1
|
Deshpande G, Das S, Roy AE, Ratnaparkhi GS. A face-off between Smaug and Caspar modulates primordial germ cell count and identity in Drosophila embryos. Fly (Austin) 2025; 19:2438473. [PMID: 39718186 DOI: 10.1080/19336934.2024.2438473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Proper formation and specification of Primordial Germ Cells (PGCs) is of special significance as they gradually transform into Germline Stem Cells (GSCs) that are ultimately responsible for generating the gametes. Intriguingly, not only the PGCs constitute the only immortal cell type but several specific determinants also underlying PGC specification such as Vasa, Nanos and Germ-cell-less are conserved through evolution. In Drosophila melanogaster, PGC formation and specification depends on two independent factors, the maternally deposited specialized cytoplasm (or germ plasm) enriched in germline determinants, and the mechanisms that execute the even partitioning of these determinants between the daughter cells. Prior work has shown that Oskar protein is necessary and sufficient to assemble the functional germ plasm, whereas centrosomes associated with the nuclei that invade the germ plasm are responsible for its equitable distribution. Our recent data suggests that Caspar, the Drosophila orthologue of human Fas-associated factor-1 (FAF1) is a novel regulator that modulates both mechanisms that underlie the determination of PGC fate. Consistently, early blastoderm embryos derived from females compromised for caspar display reduced levels of Oskar and defective centrosomes.
Collapse
Affiliation(s)
- Girish Deshpande
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Subhradip Das
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| | - Adheena Elsa Roy
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| |
Collapse
|
2
|
Crain AT, Butler MB, Hill CA, Huynh M, McGinty RK, Duronio RJ. Drosophila melanogaster Set8 and L(3)mbt function in gene expression independently of histone H4 lysine 20 methylation. Genes Dev 2024; 38:455-472. [PMID: 38866557 PMCID: PMC11216177 DOI: 10.1101/gad.351698.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Monomethylation of lysine 20 of histone H4 (H4K20me1) is catalyzed by Set8 and thought to play important roles in many aspects of genome function that are mediated by H4K20me binding proteins. We interrogated this model in a developing animal by comparing in parallel the transcriptomes of Set8 null , H4 K20R/A , and l(3)mbt mutant Drosophila melanogaster We found that the gene expression profiles of H4 K20A and H4 K20R larvae are markedly different than Set8 null larvae despite similar reductions in H4K20me1. Set8 null mutant cells have a severely disrupted transcriptome and fail to proliferate in vivo, but these phenotypes are not recapitulated by mutation of H4 K20 , indicating that the developmental defects of Set8 null animals are largely due to H4K20me1-independent effects on gene expression. Furthermore, the H4K20me1 binding protein L(3)mbt is recruited to the transcription start sites of most genes independently of H4K20me even though genes bound by L(3)mbt have high levels of H4K20me1. Moreover, both Set8 and L(3)mbt bind to purified H4K20R nucleosomes in vitro. We conclude that gene expression changes in Set8 null and H4 K20 mutants cannot be explained by loss of H4K20me1 or L(3)mbt binding to chromatin and therefore that H4K20me1 does not play a large role in gene expression.
Collapse
Affiliation(s)
- Aaron T Crain
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 USA
| | - Megan B Butler
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 USA
| | - Christina A Hill
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 USA
| | - Mai Huynh
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599 USA
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599 USA
| | - Robert K McGinty
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599 USA
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599 USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599 USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599 USA;
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599 USA
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599 USA
| |
Collapse
|
3
|
Crain AT, Butler MB, Hill CA, Huynh M, McGinty RK, Duronio RJ. Drosophila melanogaster Set8 and L(3)mbt function in gene expression independently of histone H4 lysine 20 methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584710. [PMID: 38559189 PMCID: PMC10980064 DOI: 10.1101/2024.03.12.584710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mono-methylation of Lysine 20 of histone H4 (H4K20me1) is catalyzed by Set8 and thought to play important roles in many aspects of genome function that are mediated by H4K20me-binding proteins. We interrogated this model in a developing animal by comparing in parallel the transcriptomes of Set8 null , H4 K20R/A , and l(3)mbt mutant Drosophila melanogaster . We found that the gene expression profiles of H4 K20A and H4 K20R larvae are markedly different than Set8 null larvae despite similar reductions in H4K20me1. Set8 null mutant cells have a severely disrupted transcriptome and fail to proliferate in vivo , but these phenotypes are not recapitulated by mutation of H4 K20 indicating that the developmental defects of Set8 null animals are largely due to H4K20me1-independent effects on gene expression. Further, the H4K20me1 binding protein L(3)mbt is recruited to the transcription start sites of most genes independently of H4K20me even though genes bound by L(3)mbt have high levels of H4K20me1. Moreover, both Set8 and L(3)mbt bind to purified H4K20R nucleosomes in vitro. We conclude that gene expression changes in Set8 null and H4 K20 mutants cannot be explained by loss of H4K20me1 or L(3)mbt binding to chromatin, and therefore that H4K20me1 does not play a large role in gene expression.
Collapse
|
4
|
Hayden L, Hur W, Vergassola M, Di Talia S. Manipulating the nature of embryonic mitotic waves. Curr Biol 2022; 32:4989-4996.e3. [PMID: 36332617 PMCID: PMC9691596 DOI: 10.1016/j.cub.2022.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Early embryogenesis is characterized by rapid and synchronous cleavage divisions, which are often controlled by wave-like patterns of Cdk1 activity. Two mechanisms have been proposed for mitotic waves: sweep and trigger waves.1,2 The two mechanisms give rise to different wave speeds, dependencies on physical and molecular parameters, and spatial profiles of Cdk1 activity: upward sweeping gradients versus traveling wavefronts. Both mechanisms hinge on the transient bistability governing the cell cycle and are differentiated by the speed of the cell-cycle progression: sweep and trigger waves arise for rapid and slow drives, respectively. Here, using quantitative imaging of Cdk1 activity and theory, we illustrate that sweep waves are the dominant mechanism in Drosophila embryos and test two fundamental predictions on the transition from sweep to trigger waves. We demonstrate that sweep waves can be turned into trigger waves if the cell cycle is slowed down genetically or if significant delays in the cell-cycle progression are introduced across the embryo by altering nuclear density. Our genetic experiments demonstrate that Polo kinase is a major rate-limiting regulator of the blastoderm divisions, and genetic perturbations reducing its activity can induce the transition from sweep to trigger waves. Furthermore, we show that changes in temperature cause an essentially uniform slowdown of interphase and mitosis. That results in sweep waves being observed across a wide temperature range despite the cell-cycle durations being significantly different. Collectively, our combination of theory and experiments elucidates the nature of mitotic waves in Drosophila embryogenesis, their control mechanisms, and their mutual transitions.
Collapse
Affiliation(s)
- Luke Hayden
- Department of Cell Biology, Research Drive, Duke University School of Medicine, Durham, NC 27710, USA
| | - Woonyung Hur
- Department of Cell Biology, Research Drive, Duke University School of Medicine, Durham, NC 27710, USA
| | - Massimo Vergassola
- Laboratoire de Physique de l'École Normale Supérieure, CNRS, PSL Research University, Sorbonne Université, 24 Rue Lhomond, 75005 Paris, France; Department of Physics, University of California, San Diego, 9500 Gillman Drive, La Jolla, CA 92093, USA.
| | - Stefano Di Talia
- Department of Cell Biology, Research Drive, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
5
|
Hayden L, Chao A, Deneke VE, Vergassola M, Puliafito A, Di Talia S. Cullin-5 mutants reveal collective sensing of the nucleocytoplasmic ratio in Drosophila embryogenesis. Curr Biol 2022; 32:2084-2092.e4. [PMID: 35334230 PMCID: PMC9090985 DOI: 10.1016/j.cub.2022.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
In most metazoans, early embryonic development is characterized by rapid division cycles that pause before gastrulation at the midblastula transition (MBT).1 These cleavage divisions are accompanied by cytoskeletal rearrangements that ensure proper nuclear positioning. However, the molecular mechanisms controlling nuclear positioning are not fully elucidated. In Drosophila, early embryogenesis unfolds in a multinucleated syncytium. Nuclei rapidly move across the anterior-posterior (AP) axis at cell cycles 4-6 in a process driven by actomyosin contractility and cytoplasmic flows.2,3 In shackleton (shkl) mutants, this axial spreading is impaired.4 Here, we show that shkl mutants carry mutations in the cullin-5 (cul-5) gene. Live imaging experiments show that Cul-5 is downstream of the cell cycle but is required for cortical actomyosin contractility. The nuclear spreading phenotype of cul-5 mutants can be rescued by reducing Src activity, suggesting that a major target of cul-5 is Src kinase. cul-5 mutants display gradients of nuclear density across the AP axis that we exploit to study cell-cycle control as a function of the N/C ratio. We found that the N/C ratio is sensed collectively in neighborhoods of about 100 μm, and such collective sensing is required for a precise MBT, in which all the nuclei in the embryo pause their division cycle. Moreover, we found that the response to the N/C ratio is slightly graded along the AP axis. These two features can be linked to Cdk1 dynamics. Collectively, we reveal a new pathway controlling nuclear positioning and provide a dissection of how nuclear cycles respond to the N/C ratio.
Collapse
Affiliation(s)
- Luke Hayden
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anna Chao
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Victoria E Deneke
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Massimo Vergassola
- Laboratoire de physique de l'École Normale Supérieure, CNRS, PSL Research University, Sorbonne Université, Paris, France; Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | - Alberto Puliafito
- Candiolo Cancer Institute, FPO-IRCCS, Laboratory of Cell Migration, 10060 Candiolo, Italy; Department of Oncology, Università di Torino, 10060 Candiolo, Italy
| | - Stefano Di Talia
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
6
|
Self-Organized Nuclear Positioning Synchronizes the Cell Cycle in Drosophila Embryos. Cell 2019; 177:925-941.e17. [PMID: 30982601 DOI: 10.1016/j.cell.2019.03.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/16/2018] [Accepted: 03/04/2019] [Indexed: 11/22/2022]
Abstract
The synchronous cleavage divisions of early embryogenesis require coordination of the cell-cycle oscillator, the dynamics of the cytoskeleton, and the cytoplasm. Yet, it remains unclear how spatially restricted biochemical signals are integrated with physical properties of the embryo to generate collective dynamics. Here, we show that synchronization of the cell cycle in Drosophila embryos requires accurate nuclear positioning, which is regulated by the cell-cycle oscillator through cortical contractility and cytoplasmic flows. We demonstrate that biochemical oscillations are initiated by local Cdk1 inactivation and spread through the activity of phosphatase PP1 to generate cortical myosin II gradients. These gradients cause cortical and cytoplasmic flows that control proper nuclear positioning. Perturbations of PP1 activity and optogenetic manipulations of cortical actomyosin disrupt nuclear spreading, resulting in loss of cell-cycle synchrony. We conclude that mitotic synchrony is established by a self-organized mechanism that integrates the cell-cycle oscillator and embryo mechanics.
Collapse
|
7
|
Blake-Hedges C, Megraw TL. Coordination of Embryogenesis by the Centrosome in Drosophila melanogaster. Results Probl Cell Differ 2019; 67:277-321. [PMID: 31435800 PMCID: PMC11725063 DOI: 10.1007/978-3-030-23173-6_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The first 3 h of Drosophila melanogaster embryo development are exemplified by rapid nuclear divisions within a large syncytium, transforming the zygote to the cellular blastoderm after 13 successive cleavage divisions. As the syncytial embryo develops, it relies on centrosomes and cytoskeletal dynamics to transport nuclei, maintain uniform nuclear distribution throughout cleavage cycles, ensure generation of germ cells, and coordinate cellularization. For the sake of this review, we classify six early embryo stages that rely on processes coordinated by the centrosome and its regulation of the cytoskeleton. The first stage features migration of one of the female pronuclei toward the male pronucleus following maturation of the first embryonic centrosomes. Two subsequent stages distribute the nuclei first axially and then radially in the embryo. The remaining three stages involve centrosome-actin dynamics that control cortical plasma membrane morphogenesis. In this review, we highlight the dynamics of the centrosome and its role in controlling the six stages that culminate in the cellularization of the blastoderm embryo.
Collapse
Affiliation(s)
- Caitlyn Blake-Hedges
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| | - Timothy L Megraw
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
8
|
Rossi F, Molnar C, Hashiyama K, Heinen JP, Pampalona J, Llamazares S, Reina J, Hashiyama T, Rai M, Pollarolo G, Fernández-Hernández I, Gonzalez C. An in vivo genetic screen in Drosophila identifies the orthologue of human cancer/testis gene SPO11 among a network of targets to inhibit lethal(3)malignant brain tumour growth. Open Biol 2018; 7:rsob.170156. [PMID: 28855394 PMCID: PMC5577452 DOI: 10.1098/rsob.170156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
Using transgenic RNAi technology, we have screened over 4000 genes to identify targets to inhibit malignant growth caused by the loss of function of lethal(3)malignant brain tumour in Drosophila in vivo. We have identified 131 targets, which belong to a wide range of gene ontologies. Most of these target genes are not significantly overexpressed in mbt tumours hence showing that, rather counterintuitively, tumour-linked overexpression is not a good predictor of functional requirement. Moreover, we have found that most of the genes upregulated in mbt tumours remain overexpressed in tumour-suppressed double-mutant conditions, hence revealing that most of the tumour transcriptome signature is not necessarily correlated with malignant growth. One of the identified target genes is meiotic W68 (mei-W68), the Drosophila orthologue of the human cancer/testis gene Sporulation-specific protein 11 (SPO11), the enzyme that catalyses the formation of meiotic double-strand breaks. We show that Drosophila mei-W68/SPO11 drives oncogenesis by causing DNA damage in a somatic tissue, hence providing the first instance in which a SPO11 orthologue is unequivocally shown to have a pro-tumoural role. Altogether, the results from this screen point to the possibility of investigating the function of human cancer relevant genes in a tractable experimental model organism like Drosophila.
Collapse
Affiliation(s)
- Fabrizio Rossi
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Cristina Molnar
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Kazuya Hashiyama
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jan P Heinen
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Judit Pampalona
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Salud Llamazares
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - José Reina
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Tomomi Hashiyama
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Madhulika Rai
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Giulia Pollarolo
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Ismael Fernández-Hernández
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Cayetano Gonzalez
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 08010 Barcelona, Spain
| |
Collapse
|
9
|
Coux RX, Teixeira FK, Lehmann R. L(3)mbt and the LINT complex safeguard cellular identity in the Drosophila ovary. Development 2018; 145:dev.160721. [PMID: 29511022 PMCID: PMC5963868 DOI: 10.1242/dev.160721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/19/2018] [Indexed: 01/10/2023]
Abstract
Maintenance of cellular identity is essential for tissue development and homeostasis. At the molecular level, cell identity is determined by the coordinated activation and repression of defined sets of genes. The tumor suppressor L(3)mbt has been shown to secure cellular identity in Drosophila larval brains by repressing germline-specific genes. Here, we interrogate the temporal and spatial requirements for L(3)mbt in the Drosophila ovary, and show that it safeguards the integrity of both somatic and germline tissues. l(3)mbt mutant ovaries exhibit multiple developmental defects, which we find to be largely caused by the inappropriate expression of a single gene, nanos, a key regulator of germline fate, in the somatic ovarian cells. In the female germline, we find that L(3)mbt represses testis-specific and neuronal genes. At the molecular level, we show that L(3)mbt function in the ovary is mediated through its co-factor Lint-1 but independently of the dREAM complex. Together, our work uncovers a more complex role for L(3)mbt than previously understood and demonstrates that L(3)mbt secures tissue identity by preventing the simultaneous expression of original identity markers and tissue-specific misexpression signatures. Highlighted Article: Characterization of the developmental defects of l(3)mbt mutant ovaries shows that L(3)mbt regulates tissue-specific gene signatures to secure the identity of somatic ovarian and germline tissues.
Collapse
Affiliation(s)
- Rémi-Xavier Coux
- Howard Hughes Medical Institute (HHMI) and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Felipe Karam Teixeira
- Howard Hughes Medical Institute (HHMI) and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Ruth Lehmann
- Howard Hughes Medical Institute (HHMI) and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
10
|
Rossi F, Attolini CSO, Mosquera JL, Gonzalez C. Drosophila Larval Brain Neoplasms Present Tumour-Type Dependent Genome Instability. G3 (BETHESDA, MD.) 2018; 8:1205-1214. [PMID: 29467187 PMCID: PMC5873911 DOI: 10.1534/g3.117.300489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/01/2018] [Indexed: 12/30/2022]
Abstract
Single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) are found at different rates in human cancer. To determine if these genetic lesions appear in Drosophila tumors we have sequenced the genomes of 17 malignant neoplasms caused by mutations in l(3)mbt, brat, aurA, or lgl We have found CNVs and SNPs in all the tumors. Tumor-linked CNVs range between 11 and 80 per sample, affecting between 92 and 1546 coding sequences. CNVs are in average less frequent in l(3)mbt than in brat lines. Nearly half of the CNVs fall within the 10 to 100Kb range, all tumor samples contain CNVs larger that 100 Kb and some have CNVs larger than 1Mb. The rates of tumor-linked SNPs change more than 20-fold depending on the tumor type: at late time points brat, l(3)mbt, and aurA and lgl lines present median values of SNPs/Mb of exome of 0.16, 0.48, and 3.6, respectively. Higher SNP rates are mostly accounted for by C > A transversions, which likely reflect enhanced oxidative stress conditions in the affected tumors. Both CNVs and SNPs turn over rapidly. We found no evidence for selection of a gene signature affected by CNVs or SNPs in the cohort. Altogether, our results show that the rates of CNVs and SNPs, as well as the distribution of CNV sizes in this cohort of Drosophila tumors are well within the range of those reported for human cancer. Genome instability is therefore inherent to Drosophila malignant neoplastic growth at a variable extent that is tumor type dependent.
Collapse
Affiliation(s)
- Fabrizio Rossi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jose Luis Mosquera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Cayetano Gonzalez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
11
|
Xu T, Park SS, Giaimo BD, Hall D, Ferrante F, Ho DM, Hori K, Anhezini L, Ertl I, Bartkuhn M, Zhang H, Milon E, Ha K, Conlon KP, Kuick R, Govindarajoo B, Zhang Y, Sun Y, Dou Y, Basrur V, Elenitoba-Johnson KS, Nesvizhskii AI, Ceron J, Lee CY, Borggrefe T, Kovall RA, Rual JF. RBPJ/CBF1 interacts with L3MBTL3/MBT1 to promote repression of Notch signaling via histone demethylase KDM1A/LSD1. EMBO J 2017; 36:3232-3249. [PMID: 29030483 PMCID: PMC5666606 DOI: 10.15252/embj.201796525] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 08/31/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
Notch signaling is an evolutionarily conserved signal transduction pathway that is essential for metazoan development. Upon ligand binding, the Notch intracellular domain (NOTCH ICD) translocates into the nucleus and forms a complex with the transcription factor RBPJ (also known as CBF1 or CSL) to activate expression of Notch target genes. In the absence of a Notch signal, RBPJ acts as a transcriptional repressor. Using a proteomic approach, we identified L3MBTL3 (also known as MBT1) as a novel RBPJ interactor. L3MBTL3 competes with NOTCH ICD for binding to RBPJ. In the absence of NOTCH ICD, RBPJ recruits L3MBTL3 and the histone demethylase KDM1A (also known as LSD1) to the enhancers of Notch target genes, leading to H3K4me2 demethylation and to transcriptional repression. Importantly, in vivo analyses of the homologs of RBPJ and L3MBTL3 in Drosophila melanogaster and Caenorhabditis elegans demonstrate that the functional link between RBPJ and L3MBTL3 is evolutionarily conserved, thus identifying L3MBTL3 as a universal modulator of Notch signaling in metazoans.
Collapse
Affiliation(s)
- Tao Xu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sung-Soo Park
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Daniel Hall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Diana M Ho
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Kazuya Hori
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Lucas Anhezini
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Iris Ertl
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marek Bartkuhn
- Institute for Genetics, University of Giessen, Giessen, Germany
| | - Honglai Zhang
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eléna Milon
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kimberly Ha
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kevin P Conlon
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rork Kuick
- Center for Cancer Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Brandon Govindarajoo
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zhang
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yuqing Sun
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yali Dou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Julian Ceron
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cheng-Yu Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jean-François Rual
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Sumiyoshi T, Sato K, Yamamoto H, Iwasaki YW, Siomi H, Siomi MC. Loss of l(3)mbt leads to acquisition of the ping-pong cycle in Drosophila ovarian somatic cells. Genes Dev 2017; 30:1617-22. [PMID: 27474440 PMCID: PMC4973291 DOI: 10.1101/gad.283929.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/15/2016] [Indexed: 11/24/2022]
Abstract
Sumiyoshi et al. show that CRISPR-mediated loss of function of lethal (3) malignant brain tumor [l(3)mbt] leads to ectopic activation of the germ-specific ping-pong cycle in ovarian somatic cells. Perinuclear foci resembling nuage, the ping-pong center, appeared following l(3)mbt mutation. In Drosophila germ cells, PIWI-interacting RNAs (piRNAs) are amplified through a PIWI slicer-dependent feed-forward loop termed the ping-pong cycle, yielding secondary piRNAs. However, the detailed mechanism remains poorly understood, largely because an ex vivo model system amenable to biochemical analyses has not been available. Here, we show that CRISPR-mediated loss of function of lethal (3) malignant brain tumor [l(3)mbt] leads to ectopic activation of the germ-specific ping-pong cycle in ovarian somatic cells. Perinuclear foci resembling nuage, the ping-pong center, appeared following l(3)mbt mutation. This activation of the ping-pong machinery in cultured cells will greatly facilitate elucidation of the mechanism underlying secondary piRNA biogenesis in Drosophila.
Collapse
Affiliation(s)
- Tetsutaro Sumiyoshi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Kaoru Sato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hitomi Yamamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuka W Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 162-8582, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 162-8582, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| |
Collapse
|
13
|
microRNAs regulate cell-to-cell variability of endogenous target gene expression in developing mouse thymocytes. PLoS Genet 2015; 11:e1005020. [PMID: 25714103 PMCID: PMC4340958 DOI: 10.1371/journal.pgen.1005020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/22/2015] [Indexed: 11/22/2022] Open
Abstract
The development and homeostasis of multicellular organisms relies on gene regulation within individual constituent cells. Gene regulatory circuits that increase the robustness of gene expression frequently incorporate microRNAs as post-transcriptional regulators. Computational approaches, synthetic gene circuits and observations in model organisms predict that the co-regulation of microRNAs and their target mRNAs can reduce cell-to-cell variability in the expression of target genes. However, whether microRNAs directly regulate variability of endogenous gene expression remains to be tested in mammalian cells. Here we use quantitative flow cytometry to show that microRNAs impact on cell-to-cell variability of protein expression in developing mouse thymocytes. We find two distinct mechanisms that control variation in the activation-induced expression of the microRNA target CD69. First, the expression of miR-17 and miR-20a, two members of the miR-17-92 cluster, is co-regulated with the target mRNA Cd69 to form an activation-induced incoherent feed-forward loop. Another microRNA, miR-181a, acts at least in part upstream of the target mRNA Cd69 to modulate cellular responses to activation. The ability of microRNAs to render gene expression more uniform across mammalian cell populations may be important for normal development and for disease. microRNAs are integral to many developmental processes and may 'canalise' development by reducing cell-to-cell variation in gene expression. This idea is supported by computational studies that have modeled the impact of microRNAs on the expression of their targets and the construction of artificial incoherent feedforward loops using synthetic biology tools. Here we show that this interesting principle of microRNA regulation actually occurs in a mammalian developmental system. We examine cell-to-cell variation of protein expression in developing mouse thymocytes by quantitative flow cytometry and find that the absence of microRNAs results in increased cell-to-cell variation in the expression of the microRNA target Cd69. Mechanistically, T cell receptor signaling induces both Cd69 and miR-17 and miR-20a, two microRNAs that target Cd69. Co-regulation of microRNAs and their target mRNA dampens the expression of Cd69 and forms an incoherent feedforward loop that reduces cell-to-cell variation on CD69 expression. In addition, miR-181, which also targets Cd69 and is a known modulator of T cell receptor signaling, also affects cell-to-cell variation of CD69 expression. The ability of microRNAs to control the uniformity of gene expression across mammalian cell populations may be important for normal development and for disease.
Collapse
|
14
|
Chromatin reader L(3)mbt requires the Myb-MuvB/DREAM transcriptional regulatory complex for chromosomal recruitment. Proc Natl Acad Sci U S A 2014; 111:E4234-43. [PMID: 25249635 DOI: 10.1073/pnas.1416321111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lethal malignant brain tumors (lmbt) result from the loss of the conserved transcriptional repressor l(3)mbt, in Drosophila melanogaster. Similar mutations in the human homolog L3MBTL1 correlate with some cancers. The protein's C-terminal MBT repeats bind mono and dimethylated histones in vitro, which could influence recruitment of L3MBTL1 to its target sites. The L(3)mbt chromatin targeting mechanism, however, is controversial and several studies suggest insufficiency or a minor role for histone methylation in determining the site specificity for recruitment. We report that L(3)mbt colocalizes with core members of the Myb-MuvB/DREAM (MMB/DREAM) transcriptional regulatory complex genome-wide, and that L(3)mbt-mediated repression requires this complex in salivary glands and larval brains. Loss of l(3)mbt or of MMB components through mutation cause similar spurious expression of genes, including the transposon regulatory gene piwi, in terminally differentiated cells. The DNA-binding MMB core component Mip120 (Lin54) is required for L(3)mbt recruitment to chromosomes, whereas Mip130 (Lin9) (an MMB core protein) and E2f2 (an MMB transcriptional repressor) are not, but are essential for repression. Cytolocalization experiments suggest the presence of site-specific differential composition of MMB in polytene chromosomes where some loci were bound by a Myb-containing or alternatively, an E2f2 and L(3)mbt form of the complex.
Collapse
|
15
|
Functional analysis of the Drosophila embryonic germ cell transcriptome by RNA interference. PLoS One 2014; 9:e98579. [PMID: 24896584 PMCID: PMC4045815 DOI: 10.1371/journal.pone.0098579] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/05/2014] [Indexed: 11/19/2022] Open
Abstract
In Drosophila melanogaster, primordial germ cells are specified at the posterior pole of the very early embryo. This process is regulated by the posterior localized germ plasm that contains a large number of RNAs of maternal origin. Transcription in the primordial germ cells is actively down-regulated until germ cell fate is established. Bulk expression of the zygotic genes commences concomitantly with the degradation of the maternal transcripts. Thus, during embryogenesis, maternally provided and zygotically transcribed mRNAs determine germ cell development collectively. In an effort to identify novel genes involved in the regulation of germ cell behavior, we carried out a large-scale RNAi screen targeting both maternal and zygotic components of the embryonic germ line transcriptome. We identified 48 genes necessary for distinct stages in germ cell development. We found pebble and fascetto to be essential for germ cell migration and germ cell division, respectively. Our data uncover a previously unanticipated role of mei-P26 in maintenance of embryonic germ cell fate. We also performed systematic co-RNAi experiments, through which we found a low rate of functional redundancy among homologous gene pairs. As our data indicate a high degree of evolutionary conservation in genetic regulation of germ cell development, they are likely to provide valuable insights into the biology of the germ line in general.
Collapse
|
16
|
Liu Y, Liu K, Qin S, Xu C, Min J. Epigenetic targets and drug discovery: part 1: histone methylation. Pharmacol Ther 2014; 143:275-94. [PMID: 24704322 DOI: 10.1016/j.pharmthera.2014.03.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/24/2014] [Indexed: 01/10/2023]
Abstract
Dynamic chromatin structure is modulated by post-translational modifications on histones, such as acetylation, phosphorylation and methylation. Research on histone methylation has become the most flourishing area of epigenetics in the past fourteen years, and a large amount of data has been accumulated regarding its biology and disease implications. Correspondingly, a lot of efforts have been made to develop small molecule compounds that can specifically modulate histone methyltransferases and methylation reader proteins, aiming for potential therapeutic drugs. Here, we summarize recent progress in chemical probe and drug discovery of histone methyltransferases and methylation reader proteins. For each target, we will review their biological/biochemical functions first, and then focus on their disease implications and drug discovery. We can also see that structure-based compound design and optimization plays a critical role in facilitating the development of highly potent and selective chemical probes and inhibitors for these targets.
Collapse
Affiliation(s)
- Yanli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Su Qin
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Chao Xu
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
17
|
Hudson AM, Cooley L. Methods for studying oogenesis. Methods 2014; 68:207-17. [PMID: 24440745 DOI: 10.1016/j.ymeth.2014.01.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/02/2014] [Indexed: 12/31/2022] Open
Abstract
Drosophila oogenesis is an excellent system for the study of developmental cell biology. Active areas of research include stem cell maintenance, gamete development, pattern formation, cytoskeletal regulation, intercellular communication, intercellular transport, cell polarity, cell migration, cell death, morphogenesis, cell cycle control, and many more. The large size and relatively simple organization of egg chambers make them ideally suited for microscopy of both living and fixed whole mount tissue. A wide range of tools is available for oogenesis research. Newly available shRNA transgenic lines provide an alternative to classic loss-of-function F2 screens and clonal screens. Gene expression can be specifically controlled in either germline or somatic cells using the Gal4/UAS system. Protein trap lines provide fluorescent tags of proteins expressed at endogenous levels for live imaging and screening backgrounds. This review provides information on many available reagents and key methods for research in oogenesis.
Collapse
Affiliation(s)
- Andrew M Hudson
- Department of Genetics, Yale University School of Medicine, United States
| | - Lynn Cooley
- Department of Genetics, Yale University School of Medicine, United States; Department of Cell Biology, Yale University School of Medicine, United States; Department of Molecular, Cellular & Developmental Biology, Yale University, United States.
| |
Collapse
|
18
|
Maternal loss of miRNAs leads to increased variance in primordial germ cell numbers in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2013; 3:1573-6. [PMID: 23893743 PMCID: PMC3755917 DOI: 10.1534/g3.113.007591] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
MicroRNAs (miRNAs) are posttranscriptional regulators of gene expression that may act as buffering agents to stabilize gene-regulatory networks. Here, we identify two miRNAs that are maternally required for normal embryonic primordial germ cell development in Drosophila melanogaster. Embryos derived from miR-969 and miR-9c mutant mothers had, on average, reduced germ cell numbers. Intriguingly, this reduction correlated with an increase in the variance of this quantitative phenotypic trait. Analysis of an independent set of maternal mutant genotypes suggests that reduction of germ cell number need not lead to increased variance. Our observations are consistent with the hypothesis that miR-969 and miR-9c contribute to stabilizing the processes that control germ number, supporting phenotypic robustness.
Collapse
|
19
|
The complex containing Drosophila Myb and RB/E2F2 regulates cytokinesis in a histone H2Av-dependent manner. Mol Cell Biol 2013; 33:1809-18. [PMID: 23438598 DOI: 10.1128/mcb.01401-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In Drosophila, mutation of the oncogene Myb reduced the expression of mitotic genes, such as polo and ial, and caused multiple mitotic defects, including disrupted chromosome condensation and abnormal spindles. We now show that binucleate cells, the hallmark phenotype of cytokinesis failure, accumulate in Myb-null ovarian follicle cell and wing disc epithelia. Myb functions as an activator in the generally repressive Drosophila RBF, E2F2, and Myb (dREAM)/Myb-MuvB complex. Absence of the dREAM subunit Mip130 or E2F2 suppressed the Myb-null cytokinesis defect. Therefore, we used Myb-null binucleate cells as a quantitative phenotypic readout of transcriptional repression by the dREAM complex. In the absence of Myb, the complex was sensitive to the dose of the subunits E2F2, Mip120, Caf1, and Lin-52 but not Mip130 or Mip40. Surprisingly, reduction of the dose of His2Av/H2A.z also suppressed the Myb-null binucleate cell phenotype, suggesting a novel role for this variant histone in transcriptional repression by the dREAM complex.
Collapse
|
20
|
Sakaguchi A, Joyce E, Aoki T, Schedl P, Steward R. The histone H4 lysine 20 monomethyl mark, set by PR-Set7 and stabilized by L(3)mbt, is necessary for proper interphase chromatin organization. PLoS One 2012; 7:e45321. [PMID: 23024815 PMCID: PMC3443217 DOI: 10.1371/journal.pone.0045321] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 08/21/2012] [Indexed: 11/28/2022] Open
Abstract
Drosophila PR-Set7 or SET8 is a histone methyltransferase that specifically monomethylates histone H4 lysine 20 (H4K20). L(3)MBT has been identified as a reader of methylated H4K20. It contains several conserved domains including three MBT repeats binding mono- and dimethylated H4K20 peptides. We find that the depletion of PR-Set7 blocks de novo H4K20me1 resulting in the immediate activation of the DNA damage checkpoint, an increase in the size of interphase nuclei, and drastic reduction of cell viability. L(3)mbt on the other hand stabilizes the monomethyl mark, as L(3)mbt-depleted S2 cells show a reduction of more than 60% of bulk monomethylated H4K20 (H4K20me1) while viability is barely affected. Ploidy and basic chromatin structure show only small changes in PR-Set7-depleted cells, but higher order interphase chromatin organization is significantly affected presumably resulting in the activation of the DNA damage checkpoint. In the absence of any other known functions of PR-Set7, the setting of the de novo monomethyl mark appears essential for cell viability in the presence or absence of the DNA damage checkpoint, but once newly assembled chromatin is established the monomethyl mark, protected by L(3)mbt, is dispensable.
Collapse
Affiliation(s)
- Ayako Sakaguchi
- Waksman Institute, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
| | - Eric Joyce
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tsutomu Aoki
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Ruth Steward
- Waksman Institute, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
21
|
Richter C, Oktaba K, Steinmann J, Müller J, Knoblich JA. The tumour suppressor L(3)mbt inhibits neuroepithelial proliferation and acts on insulator elements. Nat Cell Biol 2011; 13:1029-39. [PMID: 21857667 PMCID: PMC3173870 DOI: 10.1038/ncb2306] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 06/24/2011] [Indexed: 12/19/2022]
Abstract
In Drosophila, defects in asymmetric cell division often result in the formation of stem-cell-derived tumours. Here, we show that very similar terminal brain tumour phenotypes arise through a fundamentally different mechanism. We demonstrate that brain tumours in l(3)mbt mutants originate from overproliferation of neuroepithelial cells in the optic lobes caused by derepression of target genes in the Salvador-Warts-Hippo (SWH) pathway. We use ChIP-sequencing to identify L(3)mbt binding sites and show that L(3)mbt binds to chromatin insulator elements. Mutating l(3)mbt or inhibiting expression of the insulator protein gene mod(mdg4) results in upregulation of SWH pathway reporters. As l(3)mbt tumours are rescued by mutations in bantam or yorkie or by overexpression of Expanded, the deregulation of SWH pathway target genes is an essential step in brain tumour formation. Therefore, very different primary defects result in the formation of brain tumours, which behave quite similarly in their advanced stages.
Collapse
Affiliation(s)
- Constance Richter
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
22
|
Koester-Eiserfunke N, Fischle W. H3K9me2/3 binding of the MBT domain protein LIN-61 is essential for Caenorhabditis elegans vulva development. PLoS Genet 2011; 7:e1002017. [PMID: 21437264 PMCID: PMC3060068 DOI: 10.1371/journal.pgen.1002017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 01/18/2011] [Indexed: 11/18/2022] Open
Abstract
MBT domain proteins are involved in developmental processes and tumorigenesis. In vitro binding and mutagenesis studies have shown that individual MBT domains within clustered MBT repeat regions bind mono- and dimethylated histone lysine residues with little to no sequence specificity but discriminate against the tri- and unmethylated states. However, the exact function of promiscuous histone methyl-lysine binding in the biology of MBT domain proteins has not been elucidated. Here, we show that the Caenorhabditis elegans four MBT domain protein LIN-61, in contrast to other MBT repeat factors, specifically interacts with histone H3 when methylated on lysine 9, displaying a strong preference for di- and trimethylated states (H3K9me2/3). Although the fourth MBT repeat is implicated in this interaction, H3K9me2/3 binding minimally requires MBT repeats two to four. Further, mutagenesis of residues conserved with other methyl-lysine binding MBT regions in the fourth MBT repeat does not abolish interaction, implicating a distinct binding mode. In vivo, H3K9me2/3 interaction of LIN-61 is required for C. elegans vulva development within the synMuvB pathway. Mutant LIN-61 proteins deficient in H3K9me2/3 binding fail to rescue lin-61 synMuvB function. Also, previously identified point mutant synMuvB alleles are deficient in H3K9me2/3 interaction although these target residues that are outside of the fourth MBT repeat. Interestingly, lin-61 genetically interacts with two other synMuvB genes, hpl-2, an HP1 homologous H3K9me2/3 binding factor, and met-2, a SETDB1 homologous H3K9 methyl transferase (H3K9MT), in determining C. elegans vulva development and fertility. Besides identifying the first sequence specific and di-/trimethylation binding MBT domain protein, our studies imply complex multi-domain regulation of ligand interaction of MBT domains. Our results also introduce a mechanistic link between LIN-61 function and biology, and they establish interplay of the H3K9me2/3 binding proteins, LIN-61 and HPL-2, as well as the H3K9MT MET-2 in distinct developmental pathways.
Collapse
Affiliation(s)
- Nora Koester-Eiserfunke
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- * E-mail:
| |
Collapse
|
23
|
Janic A, Mendizabal L, Llamazares S, Rossell D, Gonzalez C. Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science 2011; 330:1824-7. [PMID: 21205669 DOI: 10.1126/science.1195481] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Model organisms such as the fruit fly Drosophila melanogaster can help to elucidate the molecular basis of complex diseases such as cancer. Mutations in the Drosophila gene lethal (3) malignant brain tumor cause malignant growth in the larval brain. Here we show that l(3)mbt tumors exhibited a soma-to-germline transformation through the ectopic expression of genes normally required for germline stemness, fitness, or longevity. Orthologs of some of these genes were also expressed in human somatic tumors. In addition, inactivation of any of the germline genes nanos, vasa, piwi, or aubergine suppressed l(3)mbt malignant growth. Our results demonstrate that germline traits are necessary for tumor growth in this Drosophila model and suggest that inactivation of germline genes might have tumor-suppressing effects in other species.
Collapse
Affiliation(s)
- Ana Janic
- Cell Division Group, Institute for Research in Biomedicine (IRB-Barcelona), PCB, c/Baldiri Reixac 10-12, Barcelona, Spain
| | | | | | | | | |
Collapse
|
24
|
Wu S, Wang W, Kong X, Congdon LM, Yokomori K, Kirschner MW, Rice JC. Dynamic regulation of the PR-Set7 histone methyltransferase is required for normal cell cycle progression. Genes Dev 2010; 24:2531-42. [PMID: 20966048 DOI: 10.1101/gad.1984210] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although the PR-Set7/Set8/KMT5a histone H4 Lys 20 monomethyltransferase (H4K20me1) plays an essential role in mammalian cell cycle progression, especially during G2/M, it remained unknown how PR-Set7 itself was regulated. In this study, we discovered the mechanisms that govern the dynamic regulation of PR-Set7 during mitosis, and that perturbation of these pathways results in defective mitotic progression. First, we found that PR-Set7 is phosphorylated at Ser 29 (S29) specifically by the cyclin-dependent kinase 1 (cdk1)/cyclinB complex, primarily from prophase through early anaphase, subsequent to global accumulation of H4K20me1. While S29 phosphorylation did not affect PR-Set7 methyltransferase activity, this event resulted in the removal of PR-Set7 from mitotic chromosomes. S29 phosphorylation also functions to stabilize PR-Set7 by directly inhibiting its interaction with the anaphase-promoting complex (APC), an E3 ubiquitin ligase. The dephosphorylation of S29 during late mitosis by the Cdc14 phosphatases was required for APC(cdh1)-mediated ubiquitination of PR-Set7 and subsequent proteolysis. This event is important for proper mitotic progression, as constitutive phosphorylation of PR-Set7 resulted in a substantial delay between metaphase and anaphase. Collectively, we elucidated the molecular mechanisms that control PR-Set7 protein levels during mitosis, and demonstrated that its orchestrated regulation is important for normal mitotic progression.
Collapse
Affiliation(s)
- Shumin Wu
- Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Kavousanakis ME, Kanodia JS, Kim Y, Kevrekidis IG, Shvartsman SY. A compartmental model for the bicoid gradient. Dev Biol 2010; 345:12-7. [PMID: 20580703 PMCID: PMC2919596 DOI: 10.1016/j.ydbio.2010.05.491] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/10/2010] [Accepted: 05/15/2010] [Indexed: 12/30/2022]
Abstract
The anterior region of the Drosophila embryo is patterned by the concentration gradient of the homeodomain transcription factor bicoid (Bcd). The Bcd gradient was the first identified morphogen gradient and continues to be a subject of intense research at multiple levels, from the mechanisms of RNA localization in the oocyte to the evolution of the Bcd-mediated patterning events in multiple Drosophila species. Critical assessment of the mechanisms of the Bcd gradient formation requires biophysical models of the syncytial embryo. Most of the proposed models rely on reaction-diffusion equations, but their formulation and applicability at high nuclear densities is a nontrivial task. We propose a straightforward alternative in which the syncytial blastoderm is approximated by a periodic arrangement of well-mixed compartments: a single nucleus and an associated cytoplasmic region. We formulate a compartmental model, constrain its parameters by experimental data, and demonstrate that it provides an adequate description of the Bcd gradient dynamics.
Collapse
Affiliation(s)
| | - Jitendra S. Kanodia
- Department of Chemical Engineering, Princeton University
- Lewis-Sigler Institute for Integrative Genomics, Princeton University
| | - Yoosik Kim
- Department of Chemical Engineering, Princeton University
- Lewis-Sigler Institute for Integrative Genomics, Princeton University
| | - Ioannis G. Kevrekidis
- Department of Chemical Engineering, Princeton University
- Program in Applied and Computational Mathematics, Princeton University
| | - Stanislav Y. Shvartsman
- Department of Chemical Engineering, Princeton University
- Lewis-Sigler Institute for Integrative Genomics, Princeton University
| |
Collapse
|
26
|
Abstract
The growth suppressive function of the retinoblastoma (pRB) tumor suppressor family is largely attributed to its ability to negatively regulate the family of E2F transcriptional factors and, as a result, to repress E2F-dependent transcription. Deregulation of the pRB pathway is thought to be an obligatory event in most types of cancers. The large number of mammalian E2F proteins is one of the major obstacles that complicate their genetic analysis. In Drosophila, the E2F family consists of only two members. They are classified as an activator (dE2F1) and a repressor (dE2F2). It has been previously shown that proliferation of de2f1 mutant cells is severely reduced due to unchecked activity of the repressor dE2F2 in these cells. We report here a mosaic screen utilizing the de2f1 mutant phenotype to identify suppressors that overcome the dE2F2/RBF-dependent proliferation block. We have isolated l(3)mbt and B52, which are known to be required for dE2F2 function, as well as genes that were not previously linked to the E2F/pRB pathway such as Doa, gfzf, and CG31133. Inactivation of gfzf, Doa, or CG31133 does not relieve repression by dE2F2. We have shown that gfzf and CG31133 potentiate E2F-dependent activation and synergize with inactivation of RBF, suggesting that they may act in parallel to dE2F. Thus, our results demonstrate the efficacy of the described screening strategy for studying regulation of the dE2F/RBF pathway in vivo.
Collapse
|
27
|
Abstract
Histone modifications play an important role in shaping chromatin structure. Here, we describe the use of an in vitro chromatin assembly system from Drosophila embryo extracts to investigate the dynamic changes of histone modifications subsequent to histone deposition. In accordance with what has been observed in vivo, we find a deacetylation of the initially diacetylated isoform of histone H4, which is dependent on chromatin assembly. Immediately after deposition of the histones onto DNA, H4 is monomethylated at K20, which is required for an efficient deacetylation of the H4 molecule. H4K20 methylation-dependent dl(3)MBT association with chromatin and the identification of a dl(3)MBT-dRPD3 complex suggest that a deacetylase is specifically recruited to the monomethylated substrate through interaction with dl(3)MBT. Our data demonstrate that histone modifications are added and removed during chromatin assembly in a highly regulated manner.
Collapse
|
28
|
Cruz NTD, Wilson KJ, Cooney MA, Tecirlioglu RT, Lagutina I, Galli C, Holland MK, French AJ. Putative imprinted gene expression in uniparental bovine embryo models. Reprod Fertil Dev 2008; 20:589-97. [PMID: 18577356 DOI: 10.1071/rd08024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 04/07/2008] [Indexed: 12/11/2022] Open
Abstract
Altered patterns of gene expression and the imprinted status of genes have a profound effect on cell physiology and can markedly alter embryonic and fetal development. Failure to maintain correct imprinting patterns can lead to abnormal growth and behavioural problems, or to early pregnancy loss. Recently, it has been reported that the Igf2R and Grb10 genes are biallelically expressed in sheep blastocysts, but monoallelically expressed at Day 21 of development. The present study investigated the imprinting status of 17 genes in in vivo, parthenogenetic and androgenetic bovine blastocysts in order to determine the prevalence of this unique phenomenon. Specifically, the putatively imprinted genes Ata3, Impact, L3Mbtl, Magel2, Mkrn3, Peg3, Snrpn, Ube3a and Zac1 were investigated for the first time in bovine in vitro fertilised embryos. Ata3 was the only gene not detected. The results of the present study revealed that all genes, except Xist, failed to display monoallelic expression patterns in bovine embryos and support recent results reported for ovine embryos. Collectively, the data suggest that monoallelic expression may not be required for most imprinted genes during preimplantation development, especially in ruminants. The research also suggests that monoallelic expression of genes may develop in a gene- and time-dependent manner.
Collapse
Affiliation(s)
- Nancy T D' Cruz
- Monash Institute of Medical Research, Monash University, Clayton, Vic. 3168, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kalakonda N, Fischle W, Boccuni P, Gurvich N, Hoya-Arias R, Zhao X, Miyata Y, MacGrogan D, Zhang J, Sims JK, Rice JC, Nimer SD. Histone H4 lysine 20 monomethylation promotes transcriptional repression by L3MBTL1. Oncogene 2008; 27:4293-304. [PMID: 18408754 PMCID: PMC2742506 DOI: 10.1038/onc.2008.67] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 02/07/2008] [Accepted: 02/18/2008] [Indexed: 12/11/2022]
Abstract
Lethal 3 malignant brain tumor 1 (L3MBTL1), a homolog of the Drosophila polycomb tumor suppressor l(3)mbt, contains three tandem MBT repeats (3xMBT) that are critical for transcriptional repression. We recently reported that the 3xMBT repeats interact with mono- and dimethylated lysines in the amino termini of histones H4 and H1b to promote methylation-dependent chromatin compaction. Using a series of histone peptides, we now show that the recognition of mono- and dimethylated lysines in histones H3, H4 and H1.4 (but not their trimethylated or unmodified counterparts) by 3xMBT occurs in the context of a basic environment, requiring a conserved aspartic acid (D355) in the second MBT repeat. Despite the broad range of in vitro binding, the chromatin association of L3MBTL1 mirrors the progressive accumulation of H4K20 monomethylation during the cell cycle. Furthermore, transcriptional repression by L3MBTL1 is enhanced by the H4K20 monomethyltransferase PR-SET7 (to which it binds) but not SUV420H1 (an H4K20 trimethylase) or G9a (an H3K9 dimethylase) and knockdown of PR-SET7 decreases H4K20me1 levels and the chromatin association of L3MBTL1. Our studies identify the importance of H4K20 monomethylation and of PR-SET7 for L3MBTL1 function.
Collapse
Affiliation(s)
- N Kalakonda
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan-Kettering Institute, New York, NY, USA
| | - W Fischle
- Laboratory of Chromatin Biology, Rockefeller University, New York, NY, USA
| | - P Boccuni
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan-Kettering Institute, New York, NY, USA
| | - N Gurvich
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan-Kettering Institute, New York, NY, USA
| | - R Hoya-Arias
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan-Kettering Institute, New York, NY, USA
| | - X Zhao
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan-Kettering Institute, New York, NY, USA
| | - Y Miyata
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan-Kettering Institute, New York, NY, USA
| | - D MacGrogan
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan-Kettering Institute, New York, NY, USA
| | - J Zhang
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan-Kettering Institute, New York, NY, USA
| | - JK Sims
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - JC Rice
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - SD Nimer
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan-Kettering Institute, New York, NY, USA
| |
Collapse
|
30
|
Coppey M, Boettiger AN, Berezhkovskii AM, Shvartsman SY. Nuclear trapping shapes the terminal gradient in the Drosophila embryo. Curr Biol 2008; 18:915-9. [PMID: 18571412 PMCID: PMC2500156 DOI: 10.1016/j.cub.2008.05.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 04/14/2008] [Accepted: 05/15/2008] [Indexed: 11/28/2022]
Abstract
Patterning of the terminal regions of the Drosophila embryo relies on the gradient of phosphorylated ERK/MAPK (dpERK), which is controlled by the localized activation of the Torso receptor tyrosine kinase [1-4]. This model is supported by a large amount of data, but the gradient itself has never been quantified. We present the first measurements of the dpERK gradient and establish a new intracellular layer of its regulation. Based on the quantitative analysis of the spatial pattern of dpERK in mutants with different levels of Torso as well as the dynamics of the wild-type dpERK pattern, we propose that the terminal-patterning gradient is controlled by a cascade of diffusion-trapping modules. A ligand-trapping mechanism establishes a sharply localized pattern of the Torso receptor occupancy on the surface of the embryo. Inside the syncytial embryo, nuclei play the role of traps that localize diffusible dpERK. We argue that the length scale of the terminal-patterning gradient is determined mainly by the intracellular module.
Collapse
Affiliation(s)
- Mathieu Coppey
- Lewis Sigler Institute for Integrative Genomics Princeton University Princeton, New Jersey 08540
| | - Alistair N. Boettiger
- Lewis Sigler Institute for Integrative Genomics Princeton University Princeton, New Jersey 08540
| | - Alexander M. Berezhkovskii
- Mathematical and Statistical Computing Laboratory Division of Computational Bioscience Center for Information Technology National Institutes of Health Bethesda, Maryland 20892
| | - Stanislav Y. Shvartsman
- Lewis Sigler Institute for Integrative Genomics Princeton University Princeton, New Jersey 08540
| |
Collapse
|
31
|
Kalidas S, Sanders C, Ye X, Strauss T, Kuhn M, Liu Q, Smith DP. Drosophila R2D2 mediates follicle formation in somatic tissues through interactions with Dicer-1. Mech Dev 2008; 125:475-85. [PMID: 18299191 PMCID: PMC2702228 DOI: 10.1016/j.mod.2008.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 01/10/2008] [Accepted: 01/14/2008] [Indexed: 11/27/2022]
Abstract
The miRNA pathway has been shown to regulate developmentally important genes. Dicer-1 is required to cleave endogenously encoded microRNA (miRNA) precursors into mature miRNAs that regulate endogenous gene expression. RNA interference (RNAi) is a gene silencing mechanism triggered by double-stranded RNA (dsRNA) that protects organisms from parasitic nucleic acids. In Drosophila, Dicer-2 cleaves dsRNA into 21 base-pair small interfering RNA (siRNA) that are loaded into RISC (RNA induced silencing complex) that in turn cleaves mRNAs homologous to the siRNAs. Dicer-2 co-purifies with R2D2, a low-molecular weight protein that loads siRNA onto Ago-2 in RISC. Loss of R2D2 results in defective RNAi. However, unlike mutants in other RNAi components like Dicer-2 or Ago-2, we report here that r2d2(1) mutants have striking developmental defects. r2d2(1) mutants have reduced female fertility, producing less than 1/10 the normal number of progeny. These escapers have normal morphology. We show R2D2 functions in the ovary, specifically in the somatic tissues giving rise to the stalk and other follicle cells critical for establishing the cellular architecture of the oocyte. Most interestingly, the female fertility defects are dramatically enhanced when one copy of the dcr-1 gene is missing and Dicer-1 protein co-immunoprecipitates with R2D2 antisera. These data show that r2d2(1) mutants have reduced viability and defective female fertility that stems from abnormal follicle cell function, and Dicer-1 impacts this process. We conclude that R2D2 functions beyond its role in RNA interference to include ovarian development in Drosophila.
Collapse
Affiliation(s)
- Savitha Kalidas
- Department of Pharmacology and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390-9111
| | - Charcacia Sanders
- Department of Pharmacology and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390-9111
| | - Xuecheng Ye
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390-9038
| | - Tamara Strauss
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390-9038
| | - Mary Kuhn
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 73390-9033
| | - Qinghua Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390-9038
| | - Dean P. Smith
- Department of Pharmacology and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390-9111
| |
Collapse
|
32
|
Vilmos P, Henn L, Szathmári M, Lukácsovich T, Sipos L, Erdélyi M. Application of the dual-tagging gene trap method combined with a novel automatic selection system to identify genes involved in germ cell development in Drosophila melanogaster. ACTA BIOLOGICA HUNGARICA 2008; 58 Suppl:81-94. [PMID: 18297796 DOI: 10.1556/abiol.58.2007.suppl.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The passage of highly specialized germ cells to future generations is essential for the maintenance of species. To date, conventional genetic screens identified relatively few genes that are involved in germ cell development. We aimed to identify germ line specific genes on the X chromosome of Drosophila melanogaster by the application of a new method: the dual-tagging gene-trap system (GT). A modified version of the gene-trap element was used in our experiments and the resulting insertional mutants were screened for grandchild-less phenotype with the help of the attached-X system and a sensitized genetic background developed in our laboratory. Among the 800 insertions mapped to the X chromosome 33 new mutations were identified that exhibited grandchild-less phenotype, 6 gave visible phenotype and 12 were conditional lethal. The cloning of a selected group of the 33 lines showing grandchild-less phenotype confirmed that we have identified new candidates for genes involved in germ cell development. One of them named pebbled (peb) is discussed in details in this paper. Finally, we also describe a novel automatic selection system developed in our laboratory which enables the extension of the GT mutagenesis to the autosomes.
Collapse
Affiliation(s)
- P Vilmos
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
33
|
Trojer P, Li G, Sims RJ, Vaquero A, Kalakonda N, Boccuni P, Lee D, Erdjument-Bromage H, Tempst P, Nimer SD, Wang YH, Reinberg D. L3MBTL1, a histone-methylation-dependent chromatin lock. Cell 2007; 129:915-28. [PMID: 17540172 DOI: 10.1016/j.cell.2007.03.048] [Citation(s) in RCA: 268] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 12/27/2006] [Accepted: 03/12/2007] [Indexed: 12/31/2022]
Abstract
Distinct histone lysine methylation marks are involved in transcriptional repression linked to the formation and maintenance of facultative heterochromatin, although the underlying mechanisms remain unclear. We demonstrate that the malignant-brain-tumor (MBT) protein L3MBTL1 is in a complex with core histones, histone H1b, HP1gamma, and Rb. The MBT domain is structurally related to protein domains that directly bind methylated histone residues. Consistent with this, we found that the L3MBTL1 MBT domains compact nucleosomal arrays dependent on mono- and dimethylation of histone H4 lysine 20 and of histone H1b lysine 26. The MBT domains bind at least two nucleosomes simultaneously, linking repression of transcription to recognition of different histone marks by L3MBTL1. Consistently, L3MBTL1 was found to negatively regulate the expression of a subset of genes regulated by E2F, a factor that interacts with Rb.
Collapse
Affiliation(s)
- Patrick Trojer
- Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey, 683 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lee S, Cooley L. Jagunal is required for reorganizing the endoplasmic reticulum during Drosophila oogenesis. ACTA ACUST UNITED AC 2007; 176:941-52. [PMID: 17389229 PMCID: PMC2064080 DOI: 10.1083/jcb.200701048] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Vesicular traffic in the Drosophila melanogaster oocyte occurs actively during vitellogenesis. Although endocytosis in the oocyte has been well characterized, exocytic vesicular traffic is less well understood. We show that the oocyte endoplasmic reticulum (ER) becomes concentrated into subcortical clusters during vitellogenesis. This ER reorganization requires Jagunal, which is an evolutionarily conserved ER membrane protein. Loss of Jagunal reduces vesicular traffic to the oocyte lateral membrane, but does not affect posterior polarized vesicular traffic, suggesting a role for Jagunal in facilitating vesicular traffic in the subcortex. Reduced membrane traffic caused by loss of Jagunal affects oocyte and bristle growth. We propose that ER reorganization is an important mechanism used by cells to prepare for an increased demand for membrane traffic, and Jagunal facilitates this process through ER clustering.
Collapse
Affiliation(s)
- Sangil Lee
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
35
|
Barbosa V, Kimm N, Lehmann R. A maternal screen for genes regulating Drosophila oocyte polarity uncovers new steps in meiotic progression. Genetics 2007; 176:1967-77. [PMID: 17507684 PMCID: PMC1950606 DOI: 10.1534/genetics.106.069575] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic checkpoints monitor chromosome status to ensure correct homologous recombination, genomic integrity, and chromosome segregation. In Drosophila, the persistent presence of double-strand DNA breaks (DSB) activates the ATR/Mei-41 checkpoint, delays progression through meiosis, and causes defects in DNA condensation of the oocyte nucleus, the karyosome. Checkpoint activation has also been linked to decreased levels of the TGFalpha-like molecule Gurken, which controls normal eggshell patterning. We used this easy-to-score eggshell phenotype in a germ-line mosaic screen in Drosophila to identify new genes affecting meiotic progression, DNA condensation, and Gurken signaling. One hundred eighteen new ventralizing mutants on the second chromosome fell into 17 complementation groups. Here we describe the analysis of 8 complementation groups, including Kinesin heavy chain, the SR protein kinase cuaba, the cohesin-related gene dPds5/cohiba, and the Tudor-domain gene montecristo. Our findings challenge the hypothesis that checkpoint activation upon persistent DSBs is exclusively mediated by ATR/Mei-41 kinase and instead reveal a more complex network of interactions that link DSB formation, checkpoint activation, meiotic delay, DNA condensation, and Gurken protein synthesis.
Collapse
Affiliation(s)
- Vitor Barbosa
- Howard Hughes Medical Institute and the Kimmel Center for Biology and Medicine, Skirball Institute, 540 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
36
|
Gilboa L, Lehmann R. Soma–germline interactions coordinate homeostasis and growth in the Drosophila gonad. Nature 2006; 443:97-100. [PMID: 16936717 DOI: 10.1038/nature05068] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 07/10/2006] [Indexed: 11/08/2022]
Abstract
The ability of organs such as the liver or the lymphoid system to maintain their original size or regain it after injury is well documented. However, little is known about how these organs sense that equilibrium is breached, and how they cease changing when homeostasis is reached. Similarly, it remains unclear how, during normal development, different cell types within an organ coordinate their growth. Here we show that during gonad development in the fruitfly Drosophila melanogaster the proliferation of primordial germ cells (PGCs) and survival of the somatic intermingled cells (ICs) that contact them are coordinated by means of a feedback mechanism composed of a positive signal and a negative signal. PGCs express the EGF receptor (EGFR) ligand Spitz, which is required for IC survival. In turn, ICs inhibit PGC proliferation. Thus, homeostasis and coordination of growth between soma and germ line in the larval ovary is achieved by using a sensor of PGC numbers (EGFR-mediated survival of ICs) coupled to a correction mechanism inhibiting PGC proliferation. This feedback loop ensures that sufficient numbers of PGCs exist to fill all the stem-cell niches that form at the end of larval development. We propose that similar feedback mechanisms might be generally used for coordinated growth, regeneration and homeostasis.
Collapse
Affiliation(s)
- Lilach Gilboa
- Howard Hughes Medical Institute and Developmental Genetics Program, The Skirball Institute and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA
| | | |
Collapse
|
37
|
Deshpande G, Calhoun G, Schedl P. Drosophila argonaute-2 is required early in embryogenesis for the assembly of centric/centromeric heterochromatin, nuclear division, nuclear migration, and germ-cell formation. Genes Dev 2005; 19:1680-5. [PMID: 16024657 PMCID: PMC1176005 DOI: 10.1101/gad.1316805] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The RNA-induced silencing complex (RISC) or the RISC complex mediates RNAi and is comprised of proteins belonging to the dicer and Argonaute family proteins. Here we show that Argonaute-2 (ago-2) is required for proper nuclear migration, pole cell formation, and cellularization during the early stages of embryonic development in Drosophila. We have traced these defects back to the nuclear division cycles. Unlike wild type, nuclear division is asynchronous in ago-2 embryos and there are defects in chromosome condensation, nuclear kinesis, and assembly of spindle apparatus. The aberrations in the nuclear division cycle are correlated with defects in the formation of centric/centromeric heterochromatin and point to a failure in the assembly of functional centromeres.
Collapse
Affiliation(s)
- Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA
| | | | | |
Collapse
|
38
|
von Stein W, Ramrath A, Grimm A, Müller-Borg M, Wodarz A. Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development 2005; 132:1675-86. [PMID: 15743877 DOI: 10.1242/dev.01720] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell polarity in Drosophila epithelia, oocytes and neuroblasts is controlled by the evolutionarily conserved PAR/aPKC complex, which consists of the serine-threonine protein kinase aPKC and the PDZ-domain proteins Bazooka (Baz) and PAR-6. The PAR/aPKC complex is required for the separation of apical and basolateral plasma membrane domains, for the asymmetric localization of cell fate determinants and for the proper orientation of the mitotic spindle. How the complex exerts these different functions is not known. We show that the lipid phosphatase PTEN directly binds to Baz in vitro and in vivo, and colocalizes with Baz in the apical cortex of epithelia and neuroblasts. PTEN is an important regulator of phosphoinositide turnover that antagonizes the activity of PI3-kinase. We show that Pten mutant ovaries and embryos lacking maternal and zygotic Pten function display phenotypes consistent with a function for PTEN in the organization of the actin cytoskeleton. In freshly laid eggs, the germ plasm determinants oskar mRNA and Vasa are not localized properly to the posterior cytocortex and pole cells do not form. In addition, the actin-dependent posterior movement of nuclei during early cleavage divisions does not occur and the synchrony of nuclear divisions at syncytial blastoderm stages is lost. Pten mutant embryos also show severe defects during cellularization. Our data provide evidence for a link between the PAR/aPKC complex, the actin cytoskeleton and PI3-kinase signaling mediated by PTEN.
Collapse
Affiliation(s)
- Walter von Stein
- Abteilung Stammzellbiologie, CMPB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
39
|
Peterson AJ, Mallin DR, Francis NJ, Ketel CS, Stamm J, Voeller RK, Kingston RE, Simon JA. Requirement for sex comb on midleg protein interactions in Drosophila polycomb group repression. Genetics 2005; 167:1225-39. [PMID: 15280237 PMCID: PMC1470928 DOI: 10.1534/genetics.104.027474] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Drosophila Sex Comb on Midleg (SCM) protein is a transcriptional repressor of the Polycomb group (PcG). Although genetic studies establish SCM as a crucial PcG member, its molecular role is not known. To investigate how SCM might link to PcG complexes, we analyzed the in vivo role of a conserved protein interaction module, the SPM domain. This domain is found in SCM and in another PcG protein, Polyhomeotic (PH), which is a core component of Polycomb repressive complex 1 (PRC1). SCM-PH interactions in vitro are mediated by their respective SPM domains. Yeast two-hybrid and in vitro binding assays were used to isolate and characterize >30 missense mutations in the SPM domain of SCM. Genetic rescue assays showed that SCM repressor function in vivo is disrupted by mutations that impair SPM domain interactions in vitro. Furthermore, overexpression of an isolated, wild-type SPM domain produced PcG loss-of-function phenotypes in flies. Coassembly of SCM with a reconstituted PRC1 core complex shows that SCM can partner with PRC1. However, gel filtration chromatography showed that the bulk of SCM is biochemically separable from PH in embryo nuclear extracts. These results suggest that SCM, although not a core component of PRC1, interacts and functions with PRC1 in gene silencing.
Collapse
Affiliation(s)
- Aidan J Peterson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The passage of an individual's genome to future generations is essential for the maintenance of species and is mediated by highly specialized cells, the germ cells. Genetic studies in a number of model organisms have provided insight into the molecular mechanisms that control specification, migration and survival of early germ cells. Focusing on Drosophila, we will discuss the mechanisms by which germ cells initially form and remain transcriptionally silent while somatic cells are transcriptionally active. We will further discuss three separate attractive and repellent guidance pathways, mediated by a G-protein coupled receptor, two lipid phosphate phosphohydrolases, and isoprenylation. We will compare and contrast these findings with those obtained in other organisms, in particular zebrafish and mice. While aspects of germ cell specification are strikingly different between these species, germ cell specific gene functions have been conserved. In particular, mechanisms that sense directional cues during germ cell migration seem to be shared between invertebrates and vertebrates.
Collapse
Affiliation(s)
- Ana C Santos
- Howard Hughes Medical Institute, Developmental Genetics Program, Skirball Institute and Department of Cell Biology at NYU School of Medicine, 540 First Avenue, New York, New York 10016, USA
| | | |
Collapse
|