too little telomeric overhang, such that Cdc13 binding is prevented, precluding either telomerase recruitment or telomeric overhang protection. Telomeres are the ends of eukaryotic chromosomes. They are necessary for the proper replication of the genome and protect the chromosomes from degradation. In a large-scale systematic screen for mutants that affect telomere length in yeast, we found that mutations in any of the genes encoding the ESCRT complexes, required for the formation of transport vesicles within the cell, cause telomere shortening. We carried out an analysis of the mechanisms disrupted in these mutants and found that they are defective for the ability to elongate short telomeres, probably due to faulty end processing. We discuss the significance of these findings and how they could be relevant to anticancer therapies.
Collapse
|
8
|
Abstract
Telomerase is the eukaryotic solution to the ‘end-replication problem’ of linear chromosomes by synthesising the highly repetitive DNA constituent of telomeres, the nucleoprotein cap that protects chromosome termini. Functioning as a ribonucleoprotein (RNP) enzyme, telomerase is minimally composed of the highly conserved catalytic telomerase reverse transcriptase (TERT) and essential telomerase RNA (TR) component. Beyond merely providing the template for telomeric DNA synthesis, TR is an innate telomerase component and directly facilitates enzymatic function. TR accomplishes this by having evolved structural elements for stable assembly with the TERT protein and the regulation of the telomerase catalytic cycle. Despite its prominence and prevalence, TR has profoundly diverged in length, sequence, and biogenesis pathway among distinct evolutionary lineages. This diversity has generated numerous structural and mechanistic solutions for ensuring proper RNP formation and high fidelity telomeric DNA synthesis. Telomerase provides unique insights into RNA and protein coevolution within RNP enzymes.
Collapse
Affiliation(s)
- Joshua D Podlevsky
- a School of Molecular Sciences, Arizona State University , Tempe , AZ , USA
| | - Julian J-L Chen
- a School of Molecular Sciences, Arizona State University , Tempe , AZ , USA
| |
Collapse
|
9
|
Matsuguchi T, Blackburn E. The yeast telomerase RNA, TLC1, participates in two distinct modes of TLC1-TLC1 association processes in vivo. PeerJ 2016; 4:e1534. [PMID: 27004145 PMCID: PMC4800423 DOI: 10.7717/peerj.1534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 12/04/2015] [Indexed: 11/23/2022] Open
Abstract
Telomerase core enzyme minimally consists of the telomerase reverse transcriptase domain-containing protein (Est2 in budding yeast S. cerevisiae) and telomerase RNA, which contains the template specifying the telomeric repeat sequence synthesized. Here we report that in vivo, a fraction of S. cerevisiae telomerase RNA (TLC1) molecules form complexes containing at least two molecules of TLC1, via two separable modes: one requiring a sequence in the 3′ region of the immature TLC1 precursor and the other requiring Ku and Sir4. Such physical TLC1-TLC1 association peaked in G1 phase and did not require telomere silencing, telomere tethering to the nuclear periphery, telomerase holoenzyme assembly, or detectable Est2-Est2 protein association. These data indicate that TLC1-TLC1 associations reflect processes occurring during telomerase biogenesis; we propose that TLC1-TLC1 associations and subsequent reorganization may be regulatory steps in telomerase enzymatic activation.
Collapse
Affiliation(s)
- Tet Matsuguchi
- Department of Biochemistry and Biophysics, University of California , San Francisco, CA , United States
| | - Elizabeth Blackburn
- Department of Biochemistry and Biophysics, University of California , San Francisco, CA , United States
| |
Collapse
|
10
|
Lebo KJ, Niederer RO, Zappulla DC. A second essential function of the Est1-binding arm of yeast telomerase RNA. RNA (NEW YORK, N.Y.) 2015; 21:862-876. [PMID: 25737580 PMCID: PMC4408794 DOI: 10.1261/rna.049379.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
The enzymatic ribonucleoprotein telomerase maintains telomeres in many eukaryotes, including humans, and plays a central role in aging and cancer. Saccharomyces cerevisiae telomerase RNA, TLC1, is a flexible scaffold that tethers telomerase holoenzyme protein subunits to the complex. Here we test the hypothesis that a lengthy conserved region of the Est1-binding TLC1 arm contributes more than simply Est1-binding function. We separated Est1 binding from potential other functions by tethering TLC1 to Est1 via a heterologous RNA-protein binding module. We find that Est1-tethering rescues in vivo function of telomerase RNA alleles missing nucleotides specifically required for Est1 binding, but not those missing the entire conserved region. Notably, however, telomerase function is restored for this condition by expressing the arm of TLC1 in trans. Mutational analysis shows that the Second Essential Est1-arm Domain (SEED) maps to an internal loop of the arm, which SHAPE chemical mapping and 3D modeling suggest could be regulated by conformational change. Finally, we find that the SEED has an essential, Est1-independent role in telomerase function after telomerase recruitment to the telomere. The SEED may be required for establishing telomere extendibility or promoting telomerase RNP holoenzyme activity.
Collapse
Affiliation(s)
- Kevin J Lebo
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| | - Rachel O Niederer
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| | - David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| |
Collapse
|
11
|
Li T, Shi Y, Wang P, Guachalla LM, Sun B, Joerss T, Chen YS, Groth M, Krueger A, Platzer M, Yang YG, Rudolph KL, Wang ZQ. Smg6/Est1 licenses embryonic stem cell differentiation via nonsense-mediated mRNA decay. EMBO J 2015; 34:1630-47. [PMID: 25770585 PMCID: PMC4475398 DOI: 10.15252/embj.201489947] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 02/18/2015] [Indexed: 12/12/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a post-transcriptional mechanism that targets aberrant transcripts and regulates the cellular RNA reservoir. Genetic modulation in vertebrates suggests that NMD is critical for cellular and tissue homeostasis, although the underlying mechanism remains elusive. Here, we generate knockout mice lacking Smg6/Est1, a key nuclease in NMD and a telomerase cofactor. While the complete loss of Smg6 causes mouse lethality at the blastocyst stage, inducible deletion of Smg6 is compatible with embryonic stem cell (ESC) proliferation despite the absence of telomere maintenance and functional NMD. Differentiation of Smg6-deficient ESCs is blocked due to sustained expression of pluripotency genes, normally repressed by NMD, and forced down-regulation of one such target, c-Myc, relieves the differentiation block. Smg6-null embryonic fibroblasts are viable as well, but are refractory to cellular reprograming into induced pluripotent stem cells (iPSCs). Finally, depletion of all major NMD factors compromises ESC differentiation, thus identifying NMD as a licensing factor for the switch of cell identity in the process of stem cell differentiation and somatic cell reprograming.
Collapse
Affiliation(s)
- Tangliang Li
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Yue Shi
- Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Pei Wang
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Luis Miguel Guachalla
- Institute of Molecular Medicine and Max-Planck-Research Department of Stem Cell Aging, University of Ulm, Ulm, Germany
| | - Baofa Sun
- Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Tjard Joerss
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Yu-Sheng Chen
- Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Marco Groth
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Anja Krueger
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Matthias Platzer
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Yun-Gui Yang
- Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Karl Lenhard Rudolph
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany Institute of Molecular Medicine and Max-Planck-Research Department of Stem Cell Aging, University of Ulm, Ulm, Germany
| | - Zhao-Qi Wang
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany Faculty of Biology and Pharmacy, Friedrich-Schiller University of Jena, Jena, Germany
| |
Collapse
|
12
|
Williams JM, Ouenzar F, Lemon LD, Chartrand P, Bertuch AA. The principal role of Ku in telomere length maintenance is promotion of Est1 association with telomeres. Genetics 2014; 197:1123-36. [PMID: 24879463 PMCID: PMC4125388 DOI: 10.1534/genetics.114.164707] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/23/2014] [Indexed: 01/02/2023] Open
Abstract
Telomere length is tightly regulated in cells that express telomerase. The Saccharomyces cerevisiae Ku heterodimer, a DNA end-binding complex, positively regulates telomere length in a telomerase-dependent manner. Ku associates with the telomerase RNA subunit TLC1, and this association is required for TLC1 nuclear retention. Ku-TLC1 interaction also impacts the cell-cycle-regulated association of the telomerase catalytic subunit Est2 to telomeres. The promotion of TLC1 nuclear localization and Est2 recruitment have been proposed to be the principal role of Ku in telomere length maintenance, but neither model has been directly tested. Here we study the impact of forced recruitment of Est2 to telomeres on telomere length in the absence of Ku's ability to bind TLC1 or DNA ends. We show that tethering Est2 to telomeres does not promote efficient telomere elongation in the absence of Ku-TLC1 interaction or DNA end binding. Moreover, restoration of TLC1 nuclear localization, even when combined with Est2 recruitment, does not bypass the role of Ku. In contrast, forced recruitment of Est1, which has roles in telomerase recruitment and activation, to telomeres promotes efficient and progressive telomere elongation in the absence of Ku-TLC1 interaction, Ku DNA end binding, or Ku altogether. Ku associates with Est1 and Est2 in a TLC1-dependent manner and enhances Est1 recruitment to telomeres independently of Est2. Together, our results unexpectedly demonstrate that the principal role of Ku in telomere length maintenance is to promote the association of Est1 with telomeres, which may in turn allow for efficient recruitment and activation of the telomerase holoenzyme.
Collapse
Affiliation(s)
- Jaime M Williams
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Faissal Ouenzar
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Laramie D Lemon
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas 77030
| | - Pascal Chartrand
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Alison A Bertuch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
13
|
Normal telomere length maintenance in Saccharomyces cerevisiae requires nuclear import of the ever shorter telomeres 1 (Est1) protein via the importin alpha pathway. EUKARYOTIC CELL 2014; 13:1036-50. [PMID: 24906415 DOI: 10.1128/ec.00115-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Est1 (ever shorter telomeres 1) protein is an essential component of yeast telomerase, a ribonucleoprotein complex that restores the repetitive sequences at chromosome ends (telomeres) that would otherwise be lost during DNA replication. Previous work has shown that the telomerase RNA component (TLC1) transits through the cytoplasm during telomerase biogenesis, but mechanisms of protein import have not been addressed. Here we identify three nuclear localization sequences (NLSs) in Est1p. Mutation of the most N-terminal NLS in the context of full-length Est1p reduces Est1p nuclear localization and causes telomere shortening-phenotypes that are rescued by fusion with the NLS from the simian virus 40 (SV40) large-T antigen. In contrast to that of the TLC1 RNA, Est1p nuclear import is facilitated by Srp1p, the yeast homolog of importin α. The reduction in telomere length observed at the semipermissive temperature in a srp1 mutant strain is rescued by increased Est1p expression, consistent with a defect in Est1p nuclear import. These studies suggest that at least two nuclear import pathways are required to achieve normal telomere length homeostasis in yeast.
Collapse
|
14
|
Petrova OA, Smekalova EM, Zvereva ME, Lamzin V, Dontsova OA. Identification of additional telomerase component of the yeast H. polymorpha is a step towards understanding the complex at the atomic level. DOKL BIOCHEM BIOPHYS 2014; 455:59-64. [PMID: 24795101 DOI: 10.1134/s1607672914020057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Indexed: 01/07/2023]
Affiliation(s)
- O A Petrova
- Belozerskii Institute of Physicochemical Biology, Moscow State University, Moscow, 119992, Russia
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Harari Y, Kupiec M. Genome-wide studies of telomere biology in budding yeast. MICROBIAL CELL (GRAZ, AUSTRIA) 2014; 1:70-80. [PMID: 28357225 PMCID: PMC5349225 DOI: 10.15698/mic2014.01.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/16/2014] [Indexed: 11/13/2022]
Abstract
Telomeres are specialized DNA-protein structures at the ends of eukaryotic chromosomes. Telomeres are essential for chromosomal stability and integrity, as they prevent chromosome ends from being recognized as double strand breaks. In rapidly proliferating cells, telomeric DNA is synthesized by the enzyme telomerase, which copies a short template sequence within its own RNA moiety, thus helping to solve the "end-replication problem", in which information is lost at the ends of chromosomes with each DNA replication cycle. The basic mechanisms of telomere length, structure and function maintenance are conserved among eukaryotes. Studies in the yeast Saccharomyces cerevisiae have been instrumental in deciphering the basic aspects of telomere biology. In the last decade, technical advances, such as the availability of mutant collections, have allowed carrying out systematic genome-wide screens for mutants affecting various aspects of telomere biology. In this review we summarize these efforts, and the insights that this Systems Biology approach has produced so far.
Collapse
Affiliation(s)
- Yaniv Harari
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
17
|
Mefford MA, Rafiq Q, Zappulla DC. RNA connectivity requirements between conserved elements in the core of the yeast telomerase RNP. EMBO J 2013; 32:2980-93. [PMID: 24129512 DOI: 10.1038/emboj.2013.227] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/23/2013] [Indexed: 12/25/2022] Open
Abstract
Telomerase is a specialized chromosome end-replicating enzyme required for genome duplication in many eukaryotes. An RNA and reverse transcriptase protein subunit comprise its enzymatic core. Telomerase is evolving rapidly, particularly its RNA component. Nevertheless, nearly all telomerase RNAs, including those of H. sapiens and S. cerevisiae, share four conserved structural elements: a core-enclosing helix (CEH), template-boundary element, template, and pseudoknot, in this order along the RNA. It is not clear how these elements coordinate telomerase activity. We find that although rearranging the order of the four conserved elements in the yeast telomerase RNA subunit, TLC1, disrupts activity, the RNA ends can be moved between the template and pseudoknot in vitro and in vivo. However, the ends disrupt activity when inserted between the other structured elements, defining an Area of Required Connectivity (ARC). Within the ARC, we find that only the junction nucleotides between the pseudoknot and CEH are essential. Integrating all of our findings provides a basic map of functional connections in the core of the yeast telomerase RNP and a framework to understand conserved element coordination in telomerase mechanism.
Collapse
Affiliation(s)
- Melissa A Mefford
- Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
18
|
Laterreur N, Eschbach SH, Lafontaine DA, Wellinger RJ. A new telomerase RNA element that is critical for telomere elongation. Nucleic Acids Res 2013; 41:7713-24. [PMID: 23783570 PMCID: PMC3763530 DOI: 10.1093/nar/gkt514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The stability of chromosome ends, the telomeres, is dependent on the ribonucleoprotein telomerase. In vitro, telomerase requires at least one RNA molecule and a reverse transcriptase-like protein. However, for telomere homeostasis in vivo, additional proteins are required. Telomerase RNAs of different species vary in size and sequence and only few features common to all telomerases are known. Here we show that stem-loop IVc of the Saccharomyces cerevisiae telomerase RNA contains a structural element that is required for telomerase function in vivo. Indeed, the distal portion of stem-loop IVc stimulates telomerase activity in vitro in a way that is independent of Est1 binding on more proximal portions of this stem-loop. Functional analyses of the RNA in vivo reveal that this distal element we call telomerase-stimulating structure (TeSS) must contain a bulged area in single stranded form and also show that Est1-dependent functions such as telomerase import or recruitment are not affected by TeSS. This study thus uncovers a new structural telomerase RNA element implicated in catalytic activity. Given previous evidence for TeSS elements in ciliate and mammalian RNAs, we speculate that this substructure is a conserved feature that is required for optimal telomerase holoenzyme function.
Collapse
Affiliation(s)
- Nancy Laterreur
- Department of Microbiology and Infectious Diseases and Department of Biology, RNA Group, Université de Sherbrooke, 3201, rue Jean-Mignault, Sherbrooke J1E 4K8, Canada
| | | | | | | |
Collapse
|
19
|
Churikov D, Corda Y, Luciano P, Géli V. Cdc13 at a crossroads of telomerase action. Front Oncol 2013; 3:39. [PMID: 23450759 PMCID: PMC3584321 DOI: 10.3389/fonc.2013.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/11/2013] [Indexed: 01/21/2023] Open
Abstract
Telomere elongation by telomerase involves sequential steps that must be highly coordinated to ensure the maintenance of telomeres at a proper length. Telomerase is delivered to telomere ends, where it engages single-strand DNA end as a primer, elongates it, and dissociates from the telomeres via mechanism that is likely coupled to the synthesis of the complementary C-strand. In Saccharomyces cerevisiae, the telomeric G-overhang bound Cdc13 acts as a platform for the recruitment of several factors that orchestrate timely transitions between these steps. In this review, we focus on some unresolved aspects of telomerase recruitment and on the mechanisms that regulate telomere elongation by telomerase after its recruitment to chromosome ends. We also highlight the key regulatory modifications of Cdc13 that promote transitions between the steps of telomere elongation.
Collapse
Affiliation(s)
- Dmitri Churikov
- Marseille Cancer Research Center, U1068 INSERM, UMR7258 CNRS, Aix-Marseille University Institut Paoli-Calmettes, Marseille, France
| | | | | | | |
Collapse
|
20
|
Galletto R, Tomko EJ. Translocation of Saccharomyces cerevisiae Pif1 helicase monomers on single-stranded DNA. Nucleic Acids Res 2013; 41:4613-27. [PMID: 23446274 PMCID: PMC3632115 DOI: 10.1093/nar/gkt117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In Saccharomyces cerevisiae Pif1 participates in a wide variety of DNA metabolic pathways both in the nucleus and in mitochondria. The ability of Pif1 to hydrolyse ATP and catalyse unwinding of duplex nucleic acid is proposed to be at the core of its functions. We recently showed that upon binding to DNA Pif1 dimerizes and we proposed that a dimer of Pif1 might be the species poised to catalysed DNA unwinding. In this work we show that monomers of Pif1 are able to translocate on single-stranded DNA with 5′ to 3′ directionality. We provide evidence that the translocation activity of Pif1 could be used in activities other than unwinding, possibly to displace proteins from ssDNA. Moreover, we show that monomers of Pif1 retain some unwinding activity although a dimer is clearly a better helicase, suggesting that regulation of the oligomeric state of Pif1 could play a role in its functioning as a helicase or a translocase. Finally, although we show that Pif1 can translocate on ssDNA, the translocation profiles suggest the presence on ssDNA of two populations of Pif1, both able to translocate with 5′ to 3′ directionality.
Collapse
Affiliation(s)
- Roberto Galletto
- 252 McDonnell Science Building, Department of Biochemistry and Molecular Biophysics, Washington University, School of Medicine, 660 South Euclid Avenue, MS8231, Saint Louis, MO 63110,
| | | |
Collapse
|
21
|
Lubin JW, Tucey TM, Lundblad V. The interaction between the yeast telomerase RNA and the Est1 protein requires three structural elements. RNA (NEW YORK, N.Y.) 2012; 18:1597-1604. [PMID: 22847816 PMCID: PMC3425775 DOI: 10.1261/rna.034447.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 05/26/2012] [Indexed: 06/01/2023]
Abstract
In the budding yeast Saccharomyces cerevisiae, the telomerase enzyme is composed of a 1.3-kb TLC1 RNA that forms a complex with Est2 (the catalytic subunit) and two regulatory proteins, Est1 and Est3. Previous work has identified a conserved 5-nt bulge, present in a long helical arm of TLC1, which mediates binding of Est1 to TLC1. However, increased expression of Est1 can bypass the consequences of removal of this RNA bulge, indicating that there are additional binding site(s) for Est1 on TLC1. We report here that a conserved single-stranded internal loop immediately adjacent to the bulge is also required for the Est1-RNA interaction; furthermore, a TLC1 variant that lacks this internal loop but retains the bulge cannot be suppressed by Est1 overexpression, arguing that the internal loop may be a more critical element for Est1 binding. An additional structural feature consisting of a single-stranded region at the base of the helix containing the bulge and internal loop also contributes to recognition of TLC1 by Est1, potentially by providing flexibility to this helical arm. Association of Est1 with each of these TLC1 motifs was assessed using a highly sensitive biochemical assay that simultaneously monitors the relative levels of the Est1 and Est2 proteins in the telomerase complex. The identification of three elements of TLC1 that are required for Est1 association provides a detailed view of this particular protein-RNA interaction.
Collapse
Affiliation(s)
- Johnathan W Lubin
- Salk Institute for Biological Studies, La Jolla, CA 92037-1099, USA.
| | | | | |
Collapse
|
22
|
Functional analysis of the single Est1/Ebs1 homologue in Kluyveromyces lactis reveals roles in both telomere maintenance and rapamycin resistance. EUKARYOTIC CELL 2012; 11:932-42. [PMID: 22544908 DOI: 10.1128/ec.05319-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Est1 and Ebs1 in Saccharomyces cerevisiae are paralogous proteins that arose through whole-genome duplication and that serve distinct functions in telomere maintenance and translational regulation. Here we present our functional analysis of the sole Est1/Ebs1 homologue in the related budding yeast Kluyveromyces lactis (named KlEst1). We show that similar to other Est1s, KlEst1 is required for normal telomere maintenance in vivo and full telomerase primer extension activity in vitro. KlEst1 also associates with telomerase RNA (Ter1) and an active telomerase complex in cell extracts. Both the telomere maintenance and the Ter1 association functions of KlEst1 require its N-terminal domain but not its C terminus. Analysis of clusters of point mutations revealed residues in both the N-terminal TPR subdomain and the downstream helical subdomain (DSH) that are important for telomere maintenance and Ter1 association. A UV cross-linking assay was used to establish a direct physical interaction between KlEst1 and a putative stem-loop in Ter1, which also requires both the TPR and DSH subdomains. Moreover, similar to S. cerevisiae Ebs1 (ScEbs1) (but not ScEst1), KlEst1 confers rapamycin sensitivity and may be involved in nonsense-mediated decay. Interestingly, unlike telomere regulation, this apparently separate function of KlEst1 requires its C-terminal domain. Our findings provide insights on the mechanisms and evolution of Est1/Ebs1 homologues in budding yeast and present an attractive model system for analyzing members of this multifunctional protein family.
Collapse
|
23
|
RPA facilitates telomerase activity at chromosome ends in budding and fission yeasts. EMBO J 2012; 31:2034-46. [PMID: 22354040 DOI: 10.1038/emboj.2012.40] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 01/31/2012] [Indexed: 11/08/2022] Open
Abstract
In Saccharomyces cerevisiae, the telomerase complex binds to chromosome ends and is activated in late S-phase through a process coupled to the progression of the replication fork. Here, we show that the single-stranded DNA-binding protein RPA (replication protein A) binds to the two daughter telomeres during telomere replication but only its binding to the leading-strand telomere depends on the Mre11/Rad50/Xrs2 (MRX) complex. We further demonstrate that RPA specifically co-precipitates with yKu, Cdc13 and telomerase. The interaction of RPA with telomerase appears to be mediated by both yKu and the telomerase subunit Est1. Moreover, a mutation in Rfa1 that affects both the interaction with yKu and telomerase reduces the dramatic increase in telomere length of a rif1Δ, rif2Δ double mutant. Finally, we show that the RPA/telomerase association and function are conserved in Schizosaccharomyces pombe. Our results indicate that in both yeasts, RPA directly facilitates telomerase activity at chromosome ends.
Collapse
|
24
|
Grandin N, Charbonneau M. Rvb2/reptin physically associates with telomerase in budding yeast. FEBS Lett 2011; 585:3890-7. [DOI: 10.1016/j.febslet.2011.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/27/2011] [Accepted: 11/08/2011] [Indexed: 11/16/2022]
|
25
|
Sealey DCF, Kostic AD, LeBel C, Pryde F, Harrington L. The TPR-containing domain within Est1 homologs exhibits species-specific roles in telomerase interaction and telomere length homeostasis. BMC Mol Biol 2011; 12:45. [PMID: 22011238 PMCID: PMC3215184 DOI: 10.1186/1471-2199-12-45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/18/2011] [Indexed: 12/03/2022] Open
Abstract
Background The first telomerase-associated protein (Est1) was isolated in yeast due to its essential role in telomere maintenance. The human counterparts EST1A, EST1B, and EST1C perform diverse functions in nonsense-mediated mRNA decay (NMD), telomere length homeostasis, and telomere transcription. Although Est1 and EST1A/B interact with the catalytic subunit of yeast and human telomerase (Est2 and TERT, respectively), the molecular determinants of these interactions have not been elaborated fully. Results To investigate the functional conservation of the EST1 protein family, we performed protein-protein interaction mapping and structure-function analysis. The domain in hEST1A most conserved between species, containing a TPR (tricotetrapeptide repeat), was sufficient for interaction of hEST1A with multiple fragments of hTERT including the N-terminus. Two mutations within the hTERT N-terminus that perturb in vivo function (NAAIRS92, NAAIRS122) did not affect this protein interaction. ScEst1 hybrids containing the TPR of hEST1A, hEST1B, or hEST1C were expressed in yeast strains lacking EST1, yet they failed to complement senescence. Point mutations within and outside the cognate ScEst1 TPR, chosen to disrupt a putative protein interaction surface, resulted in telomere lengthening or shortening without affecting recruitment to telomeres. Conclusions These results identify a domain encompassing the TPR of hEST1A as an hTERT interaction module. The TPR of S. cerevisiae Est1 is required for telomerase-mediated telomere length maintenance in a manner that appears separable from telomere recruitment. Discrete residues in or adjacent to the TPR of Est1 also regulate telomere length homeostasis.
Collapse
Affiliation(s)
- David C F Sealey
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
26
|
Abstract
Telomeres are the nucleoprotein structures at the ends of linear chromosomes and maintain the genomic integrity through multiple cell divisions. Telomeres protect the chromosome ends from degradation, end-to-end fusion and abnormal recombination and they also promote the end replication. The budding yeast Saccharomyces cerevisiae is the most well-studied model system with regard to telomere and telomerase regulation. Recently, the opportunistic fungal pathogen Candida albicans has emerged as an attractive model system for investigating telomere biology. Candida underwent rapid evolutionary divergence with respect to telomere sequences. Concomitant with the evolutionary divergence of telomere sequences, telomere repeat binding factors and telomerase components have also evolved, leading to differences in their functions and domain structures. Thus, the comparative analysis of the telomeres and telomerase-related factors in the budding yeast has provided a better understanding on both conserved and variable aspects of telomere regulation. In this review, I will discuss telomeres and telomerase-related factors and their functions in telomere and telomerase regulation in C. albicans.
Collapse
Affiliation(s)
- Eun Young Yu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, NY 10065, USA.
| |
Collapse
|
27
|
Function, replication and structure of the mammalian telomere. Cytotechnology 2011; 45:3-12. [PMID: 19003238 DOI: 10.1007/s10616-004-5120-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 09/21/2004] [Indexed: 10/25/2022] Open
Abstract
Telomeres are specialized structures at the ends of linear chromosomes that were originally defined functionally based on observations first by Muller (1938) and subsequently by McClintock (1941) that naturally occurring chromosome ends do not behave as double-stranded DNA breaks, in spite of the fact that they are the physical end of a linear, duplex DNA molecule. Double-stranded DNA breaks are highly unstable entities, being susceptible to nucleolytic attack and giving rise to chromosome rearrangements through end-to-end fusions and recombination events. In contrast, telomeres confer stability upon chromosome termini, as evidenced by the fact that chromosomes are extraordinarily stable through multiple cell divisions and even across evolutionary time. This protective function of telomeres is due to the formation of a nucleoprotein complex that sequesters the end of the DNA molecule, rendering it inaccessible to nucleases and recombinases as well as preventing the telomere from activating the DNA damage checkpoint pathways. The capacity of a functional end-protective complex to form is dependent upon maintenance of sufficient telomeric DNA. We have learned a great deal about telomere structure and how this specialized nucleoprotein complex confers stability on chromosome ends since the original observations that defined telomeres were made. This review summarizes our current understanding of mammalian telomere replication, structure and function.
Collapse
|
28
|
Zappulla DC, Goodrich KJ, Arthur JR, Gurski LA, Denham EM, Stellwagen AE, Cech TR. Ku can contribute to telomere lengthening in yeast at multiple positions in the telomerase RNP. RNA (NEW YORK, N.Y.) 2011; 17:298-311. [PMID: 21177376 PMCID: PMC3022279 DOI: 10.1261/rna.2483611] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/15/2010] [Indexed: 05/21/2023]
Abstract
Unlike ribonucleoprotein complexes that have a highly ordered overall architecture, such as the ribosome, yeast telomerase appears to be much more loosely constrained. Here, we investigate the importance of positioning of the Ku subunit within the 1157-nt yeast telomerase RNA (TLC1). Deletion of the 48-nt Ku-binding hairpin in TLC1 RNA (tlc1Δ48) reduces telomere length, survival of cells with gross chromosomal rearrangements, and de novo telomere addition at a broken chromosome end. To test the function of Ku at novel positions in the telomerase RNP, we reintroduced its binding site into tlc1Δ48 RNA at position 446 or 1029. We found that Ku bound to these repositioned sites in vivo and telomere length increased slightly, but statistically significantly. The ability of telomerase to promote survival of cells with gross chromosomal rearrangements by healing damaged chromosome arms was also partially restored, whereas the kinetics of DNA addition to a specific chromosome break was delayed. Having two Ku sites in TLC1 caused progressive hyperelongation of a variable subset of telomeres, consistent with Ku's role in telomerase recruitment to chromosome ends. The number of Ku-binding sites in TLC1 contributed to telomerase RNA abundance in vivo but was only partially responsible for telomere length phenotypes. Thus, telomerase RNA levels and telomere length regulation can be modulated by the number of Ku sites in telomerase RNA. Furthermore, there is substantial flexibility in the relative positioning of Ku in the telomerase RNP for native telomere length maintenance, although not as much flexibility as for the essential Est1p subunit.
Collapse
Affiliation(s)
- David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
In the budding yeast Saccharomyces cerevisiae, the structure and function of telomeres are maintained by binding proteins, such as Cdc13-Stn1-Ten1 (CST), Yku, and the telomerase complex. Like CST and Yku, telomerase also plays a role in telomere protection or capping. Unlike CST and Yku, however, the underlying molecular mechanism of telomerase-mediated telomere protection remains unclear. In this study, we employed both the CDC13-EST1 fusion gene and the separation-of-function allele est1-D514A to elucidate that Est1 provided a telomere protection pathway that was independent of both the CST and Yku pathways. Est1's ability to convert single-stranded telomeric DNA into a G quadruplex was required for telomerase-mediated telomere protection function. Additionally, Est1 maintained the integrity of telomeres by suppressing the recombination of subtelomeric Y' elements. Our results demonstrate that one major functional role that Est1 brings to the telomerase complex is the capping or protection of telomeres.
Collapse
|
30
|
Abstract
The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1, it protects chromosome ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of Cdc13N. The structure reveals that this domain comprises an oligonucleotide/oligosaccharide binding (OB) fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that is directly dependent on domain oligomerization. When introduced into full-length Cdc13 in vivo, point mutations that prevented Cdc13N dimerization or DNA binding caused telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offer unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres.
Collapse
|
31
|
Structure prediction-driven genetics in Saccharomyces cerevisiae identifies an interface between the t-RPA proteins Stn1 and Ten1. Genetics 2010; 185:11-21. [PMID: 20157006 DOI: 10.1534/genetics.109.111922] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae, Cdc13, Stn1, and Ten1 are essential for both chromosome capping and telomere length homeostasis. These three proteins have been proposed to perform their roles at chromosome termini as a telomere-dedicated t-RPA complex, on the basis of several parallels with the conventional RPA complex. In this study, we have used several approaches to test whether a predicted alpha-helix in the N-terminal domain of the S. cerevisiae Stn1 protein is required for formation of the proposed t-RPA complex, in a manner analogous to the comparable helix in Rpa2. Analysis of a panel of Rpa2-OB(Stn1) chimeras indicates that whether a chimeric protein contains the Rpa2 or Stn1 version of this alpha-helix dictates its ability to function in place of Rpa2 or Stn1, respectively. In addition, mutations introduced into a hydrophobic surface of the predicted Stn1 alpha-helix eliminated association with Ten1. Strikingly, allele-specific suppression of a stn1 mutation in this helix (stn1-L164D) by a ten1 mutation (ten1-D138Y) resulted in a restored Stn1-Ten1 interaction, supporting the identification of a Stn1-Ten1 interface. We conclude that Stn1 interacts with Ten1 through an alpha-helix, in a manner analogous to the interaction between the comparable subunits of the RPA complex.
Collapse
|
32
|
Yeast telomerase subunit Est1p has guanine quadruplex-promoting activity that is required for telomere elongation. Nat Struct Mol Biol 2010; 17:202-9. [PMID: 20098422 DOI: 10.1038/nsmb.1760] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 11/04/2009] [Indexed: 11/08/2022]
Abstract
Telomeres are eukaryotic protein-DNA complexes found at the ends of linear chromosomes that are essential for maintaining genome integrity and are implicated in cellular aging and cancer. The guanine (G)-rich strand of telomeric DNA, usually elongated by the telomerase reverse transcriptase, can form a higher-order structure known as a G-quadruplex in vitro and in vivo. Several factors that promote or resolve G-quadruplexes have been identified, but the functional importance of these structures for telomere maintenance is not well understood. Here we show that the yeast telomerase subunit Est1p, known to be involved in telomerase recruitment to telomeres, can convert single-stranded telomeric G-rich DNA into a G-quadruplex structure in vitro in a Mg(2+)-dependent manner. Cells carrying Est1p mutants deficient in G-quadruplex formation in vitro showed gradual telomere shortening and cellular senescence, indicating a positive regulatory role for G-quadruplex in the maintenance of telomere length.
Collapse
|
33
|
Lee J, Mandell EK, Rao T, Wuttke DS, Lundblad V. Investigating the role of the Est3 protein in yeast telomere replication. Nucleic Acids Res 2010; 38:2279-90. [PMID: 20047960 PMCID: PMC2853109 DOI: 10.1093/nar/gkp1173] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Est3 subunit of yeast telomerase, which adopts a predicted OB-fold, is essential for telomere replication. To assess the possible contributions that Est3 might make to enzyme catalysis, we compared telomerase activity from wild type and est3-Delta strains of Saccharomyces castellii, which revealed that loss of the Est3 subunit results in a 2- to 3-fold decline in nucleotide addition. This effect was not primer-specific, based on assessment of a panel of primers that spanned the template of the S. castellii telomerase RNA. Furthermore, using nuclear magnetic resonance chemical shift perturbation, no chemical shift change was observed at any site in the protein upon addition of single-stranded DNA, arguing against a role for Est3 in recognition of telomeric substrates by telomerase. Addition of exogenous Est3 protein, including mutant Est3 proteins that are severely impaired for telomere replication in vivo, fully restored activity in est3-Delta telomerase reactions. Thus, Est3 performs an in vivo regulatory function in telomere replication, which is distinct from any potential contribution that Est3 might make to telomerase activity.
Collapse
Affiliation(s)
- Jaesung Lee
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
34
|
Lue NF. Plasticity of telomere maintenance mechanisms in yeast. Trends Biochem Sci 2009; 35:8-17. [PMID: 19846312 DOI: 10.1016/j.tibs.2009.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 08/25/2009] [Accepted: 08/27/2009] [Indexed: 01/04/2023]
Abstract
Telomeres, the nucleoprotein structures located at linear eukaryotic chromosomal termini, are essential for chromosome stability and are maintained by the special reverse transcriptase named telomerase. In the Saccharomycotina subphylum of budding yeast, telomere repeat sequences and binding factors, as well as telomerase components, are exceptionally diverse and distinct from those found in other eukaryotes. In this survey, I report a comparative analysis of the domain structures of telomere and telomerase-related factors made possible by the recent sequencing of multiple yeast genomes. This analysis revealed both conserved and variable aspects of telomere maintenance. Based on these findings, I propose a plausible series of evolutionary events in budding yeast to account for its exceptional telomere structural divergence.
Collapse
Affiliation(s)
- Neal F Lue
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
35
|
The conserved Est1 protein stimulates telomerase DNA extension activity. Proc Natl Acad Sci U S A 2009; 106:17337-42. [PMID: 19805136 DOI: 10.1073/pnas.0905703106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The first telomerase cofactor identified was the budding yeast protein Est1, which is conserved through humans. While it is evident that Est1 is required for telomere DNA maintenance, understanding its mechanistic contributions to telomerase regulation has been limited. In vitro, the primary effect of Est1 is to activate telomerase-mediated DNA extension. Although Est1 displayed specific DNA and RNA binding, neither activity contributed significantly to telomerase stimulation. Rather Est1 mediated telomerase upregulation through direct contacts with the reverse transcriptase subunit. In addition to intrinsic Est1 functions, we found that Est1 cooperatively activated telomerase in conjunction with Cdc13 and that the combinatorial effect was dependent upon a known salt-bridge interaction between Est1 (K444) and Cdc13 (E252). Our studies provide insights into the molecular events used to control the enzymatic activity of the telomerase holoenzyme.
Collapse
|
36
|
Shore D, Bianchi A. Telomere length regulation: coupling DNA end processing to feedback regulation of telomerase. EMBO J 2009; 28:2309-22. [PMID: 19629031 PMCID: PMC2722252 DOI: 10.1038/emboj.2009.195] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 11/09/2022] Open
Abstract
The conventional DNA polymerase machinery is unable to fully replicate the ends of linear chromosomes. To surmount this problem, nearly all eukaryotes use the telomerase enzyme, a specialized reverse transcriptase that utilizes its own RNA template to add short TG-rich repeats to chromosome ends, thus reversing their gradual erosion occurring at each round of replication. This unique, non-DNA templated mode of telomere replication requires a regulatory mechanism to ensure that telomerase acts at telomeres whose TG tracts are too short, but not at those with long tracts, thus maintaining the protective TG repeat 'cap' at an appropriate average length. The prevailing notion in the field is that telomere length regulation is brought about through a negative feedback mechanism that 'counts' TG repeat-bound protein complexes to generate a signal that regulates telomerase action. This review summarizes experiments leading up to this model and then focuses on more recent experiments, primarily from yeast, that begin to suggest how this 'counting' mechanism might work. The emerging picture is that of a complex interplay between the conventional DNA replication machinery, DNA damage response factors, and a specialized set of proteins that help to recruit and regulate the telomerase enzyme.
Collapse
Affiliation(s)
- David Shore
- Department of Molecular Biology and NCCR Program 'Frontiers in Genetics', University of Geneva, Sciences III, Geneva, Switzerland.
| | | |
Collapse
|
37
|
Abstract
TEL1 is important in Saccharomyces cerevisiae telomere maintenance, and its kinase activity is required. Tel1p associates with telomeres in vivo, is enriched at short telomeres, and enhances the binding of telomerase components to short telomeres. However, it is unclear how the kinase activity and telomere association contribute to Tel1p's overall function in telomere length maintenance. To investigate this question, we generated a set of single point mutants and a double point mutant (tel1(KD)) of Tel1p that were kinase deficient and two Xrs2p mutants that failed to bind Tel1p. Using these separation-of-function alleles in a de novo telomere elongation assay, we found, surprisingly, that the tel1(KD) allele and xrs2 C-terminal mutants were both partially functional. Combining the tel1(KD) and xrs2 C-terminal mutants had an additive effect and resembled the TEL1 null (tel1Delta) phenotype. These data indicate that Tel1p has two separate functions in telomere maintenance and that the Xrs2p-dependent recruitment of Tel1p to telomeres plays an important role even in the absence of its kinase activity.
Collapse
|
38
|
Mutant telomeric repeats in yeast can disrupt the negative regulation of recombination-mediated telomere maintenance and create an alternative lengthening of telomeres-like phenotype. Mol Cell Biol 2008; 29:626-39. [PMID: 19029249 DOI: 10.1128/mcb.00423-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some human cancers maintain telomeres using alternative lengthening of telomeres (ALT), a process thought to be due to recombination. In Kluyveromyces lactis mutants lacking telomerase, recombinational telomere elongation (RTE) is induced at short telomeres but is suppressed once telomeres are moderately elongated by RTE. Recent work has shown that certain telomere capping defects can trigger a different type of RTE that results in much more extensive telomere elongation that is reminiscent of human ALT cells. In this study, we generated telomeres composed of either of two types of mutant telomeric repeats, Acc and SnaB, that each alter the binding site for the telomeric protein Rap1. We show here that arrays of both types of mutant repeats present basally on a telomere were defective in negatively regulating telomere length in the presence of telomerase. Similarly, when each type of mutant repeat was spread to all chromosome ends in cells lacking telomerase, they led to the formation of telomeres produced by RTE that were much longer than those seen in cells with only wild-type telomeric repeats. The Acc repeats produced the more severe defect in both types of telomere maintenance, consistent with their more severe Rap1 binding defect. Curiously, although telomerase deletion mutants with telomeres composed of Acc repeats invariably showed extreme telomere elongation, they often also initially showed persistent very short telomeres with few or no Acc repeats. We suggest that these result from futile cycles of recombinational elongation and truncation of the Acc repeats from the telomeres. The presence of extensive 3' overhangs at mutant telomeres suggests that Rap1 may normally be involved in controlling 5' end degradation.
Collapse
|
39
|
Lee JS, Mandell EK, Tucey TM, Morris DK, Victoria L. The Est3 protein associates with yeast telomerase through an OB-fold domain. Nat Struct Mol Biol 2008; 15:990-7. [PMID: 19172754 PMCID: PMC2669685 DOI: 10.1038/nsmb.1472] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Ever shorter telomeres 3 (Est3) protein is a small regulatory subunit of yeast telomerase which is dispensable for enzyme catalysis but essential for telomere replication in vivo. Using structure prediction combined with in vivo characterization, we show here that Est3 consists of a predicted OB (oligosaccharide/oligonucleotide binding)-fold. We used mutagenesis of predicted surface residues to generate a functional map of one surface of Est3, identifying a site that mediates association with the telomerase complex. Unexpectedly, the predicted OB-fold of Est3 is structurally similar to the OB-fold of the human TPP1 protein, despite the fact that Est3 and TPP1, as components of telomerase and a telomere-capping complex, respectively, perform functionally distinct tasks at chromosome ends. Our analysis of Est3 may be instructive in generating comparable missense mutations on the surface of the OB-fold domain of TPP1.
Collapse
Affiliation(s)
- Jaesung S. Lee
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla CA 92037, USA
| | - Edward K. Mandell
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla CA 92037, USA
- Graduate Program in Cell and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA
| | - Timothy M. Tucey
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla CA 92037, USA
| | - Danna K. Morris
- Graduate Program in Cell and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA
| | - Lundblad Victoria
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla CA 92037, USA
| |
Collapse
|
40
|
Bianchi A, Shore D. How telomerase reaches its end: mechanism of telomerase regulation by the telomeric complex. Mol Cell 2008; 31:153-65. [PMID: 18657499 DOI: 10.1016/j.molcel.2008.06.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Indexed: 10/21/2022]
Abstract
The telomerase enzyme, which synthesizes telomeric DNA repeats, is regulated in cis at individual chromosome ends by the telomeric protein/DNA complex in a manner dependent on telomere repeat-array length. A dynamic interplay between telomerase-inhibiting factors bound at duplex DNA repeats and telomerase-promoting ones bound at single-stranded terminal DNA overhangs appears to modulate telomerase activity and to be directly related to the transient deprotection of telomeres. We discuss recent advances on the mechanism of telomerase regulation at chromosome ends in both yeast and mammalian systems.
Collapse
Affiliation(s)
- Alessandro Bianchi
- Department of Molecular Biology and NCCR Frontiers in Genetics Program, University of Geneva, Sciences III, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Geneva, Switzerland
| | | |
Collapse
|
41
|
Rouda S, Skordalakes E. Structure of the RNA-binding domain of telomerase: implications for RNA recognition and binding. Structure 2008; 15:1403-12. [PMID: 17997966 DOI: 10.1016/j.str.2007.09.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 09/03/2007] [Accepted: 09/06/2007] [Indexed: 12/22/2022]
Abstract
Telomerase, a ribonucleoprotein complex, replicates the linear ends of eukaryotic chromosomes, thus taking care of the "end of replication problem." TERT contains an essential and universally conserved domain (TRBD) that makes extensive contacts with the RNA (TER) component of the holoenzyme, and this interaction is thought to facilitate TERT/TER assembly and repeat-addition processivity. Here, we present a high-resolution structure of TRBD from Tetrahymena thermophila. The nearly all-helical structure comprises a nucleic acid-binding fold suitable for TER binding. An extended pocket on the surface of the protein, formed by two conserved motifs (CP and T motifs) comprises TRBD's RNA-binding pocket. The width and the chemical nature of this pocket suggest that it binds both single- and double-stranded RNA, possibly stem I, and the template boundary element (TBE). Moreover, the structure provides clues into the role of this domain in TERT/TER stabilization and telomerase repeat-addition processivity.
Collapse
Affiliation(s)
- Susan Rouda
- Gene Expression and Regulation Program, The Wistar Institute, University of Pennsylvania, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
42
|
Gallardo F, Olivier C, Dandjinou AT, Wellinger RJ, Chartrand P. TLC1 RNA nucleo-cytoplasmic trafficking links telomerase biogenesis to its recruitment to telomeres. EMBO J 2008; 27:748-57. [PMID: 18273059 PMCID: PMC2265757 DOI: 10.1038/emboj.2008.21] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 01/21/2008] [Indexed: 01/15/2023] Open
Abstract
The yeast telomerase holoenzyme, which adds telomeric repeats at the chromosome ends, is composed of the TLC1 RNA and the associated proteins Est1, Est2 and Est3. To study the biogenesis of telomerase in endogenous conditions, we performed fluorescent in situ hybridization on the native TLC1 RNA. We found that the telomerase RNA colocalizes with telomeres in G1- to S-phase cells. Strains lacking any one of the Est proteins accumulate TLC1 RNA in their cytoplasm, indicating that a critical stage of telomerase biogenesis could take place outside of the nucleus. We were able to demonstrate that endogenous TLC1 RNA shuttles between the nucleus and the cytoplasm, in association with the Crm1p exportin and the nuclear importins Mtr10p-Kap122p. Furthermore, nuclear retention of the TLC1 RNA is impaired in the absence of yKu70p, Tel1p or the MRX complex, which recruit telomerase to telomeres. Altogether, our results reveal that the nucleo-cytoplasmic trafficking of the TLC1 RNA is an important step in telomere homeostasis, and link telomerase biogenesis to its recruitment to telomeres.
Collapse
Affiliation(s)
- Franck Gallardo
- Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| | - Catherine Olivier
- Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| | - Alain T Dandjinou
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Raymund J Wellinger
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Pascal Chartrand
- Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
43
|
Grandin N, Charbonneau M. Protection against chromosome degradation at the telomeres. Biochimie 2008; 90:41-59. [PMID: 17764802 DOI: 10.1016/j.biochi.2007.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 07/17/2007] [Indexed: 10/23/2022]
Abstract
Telomeres, the ends of linear chromosomes, contain repeated TG-rich sequences which, in dividing cells, must be constantly replenished in order to avoid chromosome erosion and, hence, genomic instability. Moreover, unprotected telomeres are prone to end-to-end fusions. Telomerase, a specialized reverse transcriptase with a built-in RNA template, or, in the absence of telomerase, alternative pathways of telomere maintenance are required for continuous cell proliferation in actively dividing cells as well as in cancerous cells emerging in deregulated somatic tissues. The challenge is to keep these free DNA ends masked from the nucleolytic attacks that will readily operate on any DNA double-strand break in the cell, while also allowing the recruitment of telomerase at intervals. Specialized telomeric proteins, as well as DNA repair and checkpoint proteins with a dual role in telomere maintenance and DNA damage signaling/repair, protect the telomere ends from degradation and some of them also function in telomerase recruitment or other aspects of telomere length homeostasis. Phosphorylation of some telomeric proteins by checkpoint protein kinases appears to represent a mode of regulation of telomeric mechanisms. Finally, recent studies have allowed starting to understand the coupling between progression of the replication forks through telomeric regions and the subsequent telomere replication by telomerase, as well as retroaction of telomerase in cis on the firing of nearby replication origins.
Collapse
Affiliation(s)
- Nathalie Grandin
- UMR CNRS no. 5239, Ecole Normale Supérieure de Lyon, IFR128 BioSciences Gerland-Lyon Sud, 46, allée d'Italie, 69364 Lyon, France
| | | |
Collapse
|
44
|
Abstract
Telomere function is mediated by the assembly of a protein complex on an array of telomeric DNA (TG) repeats synthesized by the telomerase enzyme. Telomerase action at chromosome ends is finely tuned by the telomeric complex so that a constant average number of repeats is maintained. This is achieved through a negative feedback process that is sensitive to TG tract length, but whose underlying mechanism is unknown. We show that short telomeres, which are preferential substrates for telomerase, display increased association with the enzyme in the S phase of the cell cycle, when telomerase acts. In addition, we provide support for a molecular mechanism by which this key step of telomerase recruitment is regulated by TG tract length.
Collapse
Affiliation(s)
- Alessandro Bianchi
- Department of Molecular Biology and National Centre of Competence in Research (NCCR) Frontiers in Genetics Program, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
45
|
Sharanov YS, Smekalova EM, Zvereva MI, Dontsova OA. Isolation of active yeast telomerase protein Est3p and investigation of its dimerization in vitro. BIOCHEMISTRY. BIOKHIMIIA 2007; 72:702-6. [PMID: 17680761 DOI: 10.1134/s0006297907070036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In this study we proposed a method for isolation of Est3p modified with various affinity tags, which is applicable for structural and functional studies, and investigated homo- and heterodimer formation with various recombinant forms of Est3p.
Collapse
Affiliation(s)
- Yu S Sharanov
- Chemical Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | | | | | |
Collapse
|
46
|
Yu EY, Steinberg-Neifach O, Dandjinou AT, Kang F, Morrison AJ, Shen X, Lue NF. Regulation of telomere structure and functions by subunits of the INO80 chromatin remodeling complex. Mol Cell Biol 2007; 27:5639-49. [PMID: 17562861 PMCID: PMC1952117 DOI: 10.1128/mcb.00418-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ATP-dependent chromatin remodeling complexes have been implicated in the regulation of transcription, replication, and more recently DNA double-strand break repair. Here we report that the Ies3p subunit of the Saccharomyces cerevisiae INO80 chromatin remodeling complex interacts with a conserved tetratricopeptide repeat domain of the telomerase protein Est1p. Deletion of IES3 and some other subunits of the complex induced telomere elongation and altered telomere position effect. In telomerase-negative mutants, loss of Ies3p delayed the emergence of recombinational survivors and stimulated the formation of extrachromosomal telomeric circles in survivors. Deletion of IES3 also resulted in heightened levels of telomere-telomere fusions in telomerase-deficient strains. In addition, a delay in survivor formation was observed in an Arp8p-deficient mutant. Because Arp8p is required for the chromatin remodeling activity of the INO80 complex, the complex may promote recombinational telomere maintenance by altering chromatin structure. Consistent with this notion, we observed preferential localization of multiple subunits of the INO80 complex to telomeres. Our results reveal novel functions for a subunit of the telomerase complex and the INO80 chromatin remodeling complex.
Collapse
Affiliation(s)
- Eun Young Yu
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Hsu M, Yu EY, Singh SM, Lue NF. Mutual dependence of Candida albicans Est1p and Est3p in telomerase assembly and activation. EUKARYOTIC CELL 2007; 6:1330-8. [PMID: 17545315 PMCID: PMC1951134 DOI: 10.1128/ec.00069-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Telomerase is an RNA-protein complex responsible for extending one strand of the telomere terminal repeats. Analysis of the telomerase complex in budding yeasts has revealed the presence of one catalytic protein subunit (Est2p/TERT) and at least two noncatalytic components (Est1p and Est3p). The TERT subunit is essential for telomerase catalysis, while the functions of Est1p and Est3p have not been precisely elucidated. In an earlier study, we showed that telomerase derived from a Candida est1-null mutant is defective in primer utilization in vitro; it exhibits reduced initiation and processivity on primers that terminate in two regions of the telomere repeat. Here we show that telomerase derived from a Candida est3-null mutant has nearly identical defects in primer utilization and processivity. Further analysis revealed an unexpected mutual dependence of Est1p and Est3p in their assembly into the full telomerase complex, which accounts for the similarity between the mutant enzymes. We also developed an affinity isolation and an in vitro reconstitution protocol for the telomerase complex that will facilitate future mechanistic studies.
Collapse
Affiliation(s)
- Min Hsu
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
48
|
Abstract
The structure and integrity of telomeres are essential for genome stability. Telomere dysregulation can lead to cell death, cell senescence, or abnormal cell proliferation. The maintenance of telomere repeats in most eukaryotic organisms requires telomerase, which consists of a reverse transcriptase (RT) and an RNA template that dictates the synthesis of the G-rich strand of telomere terminal repeats. Structurally, telomerase reverse transcriptase (TERT) contains unique and variable N- and C-terminal extensions that flank a central RT-like domain. The enzymology of telomerase includes features that are both similar to and distinct from those characteristic of other RTs. Two distinguishing features of TERT are its stable association with the telomerase RNA and its ability to repetitively reverse transcribe the template segment of RNA. Here we discuss TERT structure and function; its regulation by RNA-DNA, TERT-DNA, TERT-RNA, TERT-TERT interactions, and TERT-associated proteins; and the relationship between telomerase enzymology and telomere maintenance.
Collapse
Affiliation(s)
- Chantal Autexier
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Quebec, Canada.
| | | |
Collapse
|
49
|
Sharanov YS, Zvereva MI, Dontsova OA. Saccharomyces cerevisiaetelomerase subunit Est3p binds DNA and RNA and stimulates unwinding of RNA/DNA heteroduplexes. FEBS Lett 2006; 580:4683-90. [PMID: 16884717 DOI: 10.1016/j.febslet.2006.07.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 05/29/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
Telomerase is a key participant of telomere length maintenance system in majority of eukaryotes. It synthesizes telomere repeats at 3'-end of telomere DNA according to its own RNA template. In addition to the reverse transcriptase subunit Est2p and telomerase RNA TLC1, yeast telomerase contain Est1p, necessary for telomerase attachment to telomere and telomerase activation, and Est3p, a subunit with unknown function. We have isolated Est3p and examined its biochemical properties. Est3p binds both DNA and RNA oligonucleotides containing telomere repeat sequences and stimulates dissociation of RNA/DNA heteroduplexes. The importance of these properties of Est3p for telomerase function is discussed.
Collapse
Affiliation(s)
- Yu S Sharanov
- Division of Chemistry of Natural Compounds, Department of Chemistry, M.V. Lomonosov Moscow State University, Vorobievi Gori 1, Building 40, 119992 Moscow, Russia
| | | | | |
Collapse
|
50
|
Steinberg-Neifach O, Lue NF. Modulation of telomere terminal structure by telomerase components in Candida albicans. Nucleic Acids Res 2006; 34:2710-22. [PMID: 16714448 PMCID: PMC1464115 DOI: 10.1093/nar/gkl345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The telomerase ribonucleoprotein in Candida albicans is presumed to contain at least three Est proteins: CaEst1p, CaEst2p/TERT and CaEst3p. We constructed mutants missing each of the protein subunit of telomerase and analyzed overall telomere dynamics and single-stranded telomere overhangs over the course of many generations. The est1-ΔΔ mutant manifested abrupt telomere loss and recovery, consistent with heightened recombination. Both the est2-ΔΔ and est3-ΔΔ mutant exhibited progressive telomere loss, followed by the gradual emergence of survivors with long telomeres. In no case was telomere loss accompanied by severe growth defects, suggesting that cells with short telomeres can continue to proliferate. Furthermore, the amount of G-strand terminal overhangs was greatly increased in the est2-ΔΔ mutant, but not others. Our results suggest that in addition to their well-characterized function in telomere elongation, both CaEst1p and CaEst2p mediate some aspects of telomere protection in Candida, with the former suppressing excessive recombination, and the latter preventing excessive C-strand degradation.
Collapse
Affiliation(s)
| | - Neal F. Lue
- To whom correspondence should be addressed. Tel: +1 212 746 6506; Fax: +1 212 746 8587;
| |
Collapse
|