1
|
Thompson KA, Brandvain Y, Coughlan JM, Delmore KE, Justen H, Linnen CR, Ortiz-Barrientos D, Rushworth CA, Schneemann H, Schumer M, Stelkens R. The Ecology of Hybrid Incompatibilities. Cold Spring Harb Perspect Biol 2024; 16:a041440. [PMID: 38151331 PMCID: PMC11368197 DOI: 10.1101/cshperspect.a041440] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Ecologically mediated selection against hybrids, caused by hybrid phenotypes fitting poorly into available niches, is typically viewed as distinct from selection caused by epistatic Dobzhansky-Muller hybrid incompatibilities. Here, we show how selection against transgressive phenotypes in hybrids manifests as incompatibility. After outlining our logic, we summarize current approaches for studying ecology-based selection on hybrids. We then quantitatively review QTL-mapping studies and find traits differing between parent taxa are typically polygenic. Next, we describe how verbal models of selection on hybrids translate to phenotypic and genetic fitness landscapes, highlighting emerging approaches for detecting polygenic incompatibilities. Finally, in a synthesis of published data, we report that trait transgression-and thus possibly extrinsic hybrid incompatibility in hybrids-escalates with the phenotypic divergence between parents. We discuss conceptual implications and conclude that studying the ecological basis of hybrid incompatibility will facilitate new discoveries about mechanisms of speciation.
Collapse
Affiliation(s)
- Ken A Thompson
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St Paul, Minnesota 55108, USA
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Kira E Delmore
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, Queensland 4072, Australia
| | - Catherine A Rushworth
- Department of Biology and Ecology Center, Utah State University, Logan, Utah 84322, USA
| | - Hilde Schneemann
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca," A.C., Calnali 43240, Mexico
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
2
|
Bladen J, Cooper JC, Ridges JT, Guo P, Phadnis N. A new hybrid incompatibility locus between Drosophila melanogaster and Drosophila sechellia. Genetics 2024; 226:iyae001. [PMID: 38184848 PMCID: PMC10917521 DOI: 10.1093/genetics/iyae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/11/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
Despite the fundamental importance of hybrid incompatibilities to the process of speciation, there are few cases where the evolution and genetic architecture of hybrid incompatibilities are understood. One of the longest studied hybrid incompatibilities causes F1 hybrid male inviability in crosses between Drosophila melanogaster females and males from the Drosophila simulans clade of species-Drosophila simulans, Drosophila mauritiana, and Drosophila sechellia. Here, we discover dramatic differences in the manifestation of this lethal hybrid incompatibility among the D. simulans clade of species. In particular, F1 hybrid males between D. melanogaster and D. sechellia are resistant to hybrid rescue through RNAi knockdown of an essential hybrid incompatibility gene. To understand the genetic basis of this inter-species difference in hybrid rescue, we developed a triple-hybrid mapping method. Our results show that 2 discrete large effect loci and many dispersed small effect changes across the genome underlie D. sechellia aversion to hybrid rescue. The large effect loci encompass a known incompatibility gene Lethal hybrid rescue (Lhr) and previously unknown factor, Sechellia aversion to hybrid rescue (Satyr). These results show that the genetic architecture of F1 hybrid male inviability is overlapping but not identical in the 3 inter-species crosses. Our results raise questions about whether new hybrid incompatibility genes can integrate into an existing hybrid incompatibility thus increasing in complexity over time, or if the continued evolution of genes can gradually strengthen an existing hybrid incompatibility.
Collapse
Affiliation(s)
- Jackson Bladen
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jacob C Cooper
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jackson T Ridges
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Ping Guo
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Nitin Phadnis
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Go AC, Civetta A. Divergence of X-linked trans regulatory proteins and the misexpression of gene targets in sterile Drosophila pseudoobscura hybrids. BMC Genomics 2022; 23:30. [PMID: 34991488 PMCID: PMC8740060 DOI: 10.1186/s12864-021-08267-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The genetic basis of hybrid incompatibilities is characterized by pervasive cases of gene interactions. Sex chromosomes play a major role in speciation and X-linked hybrid male sterility (HMS) genes have been identified. Interestingly, some of these genes code for proteins with DNA binding domains, suggesting a capability to act as trans-regulatory elements and disturb the expression of a large number of gene targets. To understand how interactions between trans- and cis-regulatory elements contribute to speciation, we aimed to map putative X-linked trans-regulatory elements and to identify gene targets with disrupted gene expression in sterile hybrids between the subspecies Drosophila pseudoobscura pseudoobscura and D. p. bogotana. RESULTS We find six putative trans-regulatory proteins within previously mapped X chromosome HMS loci with sequence changes that differentiate the two subspecies. Among them, the previously characterized HMS gene Overdrive (Ovd) had the largest number of amino acid changes between subspecies, with some substitutions localized within the protein's DNA binding domain. Using an introgression approach, we detected transcriptional responses associated with a sterility/fertility Ovd allele swap. We found a network of 52 targets of Ovd and identified cis-regulatory effects among target genes with disrupted expression in sterile hybrids. However, a combined analysis of polymorphism and divergence in non-coding sequences immediately upstream of target genes found no evidence of changes in candidate regulatory proximal cis-elements. Finally, peptidases were over-represented among target genes. CONCLUSIONS We provide evidence of divergence between subspecies within the DNA binding domain of the HMS protein Ovd and identify trans effects on the expression of 52 gene targets. Our results identify a network of trans-cis interactions with possible effects on HMS. This network provides molecular evidence of gene × gene incompatibilities as contributors to hybrid dysfunction.
Collapse
Affiliation(s)
- Alwyn C Go
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, R3B 2E9, Canada
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, R3B 2E9, Canada.
| |
Collapse
|
4
|
Reddy HM, Bhattacharya R, Tiwari S, Mishra K, Annapurna P, Jehan Z, Praveena NM, Alex JL, Dhople VM, Singh L, Sivaramakrishnan M, Chaturvedi A, Rangaraj N, Shiju TM, Sreedevi B, Kumar S, Dereddi RR, Rayabandla SM, Jesudasan RA. Y chromosomal noncoding RNAs regulate autosomal gene expression via piRNAs in mouse testis. BMC Biol 2021; 19:198. [PMID: 34503492 PMCID: PMC8428117 DOI: 10.1186/s12915-021-01125-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/17/2021] [Indexed: 12/03/2022] Open
Abstract
Background Deciphering the functions of Y chromosome in mammals has been slow owing to the presence of repeats. Some of these repeats transcribe coding RNAs, the roles of which have been studied. Functions of the noncoding transcripts from Y chromosomal repeats however, remain unclear. While a majority of the genes expressed during spermatogenesis are autosomal, mice with different deletions of the long arm of the Y chromosome (Yq) were previously also shown to be characterized by subfertility, sterility and sperm abnormalities, suggesting the presence of effectors of spermatogenesis at this location. Here we report a set of novel noncoding RNAs from mouse Yq and explore their connection to some of the autosomal genes expressed in testis. Results We describe a set of novel mouse male-specific Y long arm (MSYq)-derived long noncoding (lnc) transcripts, named Pirmy and Pirmy-like RNAs. Pirmy shows a large number of splice variants in testis. We also identified Pirmy-like RNAs present in multiple copies at different loci on mouse Y chromosome. Further, we identified eight differentially expressed autosome-encoded sperm proteins in a mutant mouse strain, XYRIIIqdel (2/3 Yq-deleted). Pirmy and Pirmy-like RNAs have homology to 5′/3′UTRs of these deregulated autosomal genes. Several lines of experiments show that these short homologous stretches correspond to piRNAs. Thus, Pirmy and Pirmy-like RNAs act as templates for several piRNAs. In vitro functional assays reveal putative roles for these piRNAs in regulating autosomal genes. Conclusions Our study elucidates a set of autosomal genes that are potentially regulated by MSYq-derived piRNAs in mouse testis. Sperm phenotypes from the Yq-deleted mice seem to be similar to that reported in inter-specific male-sterile hybrids. Taken together, this study provides novel insights into possible role of MSYq-derived ncRNAs in male sterility and speciation. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01125-x.
Collapse
Affiliation(s)
- Hemakumar M Reddy
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, Telangana, 500007, India.,Present address: Brown University BioMed Division, Department of Molecular Biology, Cell Biology and Biochemistry, 185 Meeting Street room 257, Sidney Frank Life Sciences Building, Providence, RI, 02912, USA
| | - Rupa Bhattacharya
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, Telangana, 500007, India.,, Pennington, NJ, 08534, USA
| | - Shrish Tiwari
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, Telangana, 500007, India
| | - Kankadeb Mishra
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, Telangana, 500007, India.,Department of Cell Biology, Memorial Sloan Kettering Cancer Centre, Rockefeller Research Laboratory, 430 East 67th Street, RRL 445, New York, NY, 10065, USA
| | - Pranatharthi Annapurna
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, Telangana, 500007, India.,Departments of Orthopaedic Surgery & Bioengineering, University of Pennsylvania, 376A Stemmler Hall, 36th Street & Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Zeenath Jehan
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, Telangana, 500007, India.,Department of Genetics and Molecular Medicines, Vasavi Medical and Research Centre, 6-1-91 Khairatabad, Hyderabad, 500 004, India
| | | | - Jomini Liza Alex
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, Telangana, 500007, India
| | - Vishnu M Dhople
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, Telangana, 500007, India.,Department of Functional Genomics, Ernst-Moritz-Arndt-University of Greifswald Interfaculty Institute for Genetics and Functional Genomics, Friedrich-Ludwig-Jahn-Straße 15 a, 17487, Greifswald, Germany
| | - Lalji Singh
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, Telangana, 500007, India
| | - Mahadevan Sivaramakrishnan
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, Telangana, 500007, India.,Jubilant Biosystems Ltd., #96, Industrial Suburb, 2nd Stage, Yeshwantpur, Bangalore, Karnataka, 560022, India
| | - Anurag Chaturvedi
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, Telangana, 500007, India.,Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Nandini Rangaraj
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, Telangana, 500007, India
| | - Thomas Michael Shiju
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, Telangana, 500007, India.,Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44120, USA
| | - Badanapuram Sreedevi
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, Telangana, 500007, India
| | - Sachin Kumar
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, Telangana, 500007, India
| | - Ram Reddy Dereddi
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, Telangana, 500007, India.,Institute for Anatomy and Cell Biology, building-307, Heidelberg, Germany
| | - Sunayana M Rayabandla
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, Telangana, 500007, India.,Telangana Social Welfare Residential Degree College for Women, Suryapet, Telangana, 508213, India
| | - Rachel A Jesudasan
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, Telangana, 500007, India. .,Department of Genetics, Osmania University, Hyderabad, Telangana, 500007, India. .,Inter University Centre for Genomics & Gene Technology, Karyavattom Campus, University of Kerala, Trivandrum, Kerala, India.
| |
Collapse
|
5
|
Presgraves DC, Meiklejohn CD. Hybrid Sterility, Genetic Conflict and Complex Speciation: Lessons From the Drosophila simulans Clade Species. Front Genet 2021; 12:669045. [PMID: 34249091 PMCID: PMC8261240 DOI: 10.3389/fgene.2021.669045] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
The three fruitfly species of the Drosophila simulans clade- D. simulans, D. mauritiana, and D. sechellia- have served as important models in speciation genetics for over 40 years. These species are reproductively isolated by geography, ecology, sexual signals, postmating-prezygotic interactions, and postzygotic genetic incompatibilities. All pairwise crosses between these species conform to Haldane's rule, producing fertile F1 hybrid females and sterile F1 hybrid males. The close phylogenetic proximity of the D. simulans clade species to the model organism, D. melanogaster, has empowered genetic analyses of their species differences, including reproductive incompatibilities. But perhaps no phenotype has been subject to more continuous and intensive genetic scrutiny than hybrid male sterility. Here we review the history, progress, and current state of our understanding of hybrid male sterility among the D. simulans clade species. Our aim is to integrate the available information from experimental and population genetics analyses bearing on the causes and consequences of hybrid male sterility. We highlight numerous conclusions that have emerged as well as issues that remain unresolved. We focus on the special role of sex chromosomes, the fine-scale genetic architecture of hybrid male sterility, and the history of gene flow between species. The biggest surprises to emerge from this work are that (i) genetic conflicts may be an important general force in the evolution of hybrid incompatibility, (ii) hybrid male sterility is polygenic with contributions of complex epistasis, and (iii) speciation, even among these geographically allopatric taxa, has involved the interplay of gene flow, negative selection, and positive selection. These three conclusions are marked departures from the classical views of speciation that emerged from the modern evolutionary synthesis.
Collapse
Affiliation(s)
- Daven C. Presgraves
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Colin D. Meiklejohn
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
6
|
Wang X, He Z, Shi S, Wu CI. Genes and speciation: is it time to abandon the biological species concept? Natl Sci Rev 2020; 7:1387-1397. [PMID: 34692166 PMCID: PMC8288927 DOI: 10.1093/nsr/nwz220] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/17/2019] [Accepted: 12/31/2019] [Indexed: 01/04/2023] Open
Abstract
The biological species concept (BSC) is the cornerstone of neo-Darwinian thinking. In BSC, species do not exchange genes either during or after speciation. However, as gene flow during speciation is increasingly being reported in a substantial literature, it seems time to reassess the revered, but often doubted, BSC. Contrary to the common perception, BSC should expect substantial gene flow at the onset of speciation, not least because geographical isolation develops gradually. Although BSC does not stipulate how speciation begins, it does require a sustained period of isolation for speciation to complete its course. Evidence against BSC must demonstrate that the observed gene flow does not merely occur at the onset of speciation but continues until its completion. Importantly, recent genomic analyses cannot reject this more realistic version of BSC, although future analyses may still prove it wrong. The ultimate acceptance or rejection of BSC is not merely about a historical debate; rather, it is about the fundamental nature of species - are species (and, hence, divergent adaptations) driven by a relatively small number of genes, or by thousands of them? Many levels of biology, ranging from taxonomy to biodiversity, depend on this resolution.
Collapse
Affiliation(s)
- Xinfeng Wang
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Department of Ecology and Evolution, University of Chicago, Illinois 60637, USA
| |
Collapse
|
7
|
Feng C, Yi H, Yang L, Kang M. The genetic basis of hybrid male sterility in sympatric Primulina species. BMC Evol Biol 2020; 20:49. [PMID: 32349663 PMCID: PMC7191819 DOI: 10.1186/s12862-020-01617-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/21/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Sympatric sister species provide an opportunity to investigate the genetic mechanisms and evolutionary forces that maintain species boundaries. The persistence of morphologically and genetically distinct populations in sympatry can only occur if some degree of reproductive isolation exists. A pair of sympatric sister species of Primulina (P. depressa and P. danxiaensis) was used to explore the genetic architecture of hybrid male sterility. RESULTS We mapped one major- and seven minor-effect quantitative trait loci (QTLs) that underlie pollen fertility rate (PFR). These loci jointly explained 55.4% of the phenotypic variation in the F2 population. A Bateson-Dobzhansky-Muller (BDM) model involving three loci was observed in this system. We found genotypic correlations between hybrid male sterility and flower morphology, consistent with the weak but significant phenotypic correlations between PFR and floral traits. CONCLUSIONS Hybrid male sterility in Primulina is controlled by a polygenic genetic basis with a complex pattern. The genetic incompatibility involves a three-locus BDM model. Hybrid male sterility is genetically correlated with floral morphology and divergence hitchhiking may occur between them.
Collapse
Affiliation(s)
- Chen Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Huiqin Yi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lihua Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
| |
Collapse
|
8
|
Go A, Alhazmi D, Civetta A. Altered expression of cell adhesion genes and hybrid male sterility between subspecies ofDrosophila pseudoobscura. Genome 2019; 62:657-663. [DOI: 10.1139/gen-2019-0066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Drosophila pseudoobscura pseudoobscura and Drosophila pseudoobscura bogotana are two closely related subspecies with incomplete reproductive isolation. A genome-wide comparison of expression in hybrids relative to parental subspecies has been previously used to identify genes with significant changes in expression uniquely associated with the sterile condition. The misexpression (i.e., gene expression beyond levels found in parentals) of such genes could be directly linked to the onset of sterility or could alternatively be caused by incompatibilities in a hybrid genome without a direct link to sterility. Cell adhesion was previously found to be one of the largest gene ontologies with changes in expression linked to sterility. Here we used gene expression assays in fertile backcross male progeny, along with introgression progeny in which we swap a major hybrid male sterility (HMS) allele, to generate fertile and sterile males genotypically similar to F1sterile hybrids. We identify a cell adhesion gene (GA10921) whose change in expression is directly linked to sterility and modulated by a previously characterized HMS protein. GA10921 adds to our rather limited knowledge of changes in gene expression associated with HMS, and to the identification of gene interacting partners linked to HMS.
Collapse
Affiliation(s)
- Alwyn Go
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - Doaa Alhazmi
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| |
Collapse
|
9
|
Testes Proteases Expression and Hybrid Male Sterility Between Subspecies of Drosophila pseudoobscura. G3-GENES GENOMES GENETICS 2019; 9:1065-1074. [PMID: 30723102 PMCID: PMC6469408 DOI: 10.1534/g3.119.300580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hybrid male sterility (HMS) is a form of postmating postzygotic isolation among closely related species that can act as an effective barrier to gene flow. The Dobzhansky-Muller model provides a framework to explain how gene interactions can cause HMS between species. Genomics highlights the preponderance of non-coding DNA targets that could be involved in gene interactions resulting in gene expression changes and the establishment of isolating barriers. However, we have limited knowledge of changes in gene expression associated with HMS, gene interacting partners linked to HMS, and whether substitutions in DNA regulatory regions (cis) causes misexpression (i.e., expression of genes beyond levels found in parental species) of HMS genes in sterile hybrids. A previous transcriptome survey in a pair of D. pseudoobscura species found male reproductive tract (MRT) proteases as the largest class of genes misregulated in sterile hybrids. Here we assay gene expression in backcross (BC) and introgression (IG) progeny, along with site of expression within the MRT, to identify misexpression of proteases that might directly contribute to HMS. We find limited evidence of an accumulation of cis-regulatory changes upstream of such candidate HMS genes. The expression of four genes was differentially modulated by alleles of the previously characterized HMS gene Ovd.
Collapse
|
10
|
Moving Speciation Genetics Forward: Modern Techniques Build on Foundational Studies in Drosophila. Genetics 2018; 207:825-842. [PMID: 29097397 DOI: 10.1534/genetics.116.187120] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
The question of how new species evolve has been examined at every level, from macroevolutionary patterns of diversification to molecular population genetic analyses of specific genomic regions between species pairs. Drosophila has been at the center of many of these research efforts. Though our understanding of the speciation process has grown considerably over the past few decades, very few genes have been identified that contribute to barriers to reproduction. The development of advanced molecular genetic and genomic methods provides promising avenues for the rapid discovery of more genes that contribute to speciation, particularly those involving prezygotic isolation. The continued expansion of tools and resources, especially for species other than Drosophila melanogaster, will be most effective when coupled with comparative approaches that reveal the genetic basis of reproductive isolation across a range of divergence times. Future research programs in Drosophila have high potential to answer long-standing questions in speciation. These include identifying the selective forces that contribute to divergence between populations and the genetic basis of traits that cause reproductive isolation. The latter can be expanded upon to understand how the genetic basis of reproductive isolation changes over time and whether certain pathways and genes are more commonly involved.
Collapse
|
11
|
The genus Drosophila is characterized by a large number of sibling species showing evolutionary significance. J Genet 2017; 95:1053-1064. [PMID: 27994208 DOI: 10.1007/s12041-016-0699-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mayr (1942) defined sibling species as sympatric forms which are morphologically very similar or indistinguishable, but which possess specific biological characteristics and are reproductively isolated. Another term, cryptic species has also been used for such species. However, this concept changed later. Sibling species are as similar as twins. This category does not necessarily include phylogenetic siblings as members of a superspecies. Since the term sibling species was defined by Mayr, a large number of cases of sibling species pairs/groups have been reported and thus they are widespread in the animal kingdom. However, they seem to be more common in some groups such as insects. In insects, they have been reported in diptera, lepidoptera, coleoptera, orthoptera, hymenoptera and others. Sibling species are widespread among the dipteran insects and as such are well studied because some species are important medically (mosquitoes), genetically (Drosophila) and cytologically (Sciara and Chironomus). The well-studied classical pairs of sibling species in Drosophila are: D. pseudoobscura and D. persimilis, and D. melanogaster and D. simulans. Subsequently, a number of sibling species have been added to these pairs and a large number of other sibling species pairs/groups in different species groups of the genus Drosophila have been reported in literature. The present review briefly summarizes the cases of sibling species pairs/groups in the genus Drosophila with their evolutionary significance.
Collapse
|
12
|
Genetic and Transgenic Reagents for Drosophila simulans, D. mauritiana, D. yakuba, D. santomea, and D. virilis. G3-GENES GENOMES GENETICS 2017; 7:1339-1347. [PMID: 28280212 PMCID: PMC5386881 DOI: 10.1534/g3.116.038885] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Species of the Drosophila melanogaster species subgroup, including the species D. simulans, D. mauritiana, D. yakuba, and D. santomea, have long served as model systems for studying evolution. However, studies in these species have been limited by a paucity of genetic and transgenic reagents. Here, we describe a collection of transgenic and genetic strains generated to facilitate genetic studies within and between these species. We have generated many strains of each species containing mapped piggyBac transposons including an enhanced yellow fluorescent protein (EYFP) gene expressed in the eyes and a ϕC31 attP site-specific integration site. We have tested a subset of these lines for integration efficiency and reporter gene expression levels. We have also generated a smaller collection of other lines expressing other genetically encoded fluorescent molecules in the eyes and a number of other transgenic reagents that will be useful for functional studies in these species. In addition, we have mapped the insertion locations of 58 transposable elements in D. virilis that will be useful for genetic mapping studies.
Collapse
|
13
|
Neighboring genes for DNA-binding proteins rescue male sterility in Drosophila hybrids. Proc Natl Acad Sci U S A 2016; 113:E4200-7. [PMID: 27357670 DOI: 10.1073/pnas.1608337113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Crosses between closely related animal species often result in male hybrids that are sterile, and the molecular and functional basis of genetic factors for hybrid male sterility is of great interest. Here, we report a molecular and functional analysis of HMS1, a region of 9.2 kb in chromosome 3 of Drosophila mauritiana, which results in virtually complete hybrid male sterility when homozygous in the genetic background of sibling species Drosophila simulans. The HMS1 region contains two strong candidate genes for the genetic incompatibility, agt and Taf1 Both encode unrelated DNA-binding proteins, agt for an alkyl-cysteine-S-alkyltransferase and Taf1 for a subunit of transcription factor TFIID that serves as a multifunctional transcriptional regulator. The contribution of each gene to hybrid male sterility was assessed by means of germ-line transformation, with constructs containing complete agt and Taf1 genomic sequences as well as various chimeric constructs. Both agt and Taf1 contribute about equally to HMS1 hybrid male sterility. Transgenes containing either locus rescue sterility in about one-half of the males, and among fertile males the number of offspring is in the normal range. This finding suggests compensatory proliferation of the rescued, nondysfunctional germ cells. Results with chimeric transgenes imply that the hybrid incompatibilities result from interactions among nucleotide differences residing along both agt and Taf1 Our results challenge a number of preliminary generalizations about the molecular and functional basis of hybrid male sterility, and strongly reinforce the role of DNA-binding proteins as a class of genes contributing to the maintenance of postzygotic reproductive isolation.
Collapse
|
14
|
Hybrid sterility and evolution in Hawaiian Drosophila: differential gene and allele-specific expression analysis of backcross males. Heredity (Edinb) 2016; 117:100-8. [PMID: 27220308 DOI: 10.1038/hdy.2016.31] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/18/2016] [Accepted: 02/24/2016] [Indexed: 12/25/2022] Open
Abstract
The Hawaiian Drosophila are an iconic example of sequential colonization, adaptive radiation and speciation on islands. Genetic and phenotypic analysis of closely related species pairs that exhibit incomplete reproductive isolation can provide insights into the mechanisms of speciation. Drosophila silvestris from Hawai'i Island and Drosophila planitibia from Maui are two closely related allopatric Hawaiian picture-winged Drosophila that produce sterile F1 males but fertile F1 females, a pattern consistent with Haldane's rule. Backcrossing F1 hybrid females between these two species to parental species gives rise to recombinant males with three distinct sperm phenotypes despite a similar genomic background: motile sperm, no sperm (sterile), and immotile sperm. We found that these three reproductive morphologies of backcross hybrid males produce divergent gene expression profiles in testes, as measured with RNA sequencing. There were a total of 71 genes significantly differentially expressed between backcross males with no sperm compared with those backcross males with motile sperm and immotile sperm, but no significant differential gene expression between backcross males with motile sperm and backcross males with immotile sperm. All of these genes were underexpressed in males with no sperm, including a number of genes with previously known activities in adult testis. An allele-specific expression analysis showed overwhelmingly more cis-divergent than trans-divergent genes, with no significant difference in the ratio of cis- and trans-divergent genes among the sperm phenotypes. Overall, the results indicate that the regulation of gene expression involved in sperm production likely diverged relatively rapidly between these two closely related species.
Collapse
|
15
|
Zhang L, Sun T, Woldesellassie F, Xiao H, Tao Y. Sex ratio meiotic drive as a plausible evolutionary mechanism for hybrid male sterility. PLoS Genet 2015; 11:e1005073. [PMID: 25822261 PMCID: PMC4379000 DOI: 10.1371/journal.pgen.1005073] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 02/16/2015] [Indexed: 11/24/2022] Open
Abstract
Biological diversity on Earth depends on the multiplication of species or speciation, which is the evolution of reproductive isolation such as hybrid sterility between two new species. An unsolved puzzle is the exact mechanism(s) that causes two genomes to diverge from their common ancestor so that some divergent genes no longer function properly in the hybrids. Here we report genetic analyses of divergent genes controlling male fertility and sex ratio in two very young fruitfly species, Drosophila albomicans and D. nasuta. A majority of the genetic divergence for both traits is mapped to the same regions by quantitative trait loci mappings. With introgressions, six major loci are found to contribute to both traits. This genetic colocalization implicates that genes for hybrid male sterility have evolved primarily for controlling sex ratio. We propose that genetic conflicts over sex ratio may operate as a perpetual dynamo for genome divergence. This particular evolutionary mechanism may largely contribute to the rapid evolution of hybrid male sterility and the disproportionate enrichment of its underlying genes on the X chromosome – two patterns widely observed across animals. Millions of species live on Earth, thanks to an evolutionary process that splits one species to two or more new species. The formation of new species is benchmarked by the evolution of reproductive isolation (RI) such as hybrid sterility between new species. The fundamental question of how RI evolves, however, remains largely unknown. In a pair of very young fruitfly species, we localized six loci expressing dual functions of hybrid male sterility (HMS) and sex ratio distortion, implicating an evolutionary causal link between these two traits. The rapid evolution of HMS widely observed across animal taxa can be attributed to the rapid evolution of genes controlling sex chromosome segregation. All genes in a genome are not equal. This study suggests that conflicts among various parts of a genome might confer strong evolutionary pressure—a mechanism that has hitherto been regarded as rare and could actually be more ubiquitous than currently appreciated.
Collapse
Affiliation(s)
- Linbin Zhang
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Tianai Sun
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | | | - Hailian Xiao
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Yun Tao
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Snoek LB, Orbidans HE, Stastna JJ, Aartse A, Rodriguez M, Riksen JAG, Kammenga JE, Harvey SC. Widespread genomic incompatibilities in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2014; 4:1813-23. [PMID: 25128438 PMCID: PMC4199689 DOI: 10.1534/g3.114.013151] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/17/2014] [Indexed: 01/18/2023]
Abstract
In the Bateson-Dobzhansky-Muller (BDM) model of speciation, incompatibilities emerge from the deleterious interactions between alleles that are neutral or advantageous in the original genetic backgrounds, i.e., negative epistatic effects. Within species such interactions are responsible for outbreeding depression and F2 (hybrid) breakdown. We sought to identify BDM incompatibilities in the nematode Caenorhabditis elegans by looking for genomic regions that disrupt egg laying; a complex, highly regulated, and coordinated phenotype. Investigation of introgression lines and recombinant inbred lines derived from the isolates CB4856 and N2 uncovered multiple incompatibility quantitative trait loci (QTL). These QTL produce a synthetic egg-laying defective phenotype not seen in CB4856 and N2 nor in other wild isolates. For two of the QTL regions, results are inconsistent with a model of pairwise interaction between two loci, suggesting that the incompatibilities are a consequence of complex interactions between multiple loci. Analysis of additional life history traits indicates that the QTL regions identified in these screens are associated with effects on other traits such as lifespan and reproduction, suggesting that the incompatibilities are likely to be deleterious. Taken together, these results indicate that numerous BDM incompatibilities that could contribute to reproductive isolation can be detected and mapped within C. elegans.
Collapse
Affiliation(s)
- L Basten Snoek
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Helen E Orbidans
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| | - Jana J Stastna
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| | - Aafke Aartse
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Miriam Rodriguez
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Simon C Harvey
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| |
Collapse
|
17
|
Campbell P, Nachman MW. X-y interactions underlie sperm head abnormality in hybrid male house mice. Genetics 2014; 196:1231-40. [PMID: 24504187 PMCID: PMC3982709 DOI: 10.1534/genetics.114.161703] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/30/2014] [Indexed: 12/23/2022] Open
Abstract
The genetic basis of hybrid male sterility in house mice is complex, highly polygenic, and strongly X linked. Previous work suggested that there might be interactions between the Mus musculus musculus X and the M. m. domesticus Y with a large negative effect on sperm head morphology in hybrid males with an F1 autosomal background. To test this, we introgressed the M. m. domesticus Y onto a M. m. musculus background and measured the change in sperm morphology, testis weight, and sperm count across early backcross generations and in 11th generation backcross males in which the opportunity for X-autosome incompatibilities is effectively eliminated. We found that abnormality in sperm morphology persists in M. m. domesticus Y introgression males, and that this phenotype is rescued by M. m. domesticus introgressions on the X chromosome. In contrast, the severe reductions in testis weight and sperm count that characterize F1 males were eliminated after one generation of backcrossing. These results indicate that X-Y incompatibilities contribute specifically to sperm morphology. In contrast, X-autosome incompatibilities contribute to low testis weight, low sperm count, and sperm morphology. Restoration of normal testis weight and sperm count in first generation backcross males suggests that a small number of complex incompatibilities between loci on the M. m. musculus X and the M. m. domesticus autosomes underlie F1 male sterility. Together, these results provide insight into the genetic architecture of F1 male sterility and help to explain genome-wide patterns of introgression across the house mouse hybrid zone.
Collapse
Affiliation(s)
- Polly Campbell
- Corresponding author: Department of Zoology, 508 Life Sciences West, Oklahoma State University, Stillwater, OK 74078. E-mail:
| | | |
Collapse
|
18
|
Fraïsse C, Elderfield JAD, Welch JJ. The genetics of speciation: are complex incompatibilities easier to evolve? J Evol Biol 2014; 27:688-99. [PMID: 24581268 DOI: 10.1111/jeb.12339] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/11/2013] [Accepted: 01/04/2014] [Indexed: 01/22/2023]
Abstract
Reproductive isolation can evolve readily when genotypes containing incompatible alleles are connected by chains of fit intermediates. Experimental crosses show that such Dobzhansky-Muller incompatibilities (DMIs) are often complex (involving alleles at three or more loci) and asymmetrical (such that reciprocal introgressions have very different effects on fitness). One possible explanation is that asymmetrical and complex DMIs are 'easier to evolve', because they block fewer of the possible evolutionary paths between the parental genotypes. To assess this argument, we model evolutionary divergence in allopatry and calculate the delays to divergence caused by DMIs of different kinds. We find that the number of paths is sometimes, though not always, a reliable predictor of the time to divergence. In particular, we find limited support for the idea that symmetrical DMIs take longer to evolve, but this applies largely to two-locus symmetrical DMIs (which leave no path of fit intermediates). Symmetrical complex DMIs can also delay divergence, but only in a limited region of parameter space. In most other cases, the presence and form of DMIs have little influence on times to divergence, and so we argue that ease of evolution is unlikely to be important in explaining the experimental data.
Collapse
Affiliation(s)
- C Fraïsse
- Université Montpellier 2, Montpellier Cedex 5, France; Station Méditerranéenne de l'Environnement Littoral, CNRS, Institut des Sciences de l'Evolution (ISEM UMR 5554), Sete, France; Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
19
|
Morán T, Fontdevila A. Genome-wide dissection of hybrid sterility in Drosophila confirms a polygenic threshold architecture. J Hered 2014; 105:381-96. [PMID: 24489077 DOI: 10.1093/jhered/esu003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To date, different studies about the genetic basis of hybrid male sterility (HMS), a postzygotic reproductive barrier thoroughly investigated using Drosophila species, have demonstrated that no single major gene can produce hybrid sterility without the cooperation of several genetic factors. Early work using hybrids between Drosophila koepferae (Dk) and Drosophila buzzatii (Db) was consistent with the idea that HMS requires the cooperation of several genetic factors, supporting a polygenic threshold (PT) model. Here we present a genome-wide mapping strategy to test the PT model, analyzing serially backcrossed fertile and sterile males in which the Dk genome was introgressed into the Db background. We identified 32 Dk-specific markers significantly associated with hybrid sterility. Our results demonstrate 1) a strong correlation between the number of segregated sterility markers and males' degree of sterility, 2) the exchangeability among markers, 3) their tendency to cluster into low-recombining chromosomal regions, and 4) the requirement for a minimum number (threshold) of markers to elicit sterility. Although our findings do not contradict a role for occasional major hybrid-sterility genes, they conform more to the view that HMS primarily evolves by the cumulative action of many interacting genes of minor effect in a complex PT architecture.
Collapse
Affiliation(s)
- Tomás Morán
- the Grup de Biologia Evolutiva, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | |
Collapse
|
20
|
Merging Ecology and Genomics to Dissect Diversity in Wild Tomatoes and Their Relatives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:273-98. [DOI: 10.1007/978-94-007-7347-9_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Dickman CTD, Moehring AJ. A novel approach identifying hybrid sterility QTL on the autosomes of Drosophila simulans and D. mauritiana. PLoS One 2013; 8:e73325. [PMID: 24039910 PMCID: PMC3764152 DOI: 10.1371/journal.pone.0073325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/22/2013] [Indexed: 01/17/2023] Open
Abstract
When species interbreed, the hybrid offspring that are produced are often sterile. If only one hybrid sex is sterile, it is almost always the heterogametic (XY or ZW) sex. Taking this trend into account, the predominant model used to explain the genetic basis of F1 sterility involves a deleterious interaction between recessive sex-linked loci from one species and dominant autosomal loci from the other species. This model is difficult to evaluate, however, as only a handful of loci influencing interspecies hybrid sterility have been identified, and their autosomal genetic interactors have remained elusive. One hindrance to their identification has been the overwhelming effect of the sex chromosome in mapping studies, which could ‘mask’ the ability to accurately map autosomal factors. Here, we use a novel approach employing attached-X chromosomes to create reciprocal backcross interspecies hybrid males that have a non-recombinant sex chromosome and recombinant autosomes. The heritable variation in phenotype is thus solely caused by differences in the autosomes, thereby allowing us to accurately identify the number and location of autosomal sterility loci. In one direction of backcross, all males were sterile, indicating that sterility could be entirely induced by the sex chromosome complement in these males. In the other direction, we identified nine quantitative trait loci that account for a surprisingly large amount (56%) of the autosome-induced phenotypic variance in sterility, with a large contribution of autosome-autosome epistatic interactions. These loci are capable of acting dominantly, and thus could contribute to F1 hybrid sterility.
Collapse
Affiliation(s)
| | - Amanda J. Moehring
- Department of Biology, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
22
|
Stukenbrock EH. Evolution, selection and isolation: a genomic view of speciation in fungal plant pathogens. THE NEW PHYTOLOGIST 2013; 199:895-907. [PMID: 23782262 DOI: 10.1111/nph.12374] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/16/2013] [Indexed: 05/26/2023]
Abstract
895 I. 895 II. 896 III. 898 IV. 900 V. 902 VI. 904 VII. 905 905 References 905 SUMMARY: Speciation of fungal plant pathogens has been associated with host jumps, host domestication, clonal divergence, and hybridization. Although we have substantial insight into the speciation histories of several important plant pathogens, we still know very little about the underlying genetics of reproductive isolation. Studies in Saccharomyces cerevisiae, Neurospora crassa, and nonfungal model systems illustrate that reproductive barriers can evolve by different mechanisms, including genetic incompatibilities between neutral and adaptive substitutions, reinforcement selection, and chromosomal rearrangements. Advances in genome sequencing and sequence analyses provide a new framework to identify those traits that have driven the divergence of populations or caused reproductive isolation between species of fungal plant pathogens. These traits can be recognized based on signatures of strong divergent selection between species or through the association of allelic combination conferring hybrid inferiority. Comparative genome analyses also provide information about the contribution of genome rearrangements to speciation. This is particularly relevant for species of fungal pathogens with extreme levels of genomic rearrangements and within-species genome plasticity.
Collapse
Affiliation(s)
- Eva Holtgrewe Stukenbrock
- Max Planck Institute for Terrestrial Microbiology, Max Planck Research Group Fungal Biodiversity, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| |
Collapse
|
23
|
Sun Y, Corcoran P, Menkis A, Whittle CA, Andersson SGE, Johannesson H. Large-scale introgression shapes the evolution of the mating-type chromosomes of the filamentous ascomycete Neurospora tetrasperma. PLoS Genet 2012; 8:e1002820. [PMID: 22844246 PMCID: PMC3406010 DOI: 10.1371/journal.pgen.1002820] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/17/2012] [Indexed: 12/14/2022] Open
Abstract
The significance of introgression as an evolutionary force shaping natural populations is well established, especially in animal and plant systems. However, the abundance and size of introgression tracts, and to what degree interspecific gene flow is the result of adaptive processes, are largely unknown. In this study, we present medium coverage genomic data from species of the filamentous ascomycete Neurospora, and we use comparative genomics to investigate the introgression landscape at the genomic level in this model genus. We revealed one large introgression tract in each of the three investigated phylogenetic lineages of Neurospora tetrasperma (sizes of 5.6 Mbp, 5.2 Mbp, and 4.1 Mbp, respectively). The tract is located on the chromosome containing the locus conferring sexual identity, the mating-type (mat) chromosome. The region of introgression is confined to the region of suppressed recombination and is found on one of the two mat chromosomes (mat a). We used Bayesian concordance analyses to exclude incomplete lineage sorting as the cause for the observed pattern, and multilocus genealogies from additional species of Neurospora show that the introgression likely originates from two closely related, freely recombining, heterothallic species (N. hispaniola and N. crassa/N. perkinsii). Finally, we investigated patterns of molecular evolution of the mat chromosome in Neurospora, and we show that introgression is correlated with reduced level of molecular degeneration, consistent with a shorter time of recombination suppression. The chromosome specific (mat) and allele specific (mat a) introgression reported herein comprise the largest introgression tracts reported to date from natural populations. Furthermore, our data contradicts theoretical predictions that introgression should be less likely on sex-determining chromosomes. Taken together, the data presented herein advance our general understanding of introgression as a force shaping eukaryotic genomes. Introgression is a process by which genetic material from one species becomes infiltrated into another, genetically distinct species. Introgression usually occurs via sexual reproduction: individuals of two species mate and produce a hybrid offspring, then the offspring repeatedly backcross with one of the parental species. Introgression has long been recognized as a key process in evolution, as it may contribute to speciation, diversification, and adaptation to new environments. The importance and prevalence of introgression has been well established in plant and animal systems, and in this study we use a fungal model system, Neurospora, to study the introgression at the genomic level. We gathered genomic data from six genomes, and by comparative genomics we revealed genetic transfer of DNA regions of unprecedentedly large sizes, covering over 50% of the mating-type chromosomes, and used phylogenetic analyses to reveal the origin and direction of the transfer. Introgression was found solely on the mating-type chromosomes, which contradicts theoretical predictions for sex-determining chromosomes. We argue that this unexpected pattern is due to the fact that fungi do not have differentiated sexes (female/male) and thereby are free from sex-biased evolutionary forces. Instead, we suggest that introgression between fungal species may result in reinvigoration of genomic regions exposed to suppressed recombination.
Collapse
Affiliation(s)
- Yu Sun
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Pádraic Corcoran
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Audrius Menkis
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Carrie A. Whittle
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | | | - Hanna Johannesson
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
24
|
Ephemeral association between gene CG5762 and hybrid male sterility in Drosophila sibling species. J Mol Evol 2011; 73:181-7. [PMID: 22052252 DOI: 10.1007/s00239-011-9466-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 10/05/2011] [Indexed: 01/14/2023]
Abstract
Interspecies divergence in regulatory pathways may result in hybrid male sterility (HMS) when dominance and epistatic interactions between alleles that are functional within one genome are disrupted in hybrid genomes. The identification of genes contributing to HMS and other hybrid dysfunctions is essential for understanding the origin of new species (speciation). Previously, we identified a panel of male-specific loci misexpressed in sterile male hybrids of Drosophila simulans and D. mauritiana relative to parental species. In the current work, we attempt to dissect the genetic associations between HMS and one of the genes, CG5762, a Drosophila-unique locus characterized by rapid sequence divergence within the genus, presumably driven by positive natural selection. CG5762 is underexpressed in sterile backcross males compared with their fertile brothers. In CG5762 heterozygotes, the D. mauritiana allele is consistently overexpressed on both the D. simulans and D. mauritiana backcross genomic background, suggesting a cis-acting regulation factor. There is a significant association between heterozygosity and HMS in hybrid males from early but not later backcross generations. Microsatellite markers spanning CG5762 fail to associate with HMS. These observations lead to a conclusion that CG5762 is not a causative factor of HMS. Although genetic linkage between CG5762 and a neighboring causative introgression cannot be ruled out, it seems that the pattern is most consistent with CG5762 participating in epistatic interactions that are disrupted in flies with HMS.
Collapse
|
25
|
Genetic architecture of male sterility and segregation distortion in Drosophila pseudoobscura Bogota-USA hybrids. Genetics 2011; 189:1001-9. [PMID: 21900263 DOI: 10.1534/genetics.111.132324] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Understanding the genetic basis of reproductive isolation between recently diverged species is a central problem in evolutionary genetics. Here, I present analyses of the genetic architecture underlying hybrid male sterility and segregation distortion between the Bogota and USA subspecies of Drosophila pseudoobscura. Previously, a single gene, Overdrive (Ovd), was shown to be necessary but not sufficient for both male sterility and segregation distortion in F(1) hybrids between these subspecies, requiring several interacting partner loci for full manifestation of hybrid phenomena. I map these partner loci separately on the Bogota X chromosome and USA autosomes using a combination of different mapping strategies. I find that hybrid sterility involves a single hybrid incompatibility of at least seven interacting partner genes that includes three large-effect loci. Segregation distortion involves three loci on the Bogota X chromosome and one locus on the autosomes. The genetic bases of hybrid sterility and segregation distortion are at least partially--but not completely--overlapping. My results lay the foundation for fine-mapping experiments to identify the complete set of genes that interact with Overdrive. While individual genes that cause hybrid sterility or inviability have been identified in a few cases, my analysis provides a comprehensive look at the genetic architecture of all components of a hybrid incompatibility underlying F(1) hybrid sterility. Such an analysis would likely be unfeasible for most species pairs due to their divergence time and emphasizes the importance of young species pairs such as the D. pseudoobscura subspecies studied here.
Collapse
|
26
|
Abstract
Incompatibilities in interspecific hybrids, such as sterility and lethality, are widely observed causes of reproductive isolation and thus contribute to speciation. Because hybrid incompatibilities are caused by divergence in each of the hybridizing species, they also reveal genomic changes occurring on short evolutionary time scales that have functional consequences. These changes include divergence in protein-coding gene sequence, structure, and location, as well as divergence in noncoding DNAs. The most important unresolved issue is understanding the evolutionary causes of the divergence within species that in turn leads to incompatibility between species. Surprisingly, much of this divergence does not appear to be driven by ecological adaptation but may instead result from responses to purely mutational mechanisms or to internal genetic conflicts.
Collapse
Affiliation(s)
- Shamoni Maheshwari
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
27
|
Abstract
In general, heterozygosity is considered to be advantageous, primarily because it masks the effects of deleterious recessive alleles. However, there is usually a reduction in fitness in individuals that are heterozygous due to the pairing of two species (heterospecific). Because the parental alleles arose along separate evolutionary paths, they may not function properly when brought together within an individual. The formation of these unfit interspecies hybrids is one of the mechanisms that maintains species isolation. Interestingly, it has been observed that later-generation individuals resulting from a backcross to one parent are more often sterile than those resulting from a backcross to the other parent, but the mechanism underlying this trend is unknown. Here, I show that one direction of backcross produces offspring with more heterospecific genome, and that this is correlated with the directionality seen in backcross hybrid sterility. Therefore, the directionality in sterility is likely due to the different amounts of heterospecific genome present in the two backcrosses. Surprisingly, in spite of the potential fitness consequences, I also find that interspecies laboratory backcrosses in general yield an excess of heterospecific individuals, and that this trend is consistent across multiple taxa.
Collapse
Affiliation(s)
- Amanda J Moehring
- Department of Biology, The University of Western Ontario, BGS 2080, London, ON, N6A 5B7, Canada.
| |
Collapse
|
28
|
Presgraves DC. Darwin and the origin of interspecific genetic incompatibilities. Am Nat 2011; 176 Suppl 1:S45-60. [PMID: 21043780 DOI: 10.1086/657058] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Darwin's Origin of Species is often criticized for having little to say about speciation. The complaint focuses in particular on Darwin's supposed failure to explain the evolution of the sterility and inviability of interspecific hybrids. But in his chapter on hybridism, Darwin, working without genetics, got as close to the modern understanding of the evolution of hybrid sterility and inviability as might reasonably be expected. In particular, after surveying what was then known about interspecific crosses and the resulting hybrids, he established two facts that, while now taken for granted, were at the time radical. First, the sterility barriers between species are neither specially endowed by a creator nor directly favored by natural selection but rather evolve as incidental by-products of interspecific divergence. Second, the sterility of species hybrids results when their development is "disturbed by two organizations having been compounded into one." Bateson, Dobzhansky, and Muller later put Mendelian detail to Darwin's inference that the species-specific factors controlling development (i.e., genes) are sometimes incompatible. In this article, I highlight the major developments in our understanding of these interspecific genetic incompatibilities--from Darwin to Muller to modern theory--and review comparative, genetic, and molecular rules that characterize the evolution of hybrid sterility and inviability.
Collapse
Affiliation(s)
- Daven C Presgraves
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
29
|
Suwabe K, Suzuki G, Watanabe M. Achievement of genetics in plant reproduction research: the past decade for the coming decade. Genes Genet Syst 2011; 85:297-310. [PMID: 21317542 DOI: 10.1266/ggs.85.297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In the last decade, a variety of innovations of emerging technologies in science have been accomplished. Advanced research environment in plant science has made it possible to obtain whole genome sequence in plant species. But now we recognize this by itself is not sufficient to understand the overall biological significance. Since Gregor Mendel established a principle of genetics, known as Mendel's Laws of Inheritance, genetics plays a prominent role in life science, and this aspect is indispensable even in modern plant biology. In this review, we focus on achievements of genetics on plant sexual reproduction research in the last decade and discuss the role of genetics for the coming decade. It is our hope that this will shed light on the importance of genetics in plant biology and provide valuable information to plant biologists.
Collapse
Affiliation(s)
- Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | | | | |
Collapse
|
30
|
Araripe LO, Montenegro H, Lemos B, Hartl DL. Fine-scale genetic mapping of a hybrid sterility factor between Drosophila simulans and D. mauritiana: the varied and elusive functions of "speciation genes". BMC Evol Biol 2010; 10:385. [PMID: 21144061 PMCID: PMC3020225 DOI: 10.1186/1471-2148-10-385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 12/14/2010] [Indexed: 11/10/2022] Open
Abstract
Background Hybrid male sterility (HMS) is a usual outcome of hybridization between closely related animal species. It arises because interactions between alleles that are functional within one species may be disrupted in hybrids. The identification of genes leading to hybrid sterility is of great interest for understanding the evolutionary process of speciation. In the current work we used marked P-element insertions as dominant markers to efficiently locate one genetic factor causing a severe reduction in fertility in hybrid males of Drosophila simulans and D. mauritiana. Results Our mapping effort identified a region of 9 kb on chromosome 3, containing three complete and one partial coding sequences. Within this region, two annotated genes are suggested as candidates for the HMS factor, based on the comparative molecular characterization and public-source information. Gene Taf1 is partially contained in the region, but yet shows high polymorphism with four fixed non-synonymous substitutions between the two species. Its molecular functions involve sequence-specific DNA binding and transcription factor activity. Gene agt is a small, intronless gene, whose molecular function is annotated as methylated-DNA-protein-cysteine S-methyltransferase activity. High polymorphism and one fixed non-synonymous substitution suggest this is a fast evolving gene. The gene trees of both genes perfectly separate D. simulans and D. mauritiana into monophyletic groups. Analysis of gene expression using microarray revealed trends that were similar to those previously found in comparisons between whole-genome hybrids and parental species. Conclusions The identification following confirmation of the HMS candidate gene will add another case study leading to understanding the evolutionary process of hybrid incompatibility.
Collapse
Affiliation(s)
- Luciana O Araripe
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | |
Collapse
|
31
|
Carneiro M, Blanco-Aguiar JA, Villafuerte R, Ferrand N, Nachman MW. Speciation in the European rabbit (Oryctolagus cuniculus): islands of differentiation on the X chromosome and autosomes. Evolution 2010; 64:3443-60. [PMID: 20666840 PMCID: PMC3058625 DOI: 10.1111/j.1558-5646.2010.01092.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Studies of gene flow between closely related taxa can provide insight into the genetic basis of speciation. To evaluate the importance of the X chromosome in reproductive isolation between subspecies of the European rabbit and to study the genomic scale over which islands of differentiation extend, we resequenced a total of 34 loci distributed along the X chromosome and chromosome 14. Previous studies based on few markers suggested that loci in centromeric regions were highly differentiated between rabbit subspecies, whereas loci in telomeric regions were less differentiated. Here, we confirmed this finding but also discovered remarkable variation in levels of differentiation among loci, with F(ST) values from nearly 0 to 1. Analyses using isolation-with-migration models suggest that this range appears to be largely explained by differential levels of gene flow among loci. The X chromosome was significantly more differentiated than the autosomes. On chromosome 14, differentiation decayed very rapidly at increasing distances from the centromere, but on the X chromosome distinct islands of differentiation encompassing several megabases were observed both at the centromeric region and along the chromosome arms. These findings support the idea that the X chromosome plays an important role in reproductive isolation between rabbit subspecies. These results also demonstrate the mosaic nature of the genome at species boundaries.
Collapse
Affiliation(s)
- Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
| | | | | | | | | |
Collapse
|
32
|
Nunes MDS, Wengel POT, Kreissl M, Schlötterer C. Multiple hybridization events between Drosophila simulans and Drosophila mauritiana are supported by mtDNA introgression. Mol Ecol 2010; 19:4695-707. [PMID: 20958812 PMCID: PMC3035818 DOI: 10.1111/j.1365-294x.2010.04838.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 06/17/2010] [Accepted: 06/19/2010] [Indexed: 11/30/2022]
Abstract
The study of speciation has advanced considerably in the last decades because of the increased application of molecular tools. In particular, the quantification of gene flow between recently diverged species could be addressed. Drosophila simulans and Drosophila mauritiana diverged, probably allopatrically, from a common ancestor approximately 250,000 years ago. However, these species share one mitochondrial DNA (mtDNA) haplotype indicative of a recent episode of introgression. To study the extent of gene flow between these species, we took advantage of a large sample of D. mauritiana and employed a range of different markers, i.e. nuclear and mitochondrial sequences, and microsatellites. This allowed us to detect two new mtDNA haplotypes (MAU3 and MAU4). These haplotypes diverged quite recently from haplotypes of the siII group present in cosmopolitan populations of D. simulans. The mean divergence time of the most diverged haplotype (MAU4) is approximately 127,000 years, which is more than 100,000 years before the assumed speciation time. Interestingly, we also found some evidence for gene flow at the nuclear level because an excess of putatively neutral loci shows significantly reduced differentiation between D. simulans and D. mauritiana. Our results suggest that these species are exchanging genes more frequently than previously thought.
Collapse
Affiliation(s)
- Maria D S Nunes
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Vienna, Austria
| | | | | | | |
Collapse
|
33
|
Chang AS, Bennett SM, Noor MAF. Epistasis among Drosophila persimilis factors conferring hybrid male sterility with D. pseudoobscura bogotana. PLoS One 2010; 5:e15377. [PMID: 21060872 PMCID: PMC2965152 DOI: 10.1371/journal.pone.0015377] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 09/02/2010] [Indexed: 01/13/2023] Open
Abstract
The Bateson-Dobzhansky-Muller model posits that hybrid incompatibilities result from genetic changes that accumulate during population divergence. Indeed, much effort in recent years has been devoted to identifying genes associated with hybrid incompatibilities, often with limited success, suggesting that hybrid sterility and inviability are frequently caused by complex interactions between multiple loci and not by single or a small number of gene pairs. Our previous study showed that the nature of epistasis between sterility-conferring QTL in the Drosophila persimilis-D. pseudoobscura bogotana species pair is highly specific. Here, we further dissect one of the three QTL underlying hybrid male sterility between these species and provide evidence for multiple factors within this QTL. This result indicates that the number of loci thought to contribute to hybrid dysfunction may have been underestimated, and we discuss how linkage and complex epistasis may be characteristic of the genetics of hybrid incompatibilities. We further pinpoint the location of one locus that confers hybrid male sterility when homozygous, dubbed "mule-like", to roughly 250 kilobases.
Collapse
Affiliation(s)
- Audrey S. Chang
- Biology Department, Duke University, Durham, North Carolina, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Sarah M. Bennett
- Biology Department, Duke University, Durham, North Carolina, United States of America
| | - Mohamed A. F. Noor
- Biology Department, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
34
|
Abstract
Among the reproductive barriers that can isolate species, hybrid sterility is frequently due to dysfunctional interactions between loci that accumulate between differentiating lineages. Theory describing the evolution of these incompatibilities has generated the prediction, still empirically untested, that loci underlying hybrid incompatibility should accumulate faster than linearly with time--the "snowball effect." We evaluated the accumulation of quantitative trait loci (QTL) between species in the plant group Solanum and found evidence for a faster-than-linear accumulation of hybrid seed sterility QTL, thus empirically evaluating and confirming this theoretical prediction. In comparison, loci underlying traits unrelated to hybrid sterility show no evidence for an accelerating rate of accumulation between species.
Collapse
Affiliation(s)
- Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
35
|
Chang AS, Noor MAF. Epistasis modifies the dominance of loci causing hybrid male sterility in the Drosophila pseudoobscura species group. Evolution 2010; 64:253-60. [PMID: 19686263 PMCID: PMC2827646 DOI: 10.1111/j.1558-5646.2009.00823.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Speciation, the evolution of reproductive isolation between populations, serves as the driving force for generating biodiversity. Postzygotic barriers to gene flow, such as F(1) hybrid sterility and inviability, play important roles in the establishment and maintenance of biological species. F(1) hybrid incompatibilities in taxa that obey Haldane's rule, the observation that the heterogametic sex suffers greater hybrid fitness problems than the homogametic sex, are thought to often result from interactions between recessive-acting X-linked loci and dominant-acting autosomal loci. Because they play such prominent roles in producing hybrid incompatibilities, we examine the dominance and nature of epistasis between alleles derived from Drosophila persimilis that confer hybrid male sterility in the genetic background of its sister species, D. pseudoobscura bogotana. We show that epistasis elevates the apparent dominance of individually recessive-acting QTL such that they can contribute to F(1) hybrid sterility. These results have important implications for assumptions underlying theoretical models of hybrid incompatibilities and may offer a possible explanation for why, to date, identification of dominant-acting autosomal "speciation genes" has been challenging.
Collapse
Affiliation(s)
- Audrey S Chang
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.
| | | |
Collapse
|
36
|
Dettman JR, Anderson JB, Kohn LM. Genome-wide investigation of reproductive isolation in experimental lineages and natural species of Neurospora: identifying candidate regions by microarray-based genotyping and mapping. Evolution 2009; 64:694-709. [PMID: 19817850 DOI: 10.1111/j.1558-5646.2009.00863.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inherent incompatibilities between genetic components from genomes of different species may cause intrinsic reproductive isolation. In evolution experiments designed to instigate speciation in laboratory populations of the filamentous fungus Neurospora, we previously discovered a pair of incompatibility loci (dfe and dma) that interact negatively to cause severe defects in sexual reproduction. Here we show that the dfe-dma incompatibility also is a significant cause of genetic isolation between two naturally occurring species of Neurospora (N. crassa and N. intermedia). The strong incompatibility interaction has a simple genetic basis (two biallelic loci) and antagonistic epistasis occurs between heterospecific alleles only, consistent with the Dobzhansky-Muller model of genic incompatibility. We developed microarray-based, restriction-site associated DNA (RAD) markers that identified approximately 1500 polymorphisms between the genomes of the two species, and constructed the first interspecific physical map of Neurospora. With this new mapping resource, the approximate genomic locations of the incompatibility loci were determined using three different approaches: genome scanning, bulk-segregant analyses, and introgression. These population, quantitative, and classical genetics methods concordantly identified two candidate regions, narrowing the search for each incompatibility locus to only approximately 2% of the nuclear genome. This study demonstrates how advances in high-throughput, genome-wide genotyping can be applied to mapping reproductive isolation genes and speciation research.
Collapse
Affiliation(s)
- Jeremy R Dettman
- Department of Ecology & Evolutionary Biology, University of Toronto, Mississauga, Ontario, L5L 1C6, Canada.
| | | | | |
Collapse
|
37
|
Fierst JL, Hansen TF. Genetic architecture and postzygotic reproductive isolation: evolution of Bateson-Dobzhansky-Muller incompatibilities in a polygenic model. Evolution 2009; 64:675-93. [PMID: 19817852 DOI: 10.1111/j.1558-5646.2009.00861.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Bateson-Dobzhansky-Muller model predicts that postzygotic isolation evolves due to the accumulation of incompatible epistatic interactions, but few studies have quantified the relationship between genetic architecture and patterns of reproductive divergence. We examined how the direction and magnitude of epistatic interactions in a polygenic trait under stabilizing selection influenced the evolution of hybrid incompatibilities. We found that populations evolving independently under stabilizing selection experienced suites of compensatory allelic changes that resulted in genetic divergence between populations despite the maintenance of a stable, high-fitness phenotype. A small number of loci were then incompatible with multiple alleles in the genetic background of the hybrid and the identity of these incompatibility loci changed over the evolution of the populations. For F(1) hybrids, reduced fitness evolved in a window of intermediate strengths of epistatic interactions, but F(2) and backcross hybrids evolved reduced fitness across weak and moderate strengths of epistasis due to segregation variance. Strong epistatic interactions constrained the allelic divergence of parental populations and prevented the development of reproductive isolation. Because many traits with varying genetic architectures must be under stabilizing selection, our results indicate that polygenetic drift is a plausible hypothesis for the evolution of postzygotic reproductive isolation.
Collapse
Affiliation(s)
- Janna L Fierst
- Center for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, 0316 Oslo, Norway.
| | | |
Collapse
|
38
|
Kubo T, Yamagata Y, Eguchi M, Yoshimura A. A novel epistatic interaction at two loci causing hybrid male sterility in an inter-subspecific cross of rice (Oryza sativa L.). Genes Genet Syst 2009; 83:443-53. [PMID: 19282622 DOI: 10.1266/ggs.83.443] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Postzygotic reproductive isolation (RI) often arises in inter-subspecific crosses as well as inter-specific crosses of rice (Oryza sativa L.). To further understand the genetic architecture of the postzygotic RI, we analyzed genes causing hybrid sterility and hybrid breakdown in a rice inter-subspecific cross. Here we report hybrid male sterility caused by epistatic interaction between two novel genes, S24 and S35, which were identified on rice chromosomes 5 and 1, respectively. Genetic analysis using near-isogenic lines (NILs) carrying IR24 (ssp. indica) segments with Asominori (ssp. japonica) genetic background revealed a complicated aspect of the epistasis. Allelic interaction at the S24 locus in the heterozygous plants caused abortion of male gametes carrying the Asominori allele (S24-as) independent of the S35 genotype. On the other hand, male gametes carrying the Asominori allele at the S35 locus (S35-as) showed abortion only when the IR24 allele at the S24 locus (S24-ir) was concurrently introgressed into the S35 heterozygous plants, indicating that the sterility phenotype due to S35 was dependent on the S24 genotype through negative epistasis between S24-ir and S35-as alleles. Due to the interaction between S24 and S35, self-pollination of the double heterozygous plants produced pollen-sterile progeny carrying the S24-ir/S24-ir S35-as/S35-ir genotype in addition to the S24 heterozygous plants. This result suggests that the S35 gene might function as a modifier of S24. This study presents strong evidence for the importance of epistatic interaction as a part of the genetic architecture of hybrid sterility in rice. In addition, it suggests that diverse systems have been developed as postzygotic RI mechanisms within the rice.
Collapse
Affiliation(s)
- Takahiko Kubo
- Plant Breeding Laboratory, Division of Genetics and Plant Breeding, Department of Applied Genetics and Pest Management, Faculty of Agriculture, Kyushu University, Japan.
| | | | | | | |
Collapse
|
39
|
Genetics and lineage-specific evolution of a lethal hybrid incompatibility between Drosophila mauritiana and its sibling species. Genetics 2009; 181:1545-55. [PMID: 19189951 DOI: 10.1534/genetics.108.098392] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Dobzhansky-Muller model posits that intrinsic postzygotic reproductive isolation--the sterility or lethality of species hybrids--results from the evolution of incompatible epistatic interactions between species: favorable or neutral alleles that become fixed in the genetic background of one species can cause sterility or lethality in the genetic background of another species. The kind of hybrid incompatibility that evolves between two species, however, depends on the particular evolutionary history of the causative substitutions. An allele that is functionally derived in one species can be incompatible with an allele that is functionally derived in the other species (a derived-derived hybrid incompatibility). But an allele that is functionally derived in one species can also be incompatible with an allele that has retained the ancestral state in the other species (a derived-ancestral hybrid incompatibility). The relative abundance of such derived-derived vs. derived-ancestral hybrid incompatibilities is unknown. Here, we characterize the genetics and evolutionary history of a lethal hybrid incompatibility between Drosophila mauritiana and its two sibling species, D. sechellia and D. simulans. We show that a hybrid lethality factor(s) in the pericentric heterochromatin of the D. mauritiana X chromosome, hybrid lethal on the X (hlx), is incompatible with a factor(s) in the same small autosomal region from both D. sechellia and D. simulans, Suppressor of hlx [Su(hlx)]. By combining genetic and phylogenetic information, we infer that hlx-Su(hlx) hybrid lethality is likely caused by a derived-ancestral incompatibility, a hypothesis that can be tested directly when the genes are identified.
Collapse
|
40
|
Moyle LC. Ecological and evolutionary genomics in the wild tomatoes (Solanum sect. Lycopersicon). Evolution 2008; 62:2995-3013. [PMID: 18752600 DOI: 10.1111/j.1558-5646.2008.00487.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The plant group Solanum section Lycopersicon (the clade containing the domesticated tomato and its wild relatives) is ideal for integrating genomic tools and approaches into ecological and evolutionary research. Wild species within Lycopersicon span broad morphological, physiological, life history, mating system, and biochemical variation, and are separated by substantial, but incomplete postmating reproductive barriers, making this an ideal system for genetic analyses of these traits. This ecological and evolutionary diversity is matched by many logistical advantages, including extensive historical occurrence records for all species in the group, publicly available germplasm for hundreds of known wild accessions, demonstrated experimental tractability, and extensive genetic, genomic, and functional tools and information from the tomato research community. Here I introduce the numerous advantages of this system for Ecological and Evolutionary Functional Genomics (EEFG), and outline several ecological and evolutionary phenotypes and questions that can be fruitfully tackled in this system. These include biotic and abiotic adaptation, reproductive trait evolution, and the genetic basis of speciation. With the modest enhancement of some research strengths, this system is poised to join the best of our currently available model EEFG systems.
Collapse
Affiliation(s)
- Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, Indiana 474051, USA.
| |
Collapse
|
41
|
Moyle LC, Nakazato T. Comparative genetics of hybrid incompatibility: sterility in two Solanum species crosses. Genetics 2008; 179:1437-53. [PMID: 18562656 PMCID: PMC2475745 DOI: 10.1534/genetics.107.083618] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2007] [Accepted: 04/28/2008] [Indexed: 11/18/2022] Open
Abstract
The genetic basis of hybrid sterility can provide insight into the genetic and evolutionary origins of species barriers. We examine the genetics of hybrid incompatibility between two diploid plant species in the plant clade Solanum sect. Lycopersicon. Using a set of near-isogenic lines (NILs) representing the wild species Solanum pennellii (formerly Lycopersicon pennellii) in the genetic background of the cultivated tomato S. lycopersicum (formerly L. esculentum), we found that hybrid pollen and seed infertility are each based on a modest number of loci, male (pollen) and other (seed) incompatibility factors are roughly comparable in number, and seed-infertility QTL act additively or recessively. These findings are remarkably consistent with our previous analysis in a different species pair, S. lycopersicum x S. habrochaites. Data from both studies contrast strongly with data from Drosophila. Finally, QTL for pollen and seed sterility from the two Solanum studies were chromosomally colocalized, indicating a shared evolutionary history for these QTL, a nonrandom genomic distribution of loci causing sterility, and/or a proclivity of certain genes to be involved in hybrid sterility. We show that comparative mapping data can delimit the probable timing of evolution of detected QTL and discern which sterility loci likely evolved earliest among species.
Collapse
Affiliation(s)
- Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
42
|
Skrede I, Brochmann C, Borgen L, Rieseberg LH. Genetics of intrinsic postzygotic isolation in a circumpolar plant species, Draba nivalis (Brassicaceae). Evolution 2008; 62:1840-51. [PMID: 18485112 DOI: 10.1111/j.1558-5646.2008.00418.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sterility barriers, ranging from incomplete to fully developed, were recently demonstrated within taxonomic species of the genus Draba, suggesting the existence of numerous, cryptic biological species. Because these taxa are predominately selfers and of Pleistocene origin, it was concluded that hybrid sterility evolved quickly and possibly by genetic drift. Here we used genetic mapping and QTL analyses to determine the genetic basis of hybrid sterility between geographically distant populations of one of these taxonomic species, Draba nivalis. Fifty microsatellite loci were mapped, and QTL analyses identified five loci underlying seed fertility and two underlying pollen fertility. Four of five seed fertility QTLs reduced fertility in heterozygotes, an observation most consistent with drift-based fixation of underdominant sterility loci. However, several nuclear-nuclear interactions were also found, including two that acted like reciprocal translocations with lowest fitness in double heterozygotes, and two that had a pattern of fitness consistent with Bateson-Dobzhansky-Muller incompatibilities. In contrast, pollen fertility QTLs exhibited additive inheritance, with lowest fertility associated with the paternal allele, a pattern of inheritance suggestive of cytonuclear incompatibilities. The results imply that multiple genetic mechanisms underlie the rapid evolution of reproductive barriers in Draba.
Collapse
Affiliation(s)
- Inger Skrede
- National Centre for Biosystematics, Natural History Museum, University of Oslo, NO-0318 Oslo, Norway.
| | | | | | | |
Collapse
|
43
|
Nakazato T, Jung MK, Housworth EA, Rieseberg LH, Gastony GJ. A genomewide study of reproductive barriers between allopatric populations of a homosporous fern, Ceratopteris richardii. Genetics 2007; 177:1141-50. [PMID: 17720917 PMCID: PMC2034619 DOI: 10.1534/genetics.107.076851] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biological factors involved in reproductive barriers between two divergent races of Ceratopteris richardii were investigated. We used a combination of spore germination rates, QTL analysis of spore germination rates, and transmission ratio distortion (TRD) of 729 RFLPs, AFLPs, and isozyme markers distributed across the genome on the basis of hybrid populations of 488 doubled haploid lines (DHLs) and 168 F(2)'s. Substantial reproductive barriers were found between the parental races, predominantly in the form of spore inviability (23.7% F(1) spore viability). Intrinsic genetic factors such as Bateson-Dobzhansky-Muller (BDM) incompatibilities involving both nuclear-nuclear and nuclear-cytoplasmic factors and chromosomal rearrangements appear to contribute to intrinsic postzygotic isolation. The genomewide distribution patterns of TRD loci support the hypothesis that reproductive barriers are a byproduct of divergence in allopatry and that the strong reproductive barriers are attributable to a small number of genetic elements scattered throughout the genome.
Collapse
Affiliation(s)
- Takuya Nakazato
- Department of Biology, Indiana University, Bloomington, Indiana 47405-7005, USA.
| | | | | | | | | |
Collapse
|
44
|
Britch SC, Swartout EJ, Hampton DD, Draney ML, Chu J, Marshall JL, Howard DJ. Genetic architecture of conspecific sperm precedence in Allonemobius fasciatus and A. socius. Genetics 2007; 176:1209-22. [PMID: 17435237 PMCID: PMC1894585 DOI: 10.1534/genetics.106.064949] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolution of barriers to gene exchange is centrally important to speciation. We used the crickets Allonemobius fasciatus and A. socius to investigate the genetic architecture of conspecific sperm precedence (CSP), a postinsemination prezygotic reproductive barrier. With amplified fragment-length polymorphism (AFLP) markers and controlled crosses we constructed linkage maps and estimated positions of QTL associated with CSP. The majority of QTL have low to moderate effects, although a few QTL exist in A. socius with large effects, and the numbers of QTL are comparable to numbers of genes accounting for species differences in other studies. The QTL are spread across many unlinked markers, yet QTL placed with linked markers are on a small number of linkage groups that could reflect the role of the large Allonemobius sex chromosome in prezygotic isolation. Although many QTL had positive effects on conspecific sperm utilization several QTL also exerted negative effects, which could be explained by intraspecific sexual conflict, sperm competition, or epistasis of introgressed genes on novel backgrounds. One unexpected outcome was that A. socius CSP alleles have a stronger effect than those from A. fasciatus in hybrid females, causing hybrids to behave like A. socius with regard to sperm utilization. Implications of this asymmetry in the Allonemobius hybrid zone are discussed.
Collapse
Affiliation(s)
- Seth C Britch
- Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Demuth JP, Wade MJ. POPULATION DIFFERENTIATION IN THE BEETLE TRIBOLIUM CASTANEUM. II. HALDANE'S RULE AND INCIPIENT SPECIATION. Evolution 2007; 61:694-9. [PMID: 17348932 DOI: 10.1111/j.1558-5646.2007.00049.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The heterogametic sex tends to be rare, absent, sterile, or deformed in F1 hybrid crosses between species, a pattern called Haldane's rule (HR). The introgression of single genes or chromosomal regions from one drosophilid species into the genetic background of another have shown that HR is most often associated with fixed genetic differences in inter-specific crosses. However, because such introgression studies have involved species diverged several hundred thousand generations from a common ancestor, it is not clear whether HR attends the speciation process or results from the accumulation of epistatically acting genes postspeciation. We report the first evidence for HR prior to speciation in crosses between two populations of the red flour beetle, Tribolium castaneum, collected 931 km apart in Colombia and Ecuador. In this cross, HR is manifested as an increase in the proportion of deformed males compared to females and the expression of HR is temperature dependent. Neither population, when crossed to a geographically distant population from Japan, exhibits HR at any rearing temperature. Using joint-scaling analysis and additional data from backcrosses and F2's, we find that the hybrid incompatibilities and the emergence of HR are concurrent processes involving interactions between X-linked and autosomal genes. However, we also find many examples of incompatibilities manifest by F2 and backcross hybrids but not by F1 hybrids and most incompatibilities are not sex different in their effects, even when they involve both X-autosomal interactions and genotype-by-environment interactions. We infer that incipient speciation in flour beetles can occur with or without HR and that significant hybrid incompatibilities result from the accumulation of epistatically acting gene differences between populations without differentially affecting the heterogametic sex in F1 hybrids. The temperature dependence of the incompatibilities supports the inference that genotype-by-environment interactions and adaptation to different environments contribute to the genetic divergence important to postzygotic reproductive isolation.
Collapse
Affiliation(s)
- Jeffery P Demuth
- Indiana University, Department of Biology, 1001 East 3rd Street, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
46
|
Moyle LC. Comparative genetics of potential prezygotic and postzygotic isolating barriers in a Lycopersicon species cross. ACTA ACUST UNITED AC 2007; 98:123-35. [PMID: 17229779 DOI: 10.1093/jhered/esl062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
I compare the genetic basis of quantitative traits that potentially contribute to pre- and postzygotic isolation between the plant species Solanum lycopersicum (formerly Lycopersicon esculentum) and Solanum habrochaites (formerly Lycopersicon hirsutum), using quantitative trait loci (QTL) mapping in a set of near-isogenic lines. Putative prezygotic isolating traits include flower size, flower shape, stigma exertion, and inflorescence length, that can influence pollinator preferences and/or selfing rates, and therefore gene flow between divergent types. Postzygotic isolating traits are hybrid pollen and seed sterility. Three substantive results emerge from these analyses. First, the genetic basis of floral differentiation appears to be somewhat less complex than the genetic basis of postzygotic hybrid sterility, although these differences are very modest. Second, there is little evidence that traits for floral differentiation are causally or mechanistically associated with hybrid sterility traits in this species cross. Third, there is little evidence that hybrid sterility QTL are more frequently associated with chromosomal centromeric regions, in comparison to floral trait QTL, a prediction of centromeric drive models of hybrid sterility. Although genome-wide associations are not evident in this analysis, several individual chromosomal regions that contain clusters of QTL for both floral and sterility traits, or that indicate hybrid sterility effects at centromere locations, warrant further fine-scale investigation.
Collapse
Affiliation(s)
- Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
47
|
Payseur BA, Place M. Searching the genomes of inbred mouse strains for incompatibilities that reproductively isolate their wild relatives. ACTA ACUST UNITED AC 2007; 98:115-22. [PMID: 17208932 DOI: 10.1093/jhered/esl064] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Identification of the genes that underlie reproductive isolation provides important insights into the process of speciation. According to the Dobzhansky-Muller model, these genes suffer disrupted interactions in hybrids due to independent divergence in separate populations. In hybrid populations, natural selection acts to remove the deleterious heterospecific combinations that cause these functional disruptions. When selection is strong, this process can maintain multilocus associations, primarily between conspecific alleles, providing a signature that can be used to locate incompatibilities. We applied this logic to populations of house mice that were formed by hybridization involving two species that show partial reproductive isolation, Mus domesticus and Mus musculus. Using molecular markers likely to be informative about species ancestry, we scanned the genomes of 1) classical inbred strains and 2) recombinant inbred lines for pairs of loci that showed extreme linkage disequilibria. By using the same set of markers, we identified a list of locus pairs that displayed similar patterns in both scans. These genomic regions may contain genes that contribute to reproductive isolation between M. domesticus and M. musculus. This hypothesis can now be tested using laboratory crosses and surveys of introgression in the wild.
Collapse
Affiliation(s)
- Bret A Payseur
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA.
| | | |
Collapse
|
48
|
Brideau NJ, Flores HA, Wang J, Maheshwari S, Wang X, Barbash DA. Two Dobzhansky-Muller genes interact to cause hybrid lethality in Drosophila. Science 2006; 314:1292-5. [PMID: 17124320 DOI: 10.1126/science.1133953] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Dobzhansky-Muller model proposes that hybrid incompatibilities are caused by the interaction between genes that have functionally diverged in the respective hybridizing species. Here, we show that Lethal hybrid rescue (Lhr) has functionally diverged in Drosophila simulans and interacts with Hybrid male rescue (Hmr), which has functionally diverged in D. melanogaster, to cause lethality in F1 hybrid males. LHR localizes to heterochromatic regions of the genome and has diverged extensively in sequence between these species in a manner consistent with positive selection. Rapidly evolving heterochromatic DNA sequences may be driving the evolution of this incompatibility gene.
Collapse
Affiliation(s)
- Nicholas J Brideau
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
49
|
Moehring AJ, Llopart A, Elwyn S, Coyne JA, Mackay TFC. The genetic basis of postzygotic reproductive isolation between Drosophila santomea and D. yakuba due to hybrid male sterility. Genetics 2006; 173:225-33. [PMID: 16510788 PMCID: PMC1461443 DOI: 10.1534/genetics.105.052985] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 02/17/2006] [Indexed: 11/18/2022] Open
Abstract
A major unresolved challenge of evolutionary biology is to determine the nature of the allelic variants of "speciation genes": those alleles whose interaction produces inviable or infertile interspecific hybrids but does not reduce fitness in pure species. Here we map quantitative trait loci (QTL) affecting fertility of male hybrids between D. yakuba and its recently discovered sibling species, D. santomea. We mapped three to four X chromosome QTL and two autosomal QTL with large effects on the reduced fertility of D. yakuba and D. santomea backcross males. We observed epistasis between the X-linked QTL and also between the X and autosomal QTL. The X chromosome had a disproportionately large effect on hybrid sterility in both reciprocal backcross hybrids. However, the genetics of hybrid sterility differ between D. yakuba and D. santomea backcross males, both in terms of the magnitude of main effects and in the epistatic interactions. The QTL affecting hybrid fertility did not colocalize with QTL affecting sexual isolation in this species pair, but did colocalize with QTL affecting the marked difference in pigmentation between D. yakuba and D. santomea. These results provide the basis for future high-resolution mapping and ultimately, molecular cloning, of the interacting genes that contribute to hybrid sterility.
Collapse
Affiliation(s)
- Amanda J Moehring
- Department of Genetics, North Carolina State University, Raleigh 27695, USA.
| | | | | | | | | |
Collapse
|
50
|
Willett CS. Deleterious epistatic interactions between electron transport system protein-coding loci in the copepod Tigriopus californicus. Genetics 2006; 173:1465-77. [PMID: 16624922 PMCID: PMC1526685 DOI: 10.1534/genetics.105.051011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nature of epistatic interactions between genes encoding interacting proteins in hybrid organisms can have important implications for the evolution of postzygotic reproductive isolation and speciation. At this point very little is known about the fitness differences caused by specific closely interacting but evolutionarily divergent proteins in hybrids between populations or species. The intertidal copepod Tigriopus californicus provides an excellent model in which to study such interactions because the species range includes numerous genetically divergent populations that are still capable of being crossed in the laboratory. Here, the effect on fitness due to the interactions of three complex III proteins of the electron transport system in F2 hybrid copepods resulting from crosses of a pair of divergent populations is examined. Significant deviations from Mendelian inheritance are observed for each of the three genes in F2 hybrid adults but not in nauplii (larvae). The two-way interactions between these genes also have a significant impact upon the viability of these hybrid copepods. Dominance appears to play an important role in mediating the interactions between these loci as deviations are caused by heterozygote/homozygote deleterious interactions. These results suggest that the fitness consequences of the interactions of these three complex III-associated genes could influence reproductive isolation in this system.
Collapse
Affiliation(s)
- Christopher S Willett
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA.
| |
Collapse
|