1
|
Rodrigues MF, Kern AD, Ralph PL. Shared evolutionary processes shape landscapes of genomic variation in the great apes. Genetics 2024; 226:iyae006. [PMID: 38242701 PMCID: PMC10990428 DOI: 10.1093/genetics/iyae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024] Open
Abstract
For at least the past 5 decades, population genetics, as a field, has worked to describe the precise balance of forces that shape patterns of variation in genomes. The problem is challenging because modeling the interactions between evolutionary processes is difficult, and different processes can impact genetic variation in similar ways. In this paper, we describe how diversity and divergence between closely related species change with time, using correlations between landscapes of genetic variation as a tool to understand the interplay between evolutionary processes. We find strong correlations between landscapes of diversity and divergence in a well-sampled set of great ape genomes, and explore how various processes such as incomplete lineage sorting, mutation rate variation, GC-biased gene conversion and selection contribute to these correlations. Through highly realistic, chromosome-scale, forward-in-time simulations, we show that the landscapes of diversity and divergence in the great apes are too well correlated to be explained via strictly neutral processes alone. Our best fitting simulation includes both deleterious and beneficial mutations in functional portions of the genome, in which 9% of fixations within those regions is driven by positive selection. This study provides a framework for modeling genetic variation in closely related species, an approach which can shed light on the complex balance of forces that have shaped genetic variation.
Collapse
Affiliation(s)
- Murillo F Rodrigues
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Andrew D Kern
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Peter L Ralph
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
- Department of Mathematics, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
2
|
Rodrigues MF, Kern AD, Ralph PL. Shared evolutionary processes shape landscapes of genomic variation in the great apes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527547. [PMID: 36798346 PMCID: PMC9934647 DOI: 10.1101/2023.02.07.527547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
For at least the past five decades population genetics, as a field, has worked to describe the precise balance of forces that shape patterns of variation in genomes. The problem is challenging because modelling the interactions between evolutionary processes is difficult, and different processes can impact genetic variation in similar ways. In this paper, we describe how diversity and divergence between closely related species change with time, using correlations between landscapes of genetic variation as a tool to understand the interplay between evolutionary processes. We find strong correlations between landscapes of diversity and divergence in a well sampled set of great ape genomes, and explore how various processes such as incomplete lineage sorting, mutation rate variation, GC-biased gene conversion and selection contribute to these correlations. Through highly realistic, chromosome-scale, forward-in-time simulations we show that the landscapes of diversity and divergence in the great apes are too well correlated to be explained via strictly neutral processes alone. Our best fitting simulation includes both deleterious and beneficial mutations in functional portions of the genome, in which 9% of fixations within those regions is driven by positive selection. This study provides a framework for modelling genetic variation in closely related species, an approach which can shed light on the complex balance of forces that have shaped genetic variation.
Collapse
Affiliation(s)
- Murillo F. Rodrigues
- Institute of Ecology and Evolution, University of Oregon
- Department of Biology, University of Oregon
| | - Andrew D. Kern
- Institute of Ecology and Evolution, University of Oregon
- Department of Biology, University of Oregon
| | - Peter L. Ralph
- Institute of Ecology and Evolution, University of Oregon
- Department of Biology, University of Oregon
- Department of Mathematics, University of Oregon
| |
Collapse
|
3
|
Abstract
The degree to which adaptation in recent human evolution shapes genetic variation remains controversial. This is in part due to the limited evidence in humans for classic "hard selective sweeps", wherein a novel beneficial mutation rapidly sweeps through a population to fixation. However, positive selection may often proceed via "soft sweeps" acting on mutations already present within a population. Here, we examine recent positive selection across six human populations using a powerful machine learning approach that is sensitive to both hard and soft sweeps. We found evidence that soft sweeps are widespread and account for the vast majority of recent human adaptation. Surprisingly, our results also suggest that linked positive selection affects patterns of variation across much of the genome, and may increase the frequencies of deleterious mutations. Our results also reveal insights into the role of sexual selection, cancer risk, and central nervous system development in recent human evolution.
Collapse
Affiliation(s)
- Daniel R. Schrider
- Department of Genetics, Rutgers University, Piscataway, NJ
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ
| | - Andrew D. Kern
- Department of Genetics, Rutgers University, Piscataway, NJ
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ
| |
Collapse
|
4
|
Cruickshank TE, Hahn MW. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol Ecol 2014; 23:3133-57. [DOI: 10.1111/mec.12796] [Citation(s) in RCA: 764] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 12/18/2022]
Affiliation(s)
| | - Matthew W. Hahn
- Department of Biology; Indiana University; Bloomington IN 47405 USA
- School of Informatics and Computing; Indiana University; Bloomington IN 47405 USA
| |
Collapse
|
5
|
Lee YCG, Langley CH, Begun DJ. Differential strengths of positive selection revealed by hitchhiking effects at small physical scales in Drosophila melanogaster. Mol Biol Evol 2013; 31:804-16. [PMID: 24361994 DOI: 10.1093/molbev/mst270] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The long time scale of adaptive evolution makes it difficult to directly observe the spread of most beneficial mutations through natural populations. Therefore, inferring attributes of beneficial mutations by studying the genomic signals left by directional selection is an important component of population genetics research. One kind of signal is a trough in nearby neutral genetic variation due to selective fixation of initially rare alleles, a phenomenon known as "genetic hitchhiking." Accumulated evidence suggests that a considerable fraction of substitutions in the Drosophila genome results from positive selection, most of which are expected to have small selection coefficients and influence the population genetics of sites in the immediate vicinity. Using Drosophila melanogaster population genomic data, we found that the heterogeneity in synonymous polymorphism surrounding different categories of coding fixations is readily observable even within 25 bp of focal substitutions, which we interpret as the result of small-scale hitchhiking effects. The strength of natural selection on different sites appears to be quite heterogeneous. Particularly, neighboring fixations that changed amino acid polarities in a way that maintained the overall polarities of a protein were under stronger selection than other categories of fixations. Interestingly, we found that substitutions in slow-evolving genes are associated with stronger hitchhiking effects. This is consistent with the idea that adaptive evolution may involve few substitutions with large effects or many substitutions with small effects. Because our approach only weakly depends on the numbers of recent nonsynonymous substitutions, it can provide a complimentary view to the adaptive evolution inferred by other divergence-based evolutionary genetic methods.
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis
| | | | | |
Collapse
|
6
|
McGaugh SE, Heil CSS, Manzano-Winkler B, Loewe L, Goldstein S, Himmel TL, Noor MAF. Recombination modulates how selection affects linked sites in Drosophila. PLoS Biol 2012; 10:e1001422. [PMID: 23152720 PMCID: PMC3496668 DOI: 10.1371/journal.pbio.1001422] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 10/05/2012] [Indexed: 11/18/2022] Open
Abstract
Recombination rate in Drosophila species shapes the impact of selection in the genome and is positively correlated with nucleotide diversity. One of the most influential observations in molecular evolution has been a strong association between local recombination rate and nucleotide polymorphisms across the genome. This is interpreted as evidence for ubiquitous natural selection. The alternative explanation, that recombination is mutagenic, has been rejected by the absence of a similar association between local recombination rate and nucleotide divergence between species. However, many recent studies show that recombination rates are often very different even in closely related species, questioning whether an association between recombination rate and divergence between species has been tested satisfactorily. To circumvent this problem, we directly surveyed recombination across approximately 43% of the D. pseudoobscura physical genome in two separate recombination maps and 31% of the D. miranda physical genome, and we identified both global and local differences in recombination rate between these two closely related species. Using only regions with conserved recombination rates between and within species and accounting for multiple covariates, our data support the conclusion that recombination is positively related to diversity because recombination modulates Hill–Robertson effects in the genome and not because recombination is predominately mutagenic. Finally, we find evidence for dips in diversity around nonsynonymous substitutions. We infer that at least some of this reduction in diversity resulted from selective sweeps and examine these dips in the context of recombination rate. Individuals within a species differ in the DNA sequences of their genes. This sequence variation affects how well individuals survive or reproduce and is transmitted to their offspring. Genes near each other on individual chromosomes tend to be passed to offspring together—neighboring genes are unlikely to be separated by exchanges of genetic material derived from different parents during meiotic recombination. When genes are inherited together, however, the evolutionary forces acting on one gene can interfere with variation at its neighbors. Thus, variation at multiple genes can be lost if natural selection acts on one gene in close proximity. Recombination can prevent or reduce this loss of variation, but previous tests of this phenomenon failed to account for recombination rate differences between species. In this study, we show that some parts of the genome differ in recombination rate between two species of fruit fly, Drosophila pseudoobscura and D. miranda. Avoiding an assumption made in previous studies, we then examine sequence variation within and between fly species in those parts of the genome that have conserved recombination rates. Based on the results, we conclude that recombination indeed preserves variation within species that would otherwise have been eliminated by natural selection.
Collapse
Affiliation(s)
- Suzanne E McGaugh
- Biology Department, Duke University, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | |
Collapse
|
7
|
Langley CH, Stevens K, Cardeno C, Lee YCG, Schrider DR, Pool JE, Langley SA, Suarez C, Corbett-Detig RB, Kolaczkowski B, Fang S, Nista PM, Holloway AK, Kern AD, Dewey CN, Song YS, Hahn MW, Begun DJ. Genomic variation in natural populations of Drosophila melanogaster. Genetics 2012; 192:533-98. [PMID: 22673804 PMCID: PMC3454882 DOI: 10.1534/genetics.112.142018] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 05/24/2012] [Indexed: 02/07/2023] Open
Abstract
This report of independent genome sequences of two natural populations of Drosophila melanogaster (37 from North America and 6 from Africa) provides unique insight into forces shaping genomic polymorphism and divergence. Evidence of interactions between natural selection and genetic linkage is abundant not only in centromere- and telomere-proximal regions, but also throughout the euchromatic arms. Linkage disequilibrium, which decays within 1 kbp, exhibits a strong bias toward coupling of the more frequent alleles and provides a high-resolution map of recombination rate. The juxtaposition of population genetics statistics in small genomic windows with gene structures and chromatin states yields a rich, high-resolution annotation, including the following: (1) 5'- and 3'-UTRs are enriched for regions of reduced polymorphism relative to lineage-specific divergence; (2) exons overlap with windows of excess relative polymorphism; (3) epigenetic marks associated with active transcription initiation sites overlap with regions of reduced relative polymorphism and relatively reduced estimates of the rate of recombination; (4) the rate of adaptive nonsynonymous fixation increases with the rate of crossing over per base pair; and (5) both duplications and deletions are enriched near origins of replication and their density correlates negatively with the rate of crossing over. Available demographic models of X and autosome descent cannot account for the increased divergence on the X and loss of diversity associated with the out-of-Africa migration. Comparison of the variation among these genomes to variation among genomes from D. simulans suggests that many targets of directional selection are shared between these species.
Collapse
Affiliation(s)
- Charles H Langley
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
LI JUNRUI, LI HAIPENG, JAKOBSSON MATTIAS, LI SEN, SJÖDIN PER, LASCOUX MARTIN. Joint analysis of demography and selection in population genetics: where do we stand and where could we go? Mol Ecol 2011; 21:28-44. [DOI: 10.1111/j.1365-294x.2011.05308.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- JUNRUI LI
- Laboratory of Evolutionary Genomics, CAS Key Laboratory of Computational Biology, CAS‐MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - HAIPENG LI
- Laboratory of Evolutionary Genomics, CAS Key Laboratory of Computational Biology, CAS‐MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - MATTIAS JAKOBSSON
- Department of Evolutionary Biology, Evolutionary Biology Centre, and Science for Life Laboratory, Uppsala University, 752 36 Uppsala, Sweden
| | - SEN LI
- Department of Evolutionary Biology, Evolutionary Biology Centre, and Science for Life Laboratory, Uppsala University, 752 36 Uppsala, Sweden
| | - PER SJÖDIN
- Department of Evolutionary Biology, Evolutionary Biology Centre, and Science for Life Laboratory, Uppsala University, 752 36 Uppsala, Sweden
| | - MARTIN LASCOUX
- Laboratory of Evolutionary Genomics, CAS Key Laboratory of Computational Biology, CAS‐MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
9
|
Sattath S, Elyashiv E, Kolodny O, Rinott Y, Sella G. Pervasive adaptive protein evolution apparent in diversity patterns around amino acid substitutions in Drosophila simulans. PLoS Genet 2011; 7:e1001302. [PMID: 21347283 PMCID: PMC3037414 DOI: 10.1371/journal.pgen.1001302] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 01/10/2011] [Indexed: 01/24/2023] Open
Abstract
In Drosophila, multiple lines of evidence converge in suggesting that beneficial substitutions to the genome may be common. All suffer from confounding factors, however, such that the interpretation of the evidence—in particular, conclusions about the rate and strength of beneficial substitutions—remains tentative. Here, we use genome-wide polymorphism data in D. simulans and sequenced genomes of its close relatives to construct a readily interpretable characterization of the effects of positive selection: the shape of average neutral diversity around amino acid substitutions. As expected under recurrent selective sweeps, we find a trough in diversity levels around amino acid but not around synonymous substitutions, a distinctive pattern that is not expected under alternative models. This characterization is richer than previous approaches, which relied on limited summaries of the data (e.g., the slope of a scatter plot), and relates to underlying selection parameters in a straightforward way, allowing us to make more reliable inferences about the prevalence and strength of adaptation. Specifically, we develop a coalescent-based model for the shape of the entire curve and use it to infer adaptive parameters by maximum likelihood. Our inference suggests that ∼13% of amino acid substitutions cause selective sweeps. Interestingly, it reveals two classes of beneficial fixations: a minority (approximately 3%) that appears to have had large selective effects and accounts for most of the reduction in diversity, and the remaining 10%, which seem to have had very weak selective effects. These estimates therefore help to reconcile the apparent conflict among previously published estimates of the strength of selection. More generally, our findings provide unequivocal evidence for strongly beneficial substitutions in Drosophila and illustrate how the rapidly accumulating genome-wide data can be leveraged to address enduring questions about the genetic basis of adaptation. Characterizing the nature of beneficial changes to the genome is essential to our understanding of adaptation. To do so, researchers identify and analyze footprints that beneficial changes leave in patterns of genetic variation within and between species. In order to teach us about adaptive evolution, these footprints need to be specific to positive selection as well as rich enough to allow for reliable inferences. Here, we identify such a footprint: a pronounced trough in the average levels of genetic diversity surrounding amino acid substitutions throughout the D. simulans genome. Based on this pattern, we infer that approximately 13% of amino acid substitutions were beneficial, a minority of which (3%) conferred a large selective advantage of nearly 0.5% and the majority of which (10%) conferred a much smaller advantage of about 0.01%. These findings offer insights into the distribution of selection effects driving beneficial changes to the D. simulans genome and suggest how the widely varying estimates obtained in previous studies of Drosophila may be reconciled. Moreover, the approach that we introduce is readily applicable to other taxa and thus should help to gain important insights into how the rate and strength of adaptive evolution vary depending on life-history, population size, and ecology.
Collapse
Affiliation(s)
- Shmuel Sattath
- Department of Ecology, Evolution, and Behavior, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Elyashiv
- Department of Ecology, Evolution, and Behavior, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oren Kolodny
- Department of Ecology, Evolution, and Behavior, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yosef Rinott
- Department of Statistics, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Guy Sella
- Department of Ecology, Evolution, and Behavior, Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
10
|
Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLoS Biol 2008; 5:e310. [PMID: 17988176 PMCID: PMC2062478 DOI: 10.1371/journal.pbio.0050310] [Citation(s) in RCA: 495] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 09/26/2007] [Indexed: 01/13/2023] Open
Abstract
The population genetic perspective is that the processes shaping genomic variation can be revealed only through simultaneous investigation of sequence polymorphism and divergence within and between closely related species. Here we present a population genetic analysis of Drosophila simulans based on whole-genome shotgun sequencing of multiple inbred lines and comparison of the resulting data to genome assemblies of the closely related species, D. melanogaster and D. yakuba. We discovered previously unknown, large-scale fluctuations of polymorphism and divergence along chromosome arms, and significantly less polymorphism and faster divergence on the X chromosome. We generated a comprehensive list of functional elements in the D. simulans genome influenced by adaptive evolution. Finally, we characterized genomic patterns of base composition for coding and noncoding sequence. These results suggest several new hypotheses regarding the genetic and biological mechanisms controlling polymorphism and divergence across the Drosophila genome, and provide a rich resource for the investigation of adaptive evolution and functional variation in D. simulans. Population genomics, the study of genome-wide patterns of sequence variation within and between closely related species, can provide a comprehensive view of the relative importance of mutation, recombination, natural selection, and genetic drift in evolution. It can also provide fundamental insights into the biological attributes of organisms that are specifically shaped by adaptive evolution. One approach for generating population genomic datasets is to align DNA sequences from whole-genome shotgun projects to a standard reference sequence. We used this approach to carry out whole-genome analysis of polymorphism and divergence in Drosophila simulans, a close relative of the model system, D. melanogaster. We find that polymorphism and divergence fluctuate on a large scale across the genome and that these fluctuations are probably explained by natural selection rather than by variation in mutation rates. Our analysis suggests that adaptive protein evolution is common and is often related to biological processes that may be associated with gene expression, chromosome biology, and reproduction. The approaches presented here will have broad applicability to future analysis of population genomic variation in other systems, including humans. Low-coverage genome sequences from multiple Drosophila simulans strains provide the first comprehensive view of polymorphism and divergence in the fruit fly.
Collapse
|
11
|
Sánchez-Gracia A, Rozas J. Unusual pattern of nucleotide sequence variation at the OS-E and OS-F genomic regions of Drosophila simulans. Genetics 2007; 175:1923-35. [PMID: 17277360 PMCID: PMC1855126 DOI: 10.1534/genetics.106.068015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleotide variation at the genomic region encompassing the odorant-binding protein genes OS-E and OS-F (OS region) was surveyed in two populations of Drosophila simulans, one from Europe and the other from Africa. We found that the European population shows an atypical and large haplotype structure, which extends throughout the approximately 5-kb surveyed genomic region. This structure is depicted by two major haplotype groups segregating at intermediate frequency in the sample, one haplogroup with nearly no variation, and the other at levels more typical for this species. This pattern of variation was incompatible with neutral predictions for a population at a stationary equilibrium. Nevertheless, neutrality tests contrasting polymorphism and divergence data fail to detect any departure from the standard neutral model in this species, whereas they confirm the non-neutral behavior previously observed at the OS-E gene in D. melanogaster. Although positive Darwinian selection may have been responsible for the observed unusual nucleotide variation structure, coalescent simulation results do not allow rejecting the hypothesis that the pattern was generated by a recent bottleneck in the history of European populations of D. simulans.
Collapse
|
12
|
Hahn MW. Detecting natural selection on cis-regulatory DNA. Genetica 2006; 129:7-18. [PMID: 16955334 DOI: 10.1007/s10709-006-0029-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 06/25/2005] [Indexed: 10/24/2022]
Abstract
Changes in transcriptional regulation play an important role in the genetic basis for evolutionary change. Here I review a growing body of literature that seeks to determine the forces governing the non-coding regulatory sequences underlying these changes. I address the challenges present in studying natural selection without the familiar structure and regularity of protein-coding sequences, but show that most tests of neutrality that have been used for coding regions are applicable to non-coding regions, albeit with some caveats. While some experimental investment is necessary to identify heritable regulatory variation, the most basic inferences about selection require very little functional information. A growing body of research on cis-regulatory variation has uncovered all the forms of selection common to coding regions, in addition to novel forms of selection. An emerging pattern seems to be the ubiquity of local adaptation and balancing selection, possibly due to the greater freedom organisms have to fine-tune gene expression without changing protein function. It is clear from multiple single locus and whole genome studies of non-coding regulatory DNA that the effects of natural selection reach far beyond the start and stop codons.
Collapse
Affiliation(s)
- Matthew W Hahn
- Department of Biology and School of Informatics, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
13
|
Kern AD, Jones CD, Begun DJ. Molecular population genetics of male accessory gland proteins in the Drosophila simulans complex. Genetics 2005; 167:725-35. [PMID: 15238524 PMCID: PMC1470896 DOI: 10.1534/genetics.103.020883] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accessory gland proteins are a major component of Drosophila seminal fluid. These proteins have a variety of functions and may be subject to sexual selection and/or antagonistic evolution between the sexes. Most population genetic data from these proteins are from D. melanogaster and D. simulans. Here, we extend the population genetic analysis of Acp genes to the other simulans complex species, D. mauritiana and D. sechellia. We sequenced population samples of seven Acp's from D. mauritiana, D. sechellia, and D. simulans. We investigated the population genetics of these genes on individual simulans complex lineages and compared Acp polymorphism and divergence to polymorphism and divergence from a set of non-Acp loci in the same species. Polymorphism and divergence data from the simulans complex revealed little evidence for adaptive protein evolution at individual loci. However, we observed a dramatically inflated index of dispersion for amino acid substitutions in the simulans complex at Acp genes, but not at non-Acp genes. This pattern of episodic bursts of protein evolution in Acp's provides the strongest evidence to date that the population genetic mechanisms driving Acp divergence are different from the mechanisms driving evolution at most Drosophila genes.
Collapse
Affiliation(s)
- Andrew D Kern
- Center for Population Biology, University of California, Davis, 95616, USA.
| | | | | |
Collapse
|
14
|
Jones CD, Custer AW, Begun DJ. Origin and evolution of a chimeric fusion gene in Drosophila subobscura, D. madeirensis and D. guanche. Genetics 2005; 170:207-19. [PMID: 15781692 PMCID: PMC1449717 DOI: 10.1534/genetics.104.037283] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An understanding of the mutational and evolutionary mechanisms underlying the emergence of novel genes is critical to studies of phenotypic and genomic evolution. Here we describe a new example of a recently formed chimeric fusion gene that occurs in Drosophila guanche, D. madeirensis, and D. subobscura. This new gene, which we name Adh-Twain, resulted from an Adh mRNA that retrotransposed into the Gapdh-like gene, CG9010. Adh-Twain is transcribed; its 5' promoters and transcription patterns appear similar to those of CG9010. Population genetic and phylogenetic analyses suggest that the amino acid sequence of Adh-Twain evolved rapidly via directional selection shortly after it arose. Its more recent history, however, is characterized by slower evolution consistent with increasing functional constraints. We present a model for the origin of this new gene and discuss genetic and evolutionary factors affecting the evolution of new genes and functions.
Collapse
Affiliation(s)
- Corbin D Jones
- Center for Population Biology, University of California, Davis, 95616, USA.
| | | | | |
Collapse
|
15
|
Hermisson J, Pennings PS. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics 2005; 169:2335-52. [PMID: 15716498 PMCID: PMC1449620 DOI: 10.1534/genetics.104.036947] [Citation(s) in RCA: 720] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A population can adapt to a rapid environmental change or habitat expansion in two ways. It may adapt either through new beneficial mutations that subsequently sweep through the population or by using alleles from the standing genetic variation. We use diffusion theory to calculate the probabilities for selective adaptations and find a large increase in the fixation probability for weak substitutions, if alleles originate from the standing genetic variation. We then determine the parameter regions where each scenario-standing variation vs. new mutations-is more likely. Adaptations from the standing genetic variation are favored if either the selective advantage is weak or the selection coefficient and the mutation rate are both high. Finally, we analyze the probability of "soft sweeps," where multiple copies of the selected allele contribute to a substitution, and discuss the consequences for the footprint of selection on linked neutral variation. We find that soft sweeps with weaker selective footprints are likely under both scenarios if the mutation rate and/or the selection coefficient is high.
Collapse
Affiliation(s)
- Joachim Hermisson
- Section of Evolutionary Biology, Department of Biology II, Ludwig-Maximilians-University Munich, Germany.
| | | |
Collapse
|
16
|
DuMont VB, Fay JC, Calabrese PP, Aquadro CF. DNA variability and divergence at the notch locus in Drosophila melanogaster and D. simulans: a case of accelerated synonymous site divergence. Genetics 2005; 167:171-85. [PMID: 15166145 PMCID: PMC1470868 DOI: 10.1534/genetics.167.1.171] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA diversity in two segments of the Notch locus was surveyed in four populations of Drosophila melanogaster and two of D. simulans. In both species we observed evidence of non-steady-state evolution. In D. simulans we observed a significant excess of intermediate frequency variants in a non-African population. In D. melanogaster we observed a disparity between levels of sequence polymorphism and divergence between one of the Notch regions sequenced and other neutral X chromosome loci. The striking feature of the data is the high level of synonymous site divergence at Notch, which is the highest reported to date. To more thoroughly investigate the pattern of synonymous site evolution between these species, we developed a method for calibrating preferred, unpreferred, and equal synonymous substitutions by the effective (potential) number of such changes. In D. simulans, we find that preferred changes per "site" are evolving significantly faster than unpreferred changes at Notch. In contrast we observe a significantly faster per site substitution rate of unpreferred changes in D. melanogaster at this locus. These results suggest that positive selection, and not simply relaxation of constraint on codon bias, has contributed to the higher levels of unpreferred divergence along the D. melanogaster lineage at Notch.
Collapse
Affiliation(s)
- Vanessa Bauer DuMont
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|