1
|
Aloisi M, Grifoni D, Zarivi O, Colafarina S, Morciano P, Poma AMG. Plastic Fly: What Drosophila melanogaster Can Tell Us about the Biological Effects and the Carcinogenic Potential of Nanopolystyrene. Int J Mol Sci 2024; 25:7965. [PMID: 39063206 PMCID: PMC11277132 DOI: 10.3390/ijms25147965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Today, plastic pollution is one of the biggest threats to the environment and public health. In the tissues of exposed species, micro- and nano-fragments accumulate, leading to genotoxicity, altered metabolism, and decreased lifespan. A model to investigate the genotoxic and tumor-promoting potential of nanoplastics (NPs) is Drosophila melanogaster. Here we tested polystyrene, which is commonly used in food packaging, is not well recycled, and makes up at least 30% of landfills. In order to investigate the biological effects and carcinogenic potential of 100 µm polystyrene nanoparticles (PSNPs), we raised Oregon [R] wild-type flies on contaminated food. After prolonged exposure, fluorescent PSNPs accumulated in the gut and fat bodies. Furthermore, PSNP-fed flies showed considerable alterations in weight, developmental time, and lifespan, as well as a compromised ability to recover from starvation. Additionally, we noticed a decrease in motor activity in DNAlig4 mutants fed with PSNPs, which are known to be susceptible to dietary stressors. A qPCR molecular investigation of the larval intestines revealed a markedly elevated expression of the genes drice and p53, suggesting a response to cell damage. Lastly, we used warts-defective mutants to assess the carcinogenic potential of PSNPs and discovered that exposed flies had more aberrant masses than untreated ones. In summary, our findings support the notion that ingested nanopolystyrene triggers metabolic and genetic modifications in the exposed organisms, eventually delaying development and accelerating death and disease.
Collapse
Affiliation(s)
- Massimo Aloisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Daniela Grifoni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Osvaldo Zarivi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Sabrina Colafarina
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Patrizia Morciano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
- INFN Laboratori Nazionali del Gran Sasso, Assergi, 67100 L’Aquila, Italy
| | - Anna Maria Giuseppina Poma
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| |
Collapse
|
2
|
Acs-Szabo L, Papp LA, Takacs S, Miklos I. Disruption of the Schizosaccharomyces japonicus lig4 Disturbs Several Cellular Processes and Leads to a Pleiotropic Phenotype. J Fungi (Basel) 2023; 9:jof9050550. [PMID: 37233261 DOI: 10.3390/jof9050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Gene targeting is a commonly used method to reveal the function of genes. Although it is an attractive tool for molecular studies, it can frequently be a challenge because its efficiency can be low and it requires the screening of a large number of transformants. Generally, these problems originate from the elevated level of ectopic integration caused by non-homologous DNA end joining (NHEJ). To eliminate this problem, NHEJ-related genes are frequently deleted or disrupted. Although these manipulations can improve gene targeting, the phenotype of the mutant strains raised the question of whether mutations have side effects. The aim of this study was to disrupt the lig4 gene in the dimorphic fission yeast, S. japonicus, and investigate the phenotypic changes of the mutant strain. The mutant cells have shown various phenotypic changes, such as increased sporulation on complete medium, decreased hyphal growth, faster chronological aging, and higher sensitivity to heat shock, UV light, and caffeine. In addition, higher flocculation capacity has been observed, especially at lower sugar concentrations. These changes were supported by transcriptional profiling. Many genes belonging to metabolic and transport processes, cell division, or signaling had altered mRNA levels compared to the control strain. Although the disruption improved the gene targeting, we assume that the lig4 inactivation can cause unexpected physiological side effects, and we have to be very careful with the manipulations of the NHEJ-related genes. To reveal the exact mechanisms behind these changes, further investigations are required.
Collapse
Affiliation(s)
- Lajos Acs-Szabo
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Laszlo Attila Papp
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Szonja Takacs
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Ida Miklos
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| |
Collapse
|
3
|
Hindi NN, Elsakrmy N, Ramotar D. The base excision repair process: comparison between higher and lower eukaryotes. Cell Mol Life Sci 2021; 78:7943-7965. [PMID: 34734296 PMCID: PMC11071731 DOI: 10.1007/s00018-021-03990-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 01/01/2023]
Abstract
The base excision repair (BER) pathway is essential for maintaining the stability of DNA in all organisms and defects in this process are associated with life-threatening diseases. It is involved in removing specific types of DNA lesions that are induced by both exogenous and endogenous genotoxic substances. BER is a multi-step mechanism that is often initiated by the removal of a damaged base leading to a genotoxic intermediate that is further processed before the reinsertion of the correct nucleotide and the restoration of the genome to a stable structure. Studies in human and yeast cells, as well as fruit fly and nematode worms, have played important roles in identifying the components of this conserved DNA repair pathway that maintains the integrity of the eukaryotic genome. This review will focus on the components of base excision repair, namely, the DNA glycosylases, the apurinic/apyrimidinic endonucleases, the DNA polymerase, and the ligases, as well as other protein cofactors. Functional insights into these conserved proteins will be provided from humans, Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans, and the implications of genetic polymorphisms and knockouts of the corresponding genes.
Collapse
Affiliation(s)
- Nagham Nafiz Hindi
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Noha Elsakrmy
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar.
| |
Collapse
|
4
|
DNA ligase IV mutations confer shorter lifespan and increased sensitivity to nutrient stress in Drosophila melanogaster. J Appl Genet 2021; 63:141-144. [PMID: 34817771 PMCID: PMC8755683 DOI: 10.1007/s13353-021-00637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 12/04/2022]
Abstract
The nonhomologous end-joining pathway is a primary DNA double-strand break repair pathway in eukaryotes. DNA ligase IV (Lig4) catalyzes the final step of DNA end ligation in this pathway. Partial loss of Lig4 in mammals causes Lig4 syndrome, while complete loss is embryonically lethal. DNA ligase 4 (DNAlig4) null Drosophila melanogaster is viable, but sensitive to ionizing radiation during early development. We proposed to explore if DNAlig4 loss induced other long-term sensitivities and defects in D. melanogaster. We demonstrated that DNAlig4 mutant strains had decreased lifespan and lower resistance to nutrient deprivation, indicating Lig4 is required for maintaining health and longevity in D. melanogaster.
Collapse
|
5
|
Alexandrov ID, Alexandrova MV. The dose-, LET-, and gene-dependent patterns of DNA changes underlying the point mutations in spermatozoa of Drosophila melanogaster. I. Autosomal gene black. Mutat Res 2021; 823:111755. [PMID: 34217017 DOI: 10.1016/j.mrfmmm.2021.111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
Sequence analysis of 7 spontaneous, 27 γ-ray- and 20 neutron/neutron+γ-ray-induced black (b) point mutants was carried out. All these mutants were isolated as non-mosaic transmissible recessive visibles in the progeny of irradiated males from the wild-type high-inbred laboratory D32 strain of Drosophila melanogaster. Among spontaneous mutants, there were two (28.5 %) mutants with copia insertion in intron 1 and exon 2, three (42.8 %) with replacement of b+D32 paternal sequence with maternal b1 sequence (gene conversion), one (14.3 %) with 142-bp-long insertion in exon 2, and one (14.3 %) with a short deletion and two single-base substitutions in exon 3. Among γ-ray-induced mutants, there were 1 (3.7 %) with copia insertion in intron 2, 6 (22.2 %) with gene conversion, and the remaining 20 (74.1 %) mutants had 37 different small-scale DNA changes. There were 20 (54.1 %) single- or double-base substitutions, 7 (18.9 %) frameshifts (indels), 9 (24.3 %) extended deletions or insertions, and 1(2.7 %) mutant with a short insertion instead of a short deletion. Remarkably, clusters of independent small-scale changes inside the gene or within one DNA helical turn were recovered. The spectrum of DNA changes in 20 neutron/ neutron+γ-ray-induced mutants was drastically different from that induced by γ-rays in that 18 (90.0 %) mutants had the b1sequence. In addition, 2 (10.0 %) with gene conversion had 600- or 19-bp-long deletion in exon 3 and 1 (5.0 %) mutant with a short insertion instead of a short deletion. Analysis of all 27 mutants with gene conversion events shows that 20 (74.1 %) had full b1 sequence whereas 7 others (25.9 %) contained a partial b1 sequence. These data are the first experimental evidence for gene conversion in the early stages of animal embryogenesis in the first diploid cleavage nucleus after male and female pronuclei have united. The gene conversion, frameshifts (indels), and deletions between short repeats were considered as products of a relevant DNA repair pathways described in the literature. As the first step, the gametic doubling doses for phenotypic black point mutations and for intragenic base substitution mutations in mature sperm cells irradiated by 40 Gy of γ-rays were estimated as 5.8 and 1.2 Gy, respectively, showing that doubling dose for mutations at the molecular level is about 5 times lower than that at the phenotypic level.
Collapse
Affiliation(s)
- I D Alexandrov
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980, Dubna, Moscow Region, Russia.
| | - M V Alexandrova
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980, Dubna, Moscow Region, Russia
| |
Collapse
|
6
|
Mota MBS, Carvalho MA, Monteiro ANA, Mesquita RD. DNA damage response and repair in perspective: Aedes aegypti, Drosophila melanogaster and Homo sapiens. Parasit Vectors 2019; 12:533. [PMID: 31711518 PMCID: PMC6849265 DOI: 10.1186/s13071-019-3792-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/05/2019] [Indexed: 01/18/2023] Open
Abstract
Background The maintenance of genomic integrity is the responsibility of a complex network, denominated the DNA damage response (DDR), which controls the lesion detection and DNA repair. The main repair pathways are base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination repair (HR) and non-homologous end joining repair (NHEJ). They correct double-strand breaks (DSB), single-strand breaks, mismatches and others, or when the damage is quite extensive and repair insufficient, apoptosis is activated. Methods In this study we used the BLAST reciprocal best-hit methodology to search for DDR orthologs proteins in Aedes aegypti. We also provided a comparison between Ae. aegypti, D. melanogaster and human DDR network. Results Our analysis revealed the presence of ATR and ATM signaling, including the H2AX ortholog, in Ae. aegypti. Key DDR proteins (orthologs to RAD51, Ku and MRN complexes, XP-components, MutS and MutL) were also identified in this insect. Other proteins were not identified in both Ae. aegypti and D. melanogaster, including BRCA1 and its partners from BRCA1-A complex, TP53BP1, PALB2, POLk, CSA, CSB and POLβ. In humans, their absence affects DSB signaling, HR and sub-pathways of NER and BER. Seven orthologs not known in D. melanogaster were found in Ae. aegypti (RNF168, RIF1, WRN, RAD54B, RMI1, DNAPKcs, ARTEMIS). Conclusions The presence of key DDR proteins in Ae. aegypti suggests that the main DDR pathways are functional in this insect, and the identification of proteins not known in D. melanogaster can help fill gaps in the DDR network. The mapping of the DDR network in Ae. aegypti can support mosquito biology studies and inform genetic manipulation approaches applied to this vector.
Collapse
Affiliation(s)
- Maria Beatriz S Mota
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo Alex Carvalho
- Instituto Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Câncer, Divisão de Pesquisa Clínica, Rio de Janeiro, RJ, Brazil
| | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rafael D Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
7
|
A new role for Drosophila Aurora-A in maintaining chromosome integrity. Chromosoma 2019; 128:41-52. [PMID: 30612150 DOI: 10.1007/s00412-018-00687-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023]
Abstract
Aurora-A is a conserved mitotic kinase overexpressed in many types of cancer. Growing evidence shows that Aurora-A plays a crucial role in DNA damage response (DDR) although this aspect has been less characterized. We isolated a new aur-A mutation, named aur-A949, in Drosophila, and we showed that it causes chromosome aberrations (CABs). In addition, aur-A949 mutants were sensitive to X-ray treatment and showed impaired γ-H2Av foci dissolution kinetics. To identify the pathway in which Aur-A works, we conducted an epistasis analysis by evaluating CAB frequencies in double mutants carrying aur-A949 mutation combined to mutations in genes related to DNA damage response (DDR). We found that mutations in tefu (ATM) and in the histone variant H2Av were epistatic over aur-A949 indicating that Aur-A works in DDR and that it is required for γ-H2Av foci dissolution. More interestingly, we found that a mutation in lig4, a gene belonging to the non-homologous end joining (NHEJ) repair pathway, was epistatic over aur-A949. Based on studies in other systems, which show that phosphorylation is important to target Lig4 for degradation, we hypothesized that in aur-A949 mutant cells, there is a persistence of Lig4 that could be, in the end, responsible for CABs. Finally, we observed a synergistic interaction between Aur-A and the homologous recombination (HR) repair system component Rad 51 in the process that converts chromatid deletions into isochromatid deletions. Altogether, these data indicate that Aur-A depletion can elicit chromosome damage. This conclusion should be taken into consideration, since some anticancer therapies are aimed at reducing Aurora-A expression.
Collapse
|
8
|
Yan Y, Finnigan GC. Development of a multi-locus CRISPR gene drive system in budding yeast. Sci Rep 2018; 8:17277. [PMID: 30467400 PMCID: PMC6250742 DOI: 10.1038/s41598-018-34909-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Abstract
The discovery of CRISPR/Cas gene editing has allowed for major advances in many biomedical disciplines and basic research. One arrangement of this biotechnology, a nuclease-based gene drive, can rapidly deliver a genetic element through a given population and studies in fungi and metazoans have demonstrated the success of such a system. This methodology has the potential to control biological populations and contribute to eradication of insect-borne diseases, agricultural pests, and invasive species. However, there remain challenges in the design, optimization, and implementation of gene drives including concerns regarding biosafety, containment, and control/inhibition. Given the numerous gene drive arrangements possible, there is a growing need for more advanced designs. In this study, we use budding yeast to develop an artificial multi-locus gene drive system. Our minimal setup requires only a single copy of S. pyogenes Cas9 and three guide RNAs to propagate three gene drives. We demonstrate how this system could be used for targeted allele replacement of native genes and to suppress NHEJ repair systems by modifying DNA Ligase IV. A multi-locus gene drive configuration provides an expanded suite of options for complex attributes including pathway redundancy, combatting evolved resistance, and safeguards for control, inhibition, or reversal of drive action.
Collapse
Affiliation(s)
- Yao Yan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA
| | - Gregory C Finnigan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
9
|
Ren X, Holsteens K, Li H, Sun J, Zhang Y, Liu LP, Liu Q, Ni JQ. Genome editing in Drosophila melanogaster: from basic genome engineering to the multipurpose CRISPR-Cas9 system. SCIENCE CHINA-LIFE SCIENCES 2017; 60:476-489. [PMID: 28527116 DOI: 10.1007/s11427-017-9029-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/05/2017] [Indexed: 12/16/2022]
Abstract
Nowadays, genome editing tools are indispensable for studying gene function in order to increase our knowledge of biochemical processes and disease mechanisms. The extensive availability of mutagenesis and transgenesis tools make Drosophila melanogaster an excellent model organism for geneticists. Early mutagenesis tools relied on chemical or physical methods, ethyl methane sulfonate (EMS) and X-rays respectively, to randomly alter DNA at a nucleotide or chromosomal level. Since the discovery of transposable elements and the availability of the complete fly genome, specific genome editing tools, such as P-elements, zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), have undergone rapid development. Currently, one of the leading and most effective contemporary tools is the CRISPR-cas9 system made popular because of its low cost, effectiveness, specificity and simplicity of use. This review briefly addresses the most commonly used mutagenesis and transgenesis tools in Drosophila, followed by an in-depth review of the multipurpose CRISPR-Cas9 system and its current applications.
Collapse
Affiliation(s)
- Xingjie Ren
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Kristof Holsteens
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Haiyi Li
- French International School of Hong Kong, Hong Kong SAR, 999000, China
| | - Jin Sun
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yifan Zhang
- Department of Biology, University of California, San Diego, 92093, USA
| | - Lu-Ping Liu
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qingfei Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Jian-Quan Ni
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Merigliano C, Marzio A, Renda F, Somma MP, Gatti M, Vernì F. A Role for the Twins Protein Phosphatase (PP2A-B55) in the Maintenance of Drosophila Genome Integrity. Genetics 2017; 205:1151-1167. [PMID: 28040742 PMCID: PMC5340330 DOI: 10.1534/genetics.116.192781] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/21/2016] [Indexed: 01/14/2023] Open
Abstract
The protein phosphatase 2A (PP2A) is a conserved heterotrimeric enzyme that regulates several cellular processes including the DNA damage response and mitosis. Consistent with these functions, PP2A is mutated in many types of cancer and acts as a tumor suppressor. In mammalian cells, PP2A inhibition results in DNA double strand breaks (DSBs) and chromosome aberrations (CABs). However, the mechanisms through which PP2A prevents DNA damage are still unclear. Here, we focus on the role of the Drosophila twins (tws) gene in the maintenance of chromosome integrity; tws encodes the B regulatory subunit (B/B55) of PP2A. Mutations in tws cause high frequencies of CABs (0.5 CABs/cell) in Drosophila larval brain cells and lead to an abnormal persistence of γ-H2Av repair foci. However, mutations that disrupt the PP4 phosphatase activity impair foci dissolution but do not cause CABs, suggesting that a delayed foci regression is not clastogenic. We also show that Tws is required for activation of the G2/M DNA damage checkpoint while PP4 is required for checkpoint recovery, a result that points to a conserved function of these phosphatases from flies to humans. Mutations in the ATM-coding gene tefu are strictly epistatic to tws mutations for the CAB phenotype, suggesting that failure to dephosphorylate an ATM substrate(s) impairs DNA DSBs repair. In addition, mutations in the Ku70 gene, which do not cause CABs, completely suppress CAB formation in tws Ku70 double mutants. These results suggest the hypothesis that an improperly phosphorylated Ku70 protein can lead to DNA damage and CABs.
Collapse
Affiliation(s)
- Chiara Merigliano
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| | - Antonio Marzio
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| | - Fioranna Renda
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| | - Maria Patrizia Somma
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Sapienza, Università di Roma, 00185, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Sapienza, Università di Roma, 00185, Italy
| | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| |
Collapse
|
11
|
Sekelsky J. DNA Repair in Drosophila: Mutagens, Models, and Missing Genes. Genetics 2017; 205:471-490. [PMID: 28154196 PMCID: PMC5289830 DOI: 10.1534/genetics.116.186759] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/18/2016] [Indexed: 12/22/2022] Open
Abstract
The numerous processes that damage DNA are counterbalanced by a complex network of repair pathways that, collectively, can mend diverse types of damage. Insights into these pathways have come from studies in many different organisms, including Drosophila melanogaster Indeed, the first ideas about chromosome and gene repair grew out of Drosophila research on the properties of mutations produced by ionizing radiation and mustard gas. Numerous methods have been developed to take advantage of Drosophila genetic tools to elucidate repair processes in whole animals, organs, tissues, and cells. These studies have led to the discovery of key DNA repair pathways, including synthesis-dependent strand annealing, and DNA polymerase theta-mediated end joining. Drosophila appear to utilize other major repair pathways as well, such as base excision repair, nucleotide excision repair, mismatch repair, and interstrand crosslink repair. In a surprising number of cases, however, DNA repair genes whose products play important roles in these pathways in other organisms are missing from the Drosophila genome, raising interesting questions for continued investigations.
Collapse
Affiliation(s)
- Jeff Sekelsky
- Department of Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
12
|
Nakanishi T, Kato Y, Matsuura T, Watanabe H. TALEN-mediated homologous recombination in Daphnia magna. Sci Rep 2015; 5:18312. [PMID: 26674741 PMCID: PMC4682128 DOI: 10.1038/srep18312] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/03/2015] [Indexed: 12/31/2022] Open
Abstract
Transcription Activator-Like Effector Nucleases (TALENs) offer versatile tools to engineer endogenous genomic loci in various organisms. We established a homologous recombination (HR)-based knock-in using TALEN in the crustacean Daphnia magna, a model for ecological and toxicological genomics. We constructed TALENs and designed the 67 bp donor insert targeting a point deletion in the eyeless mutant that shows eye deformities. Co-injection of the TALEN mRNA with donor DNA into eggs led to the precise integration of the donor insert in the germ line, which recovered eye deformities in offspring. The frequency of HR events in the germ line was 2% by using both plasmid and single strand oligo DNA with 1.5 kb and 80 nt homology to the target. Deficiency of ligase 4 involved in non-homologous end joining repair did not increase the HR efficiency. Our data represent efficient HR-based knock-in by TALENs in D. magna, which is a promising tool to understand Daphnia gene functions.
Collapse
Affiliation(s)
- Takashi Nakanishi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan.,Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
13
|
Lee HB, Sebo ZL, Peng Y, Guo Y. An optimized TALEN application for mutagenesis and screening in Drosophila melanogaster. CELLULAR LOGISTICS 2015. [PMID: 26196022 PMCID: PMC4501208 DOI: 10.1080/21592799.2015.1023423] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transcription activator-like effector nucleases (TALENs) emerged as powerful tools for locus-specific genome engineering. Due to the ease of TALEN assembly, the key to streamlining TALEN-induced mutagenesis lies in identifying efficient TALEN pairs and optimizing TALEN mRNA injection concentrations to minimize the effort to screen for mutant offspring. Here we present a simple methodology to quantitatively assess bi-allelic TALEN cutting, as well as approaches that permit accurate measures of somatic and germline mutation rates in Drosophila melanogaster. We report that percent lethality from pilot injection of candidate TALEN mRNAs into Lig4 null embryos can be used to effectively gauge bi-allelic TALEN cutting efficiency and occurs in a dose-dependent manner. This timely Lig4-dependent embryonic survival assay also applies to CRISPR/Cas9-mediated targeting. Moreover, the somatic mutation rate of individual G0 flies can be rapidly quantitated using SURVEYOR nuclease and capillary electrophoresis, and germline transmission rate determined by scoring progeny of G0 outcrosses. Together, these optimized methods provide an effective step-wise guide for routine TALEN-mediated gene editing in the fly.
Collapse
Key Words
- TALEN
- TALENs, Transcription activator-like effector nucleases; TALEs, TAL effectors; ZFNs, Zinc Finger Nucleases; CRISPR, Clustered Regularly Interspersed Short Palindromic Repeats; Cas9, CRISPR-associated; RVDs, repeat-variable diresidues; DSBs, double-stranded breaks; NHEJ, non-homologous end joining; HR, homologous recombination; RFLP, restriction fragment length polymorphism; HRMA, high resolution melt analysis.
- engineered endonuclease
- genome engineering
- mutagenesis
- screening
Collapse
Affiliation(s)
- Han B Lee
- Graduate Program in Neurobiology of Disease; Mayo Graduate School; Mayo Clinic ; Rochester, MN, USA
| | | | - Ying Peng
- Department of Biochemistry and Molecular Biology; Mayo Clinic ; Rochester, MN, USA
| | - Yi Guo
- Department of Biochemistry and Molecular Biology; Mayo Clinic ; Rochester, MN, USA ; Division of Gastroenterology and Hepatology; Mayo Clinic ; Rochester, MN, USA
| |
Collapse
|
14
|
Lemaître C, Soutoglou E. DSB (Im)mobility and DNA repair compartmentalization in mammalian cells. J Mol Biol 2014; 427:652-8. [PMID: 25463437 DOI: 10.1016/j.jmb.2014.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Chromosomal translocations are considered as causal in approximately 20% of cancers. Therefore, understanding their mechanisms of formation is crucial in the prevention of carcinogenesis. The first step of translocation formation is the concomitant occurrence of double-strand DNA breaks (DSBs) in two different chromosomes. DSBs can be repaired by different repair mechanisms, including error-free homologous recombination (HR), potentially error-prone non-homologous end joining (NHEJ) and the highly mutagenic alternative end joining (alt-EJ) pathways. Regulation of DNA repair pathway choice is crucial to avoid genomic instability. In yeast, DSBs are mobile and can scan the entire nucleus to be repaired in specialized DNA repair centers or if they are persistent, in order to associate with the nuclear pores or the nuclear envelope where they can be repaired by specialized repair pathways. DSB mobility is limited in mammals; therefore, raising the question of whether the position at which a DSB occurs influences its repair. Here, we review the recent literature addressing this question. We first present the reports describing the extent of DSB mobility in mammalian cells. In a second part, we discuss the consequences of non-random gene positioning on chromosomal translocations formation. In the third part, we discuss the mobility of heterochromatic DSBs in light of our recent data on DSB repair at the nuclear lamina, and finally, we show that DSB repair compartmentalization at the nuclear periphery is conserved from yeast to mammals, further pointing to a role for gene positioning in the outcome of DSB repair. When regarded as a whole, the different studies reviewed here demonstrate the importance of nuclear architecture on DSB repair and reveal gene positioning as an important parameter in the study of tumorigenesis.
Collapse
Affiliation(s)
- Charlène Lemaître
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, CEDEX, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Centre National de Recherche Scientifique, UMR7104, Illkirch, France; Université de Strasbourg, 67404, Illkirch, CEDEX, France
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, CEDEX, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Centre National de Recherche Scientifique, UMR7104, Illkirch, France; Université de Strasbourg, 67404, Illkirch, CEDEX, France.
| |
Collapse
|
15
|
Gaivão I, Rodríguez R, Sierra LM. Use of the Comet Assay to Study DNA Repair in Drosophila melanogaster. GENOTOXICITY AND DNA REPAIR 2014. [DOI: 10.1007/978-1-4939-1068-7_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Mishra M, Sharma A, Shukla AK, Pragya P, Murthy RC, de Pomerai D, Dwivedi UN, Chowdhuri DK. Transcriptomic analysis provides insights on hexavalent chromium induced DNA double strand breaks and their possible repair in midgut cells of Drosophila melanogaster larvae. Mutat Res 2013; 747-748:28-39. [PMID: 23628323 DOI: 10.1016/j.mrfmmm.2013.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 06/02/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a well known mutagen and carcinogen. Since genomic instability due to generation of double strand breaks (DSBs) is causally linked to carcinogenesis, we tested a hypothesis that Cr(VI) causes in vivo generation of DSBs and elicits DNA damage response. We fed repair proficient Drosophila melanogaster (Oregon R(+)) larvae Cr(VI) (20.0μg/ml) mixed food for 24 and 48h and observed a significant (p<0.05) induction of DSBs in their midgut cells after 48h using neutral Comet assay. Global gene expression profiling in Cr(VI)-exposed Oregon R(+) larvae unveiled mis-regulation of DSBs responsive repair genes both after 24 and 48h. In vivo generation of DSBs in exposed Drosophila was confirmed by an increased pH2Av immunostaining along with the activation of cell cycle regulation genes. Analysis of mis-regulated genes grouped under DSB response by GOEAST indicated the participation of non-homologous end joining (NHEJ) DSB repair pathway. We selected two strains, one mutant (ligIV) and another ku80-RNAi (knockdown of ku80), whose functions are essentially linked to NHEJ-DSB repair pathway. As a proof of principle, we compared the DSBs generation in larvae of these two strains with that of repair proficient Oregon R(+). Along with this, DSBs generation in spn-A and okr [essential genes in homologous recombination repair (HR) pathway] mutants was also tested for the possible involvement of HR-DSB repair. A significantly increased DSBs generation in the exposed ku80-RNAi and ligIV (mutant) larvae because of impaired repair, concomitant with an insignificant DSBs generation in okr and spn-A mutant larvae indicates an active participation of NHEJ repair pathway. The study, first of its kind to our knowledge, while providing evidences for in vivo generation of DSBs in Cr(VI) exposed Drosophila larvae, assumes significance for its relevance to higher organisms due to causal link between DSB generation and Cr(VI)-induced carcinogenesis.
Collapse
Affiliation(s)
- Manish Mishra
- Embryotoxicology Section and Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research CSIR-IITR, Lucknow 226001, Uttar Pradesh, India
| | | | | | | | | | | | | | | |
Collapse
|
17
|
The variant histone H2A.V of Drosophila--three roles, two guises. Chromosoma 2013; 122:245-58. [PMID: 23553272 DOI: 10.1007/s00412-013-0409-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/19/2013] [Accepted: 03/21/2013] [Indexed: 12/15/2022]
Abstract
Histone variants play important roles in eukaryotic genome organization, the control of gene expression, cell division and DNA repair. Unlike other organisms that employ several H2A variants for different functions, the parsimonious fruit fly Drosophila melanogaster gets along with just a single H2A variant, H2A.V. Remarkably, H2A.V unites within one molecule features and functions of two different mammalian H2A variants, H2A.Z and H2A.X. Accordingly, H2A.V is involved in diverse functions, as an element of a class of active promoter structure, as a foundation for heterochromatin assembly and as a DNA damage sensor. Here, we comprehensively review the current knowledge of this fascinating histone variant.
Collapse
|
18
|
Silva-Sousa R, López-Panadès E, Piñeyro D, Casacuberta E. The chromosomal proteins JIL-1 and Z4/Putzig regulate the telomeric chromatin in Drosophila melanogaster. PLoS Genet 2012; 8:e1003153. [PMID: 23271984 PMCID: PMC3521665 DOI: 10.1371/journal.pgen.1003153] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 10/24/2012] [Indexed: 12/28/2022] Open
Abstract
Drosophila telomere maintenance depends on the transposition of the specialized retrotransposons HeT-A, TART, and TAHRE. Controlling the activation and silencing of these elements is crucial for a precise telomere function without compromising genomic integrity. Here we describe two chromosomal proteins, JIL-1 and Z4 (also known as Putzig), which are necessary for establishing a fine-tuned regulation of the transcription of the major component of Drosophila telomeres, the HeT-A retrotransposon, thus guaranteeing genome stability. We found that mutant alleles of JIL-1 have decreased HeT-A transcription, putting forward this kinase as the first positive regulator of telomere transcription in Drosophila described to date. We describe how the decrease in HeT-A transcription in JIL-1 alleles correlates with an increase in silencing chromatin marks such as H3K9me3 and HP1a at the HeT-A promoter. Moreover, we have detected that Z4 mutant alleles show moderate telomere instability, suggesting an important role of the JIL-1-Z4 complex in establishing and maintaining an appropriate chromatin environment at Drosophila telomeres. Interestingly, we have detected a biochemical interaction between Z4 and the HeT-A Gag protein, which could explain how the Z4-JIL-1 complex is targeted to the telomeres. Accordingly, we demonstrate that a phenotype of telomere instability similar to that observed for Z4 mutant alleles is found when the gene that encodes the HeT-A Gag protein is knocked down. We propose a model to explain the observed transcriptional and stability changes in relation to other heterochromatin components characteristic of Drosophila telomeres, such as HP1a.
Collapse
Affiliation(s)
- Rute Silva-Sousa
- Institute of Evolutionary Biology, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Elisenda López-Panadès
- Institute of Evolutionary Biology, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - David Piñeyro
- Institute of Evolutionary Biology, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Elena Casacuberta
- Institute of Evolutionary Biology, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| |
Collapse
|
19
|
Abstract
Repair of meiotic double-strand breaks (DSBs) uses the homolog and recombination to yield crossovers while alternative pathways such as nonhomologous end joining (NHEJ) are suppressed. Our results indicate that NHEJ is blocked at two steps of DSB repair during meiotic prophase: first by the activity of the MCM-like protein MEI-218, which is required for crossover formation, and, second, by Rad51-related proteins SPN-B (XRCC3) and SPN-D (RAD51C), which physically interact and promote homologous recombination (HR). We further show that the MCM-like proteins also promote the activity of the DSB repair checkpoint pathway, indicating an early requirement for these proteins in DSB processing. We propose that when a meiotic DSB is formed in the absence of both MEI-218 and SPN-B or SPN-D, a DSB substrate is generated that can enter the NHEJ repair pathway. Indeed, due to its high error rate, multiple barriers may have evolved to prevent NHEJ activity during meiosis.
Collapse
|
20
|
Genetic analysis of zinc-finger nuclease-induced gene targeting in Drosophila. Genetics 2009; 182:641-51. [PMID: 19380480 DOI: 10.1534/genetics.109.101329] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Using zinc-finger nucleases (ZFNs) to cleave the chromosomal target, we have achieved high frequencies of gene targeting in the Drosophila germline. Both local mutagenesis through nonhomologous end joining (NHEJ) and gene replacement via homologous recombination (HR) are stimulated by target cleavage. In this study we investigated the mechanisms that underlie these processes, using materials for the rosy (ry) locus. The frequency of HR dropped significantly in flies homozygous for mutations in spnA (Rad51) or okr (Rad54), two components of the invasion-mediated synthesis-dependent strand annealing (SDSA) pathway. When single-strand annealing (SSA) was also blocked by the use of a circular donor DNA, HR was completely abolished. This indicates that the majority of HR proceeds via SDSA, with a minority mediated by SSA. In flies deficient in lig4 (DNA ligase IV), a component of the major NHEJ pathway, the proportion of HR products rose significantly. This indicates that most NHEJ products are produced in a lig4-dependent process. When both spnA and lig4 were mutated and a circular donor was provided, the frequency of ry mutations was still high and no HR products were recovered. The local mutations produced in these circumstances must have arisen through an alternative, lig4-independent end-joining mechanism. These results show what repair pathways operate on double-strand breaks in this gene targeting system. They also demonstrate that the outcome can be biased toward gene replacement by disabling the major NHEJ pathway and toward simple mutagenesis by interfering with the major HR process.
Collapse
|
21
|
Beumer KJ, Trautman JK, Bozas A, Liu JL, Rutter J, Gall JG, Carroll D. Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci U S A 2008; 105:19821-6. [PMID: 19064913 PMCID: PMC2604940 DOI: 10.1073/pnas.0810475105] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Indexed: 12/11/2022] Open
Abstract
We report very high gene targeting frequencies in Drosophila by direct embryo injection of mRNAs encoding specific zinc-finger nucleases (ZFNs). Both local mutagenesis via nonhomologous end joining (NHEJ) and targeted gene replacement via homologous recombination (HR) have been achieved in up to 10% of all targets at a given locus. In embryos that are wild type for DNA repair, the products are dominated by NHEJ mutations. In recipients deficient in the NHEJ component, DNA ligase IV, the majority of products arise by HR with a coinjected donor DNA, with no loss of overall efficiency in target modification. We describe the application of the ZFN injection procedure to mutagenesis by NHEJ of 2 new genes in Drosophila melanogaster: coil and pask. Pairs of novel ZFNs designed for targets within those genes led to the production of null mutations at each locus. The injection procedure is much more rapid than earlier approaches and makes possible the generation and recovery of targeted gene alterations at essentially any locus within 2 fly generations.
Collapse
Affiliation(s)
- Kelly J. Beumer
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112-5650; and
| | - Jonathan K. Trautman
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112-5650; and
| | - Ana Bozas
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112-5650; and
| | - Ji-Long Liu
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112-5650; and
| | - Joseph G. Gall
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218
| | - Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112-5650; and
| |
Collapse
|
22
|
Siddique HR, Sharma A, Gupta SC, Murthy RC, Dhawan A, Saxena DK, Chowdhuri DK. DNA damage induced by industrial solid waste leachates in Drosophila melanogaster: a mechanistic approach. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:206-216. [PMID: 18240159 DOI: 10.1002/em.20373] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Genomic stability requires that error-free genetic information be transmitted from generation to generation, a process that is dependent upon efficient DNA repair. Industrial leachates which contain mixtures of diverse chemicals are a major environmental concern. The interaction between these chemicals may have synergistic, antagonistic, or simply additive effects on biological systems. In the present study, the Comet assay was used to measure the DNA damage produced by leachates of solid wastes from flashlight battery, pigment, and tanning factories in the midgut cells and brain ganglia of Drosophila melanogaster mutants deficient in DNA repair proteins. Larvae were allowed to feed for 48 or 72 hr on diets containing 0.1, 0.5, and 2.0% (v/v) of the leachates. Physicochemical analysis run on the solid wastes, leachates, and treated larvae detected elevated levels of heavy metals. Leachates produced significantly greater levels of DNA damage in mutant strains mei41 (deficient in cell cycle check point protein), mus201 (deficient in excision repair protein), mus308 (deficient in postreplication repair protein), and rad54 (deficient in double strand break repair protein) than in the OregonR(+) wild-type strain. Larvae of the ligaseIV mutant (deficient in double strand break repair protein) were hypersensitive only to the pigment plant waste leachate. Conversely, the dnase2 mutant (deficient in protein responsible for degrading fragmented DNA) was more sensitive to DNA damage induction from the flashlight battery and tannery waste leachates. Our data demonstrate that repair of DNA damage in organisms exposed to leachates is dependent upon several DNA repair proteins, indicative of the involvement of multiple overlapping repair pathways. The study further suggests the usefulness of the Comet assay for studying the mechanisms of DNA repair in Drosophila.
Collapse
Affiliation(s)
- Hifzur R Siddique
- Embryotoxicology Section, Industrial Toxicology Research Centre, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
23
|
Brough R, Wei D, Leulier S, Lord CJ, Rong YS, Ashworth A. Functional analysis of Drosophila melanogaster BRCA2 in DNA repair. DNA Repair (Amst) 2008; 7:10-9. [PMID: 17822964 DOI: 10.1016/j.dnarep.2007.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/10/2007] [Accepted: 07/13/2007] [Indexed: 11/15/2022]
Abstract
The human BRCA2 cancer susceptibility protein functions in double-strand DNA break repair by homologous recombination and this pathway is conserved in the fly Drosophila melanogaster. Although a potential Drosophila melanogaster BRCA2 orthologue (dmbrca2; CG30169) has been identified by sequence similarity, no functional data addressing the role of this protein in DNA repair is available. Here, we demonstrate that depletion of dmbrca2 from Drosophila cells induces sensitivity to DNA damage induced by irradiation or treatment with hydroxyurea. Dmbrca2 physically interacts with dmrad51 (spnA) and the two proteins become recruited to nuclear foci after DNA damage. A functional assay for DNA repair demonstrated that in flies dmbrca2 plays a role in double-strand break repair by gene conversion. Finally, we show that depletion of dmbrca2 in cells is synthetically lethal with deficiency in other DNA repair proteins including dmparp. The conservation of the function of BRCA2 in Drosophila will allow the analysis of this key DNA repair protein in a genetically tractable organism potentially illuminating mechanisms of carcinogenesis and aiding the development of therapeutic agents.
Collapse
Affiliation(s)
- Rachel Brough
- CRUK Gene Function and Regulation Group, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The study of DNA double-strand break (DSB) repair has been greatly facilitated by the use of rare-cutting endonucleases, which induce a break precisely at their cut sites that can be strategically placed in the genome. We previously established such a system in Drosophila and showed that the yeast I-SceI enzyme cuts efficiently in Drosophila cells and those breaks are effectively repaired by conserved mechanisms. In this study, we determined the genetic requirements for the repair of this I-SceI-induced DSB in the germline. We show that Drosophila Rad51 and Rad54 are both required for homologous repair by gene conversion, but are dispensable for single-strand annealing repair. We provided evidence suggesting that Rad51 is more stringently required than Rad54 for intersister gene conversion. We uncovered a significant role of DNA ligase IV in nonhomologous end joining. We conducted a screen for candidate mutations affecting DSB repair and discovered novel mutations in genes that include mutagen sensitive 206, single-strand annealing reducer, and others. In addition, we demonstrated an intricate balance among different repair pathways in which the cell differentially utilizes repair mechanisms in response to both changes in the genomic environment surrounding the break and deficiencies in one or the other repair pathways.
Collapse
Affiliation(s)
- Debbie S Wei
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
25
|
Acilan C, Potter DM, Saunders WS. DNA repair pathways involved in anaphase bridge formation. Genes Chromosomes Cancer 2007; 46:522-31. [PMID: 17366618 DOI: 10.1002/gcc.20425] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cancer cells frequently exhibit gross chromosomal alterations such as translocations, deletions, or gene amplifications an important source of chromosomal instability in malignant cells. One of the better-documented examples is the formation of anaphase bridges-chromosomes pulled in opposite directions by the spindle apparatus. Anaphase bridges are associated with DNA double strand breaks (DSBs). While the majority of DSBs are repaired correctly, to restore the original chromosome structure, incorrect fusion events also occur leading to bridging. To identify the cellular repair pathways used to form these aberrant structures, we tested a requirement for either of the two major DSB repair pathways in mammalian cells: homologous recombination (HR) and nonhomologous end joining (NHEJ). Our observations show that neither pathway is essential, but NHEJ helps prevent bridges. When NHEJ is compromised, the cell appears to use HR to repair the break, resulting in increased anaphase bridge formation. Moreover, intrinsic NHEJ activity of different cell lines appears to have a positive trend with induction of bridges from DNA damage.
Collapse
Affiliation(s)
- Ceyda Acilan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
26
|
Johnson-Schlitz DM, Flores C, Engels WR. Multiple-pathway analysis of double-strand break repair mutations in Drosophila. PLoS Genet 2007; 3:e50. [PMID: 17432935 PMCID: PMC1851981 DOI: 10.1371/journal.pgen.0030050] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 02/20/2007] [Indexed: 11/19/2022] Open
Abstract
The analysis of double-strand break (DSB) repair is complicated by the existence of several pathways utilizing a large number of genes. Moreover, many of these genes have been shown to have multiple roles in DSB repair. To address this complexity we used a repair reporter construct designed to measure multiple repair outcomes simultaneously. This approach provides estimates of the relative usage of several DSB repair pathways in the premeiotic male germline of Drosophila. We applied this system to mutations at each of 11 repair loci plus various double mutants and altered dosage genotypes. Most of the mutants were found to suppress one of the pathways with a compensating increase in one or more of the others. Perhaps surprisingly, none of the single mutants suppressed more than one pathway, but they varied widely in how the suppression was compensated. We found several cases in which two or more loci were similar in which pathway was suppressed while differing in how this suppression was compensated. Taken as a whole, the data suggest that the choice of which repair pathway is used for a given DSB occurs by a two-stage "decision circuit" in which the DSB is first placed into one of two pools from which a specific pathway is then selected.
Collapse
Affiliation(s)
- Dena M Johnson-Schlitz
- Department of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Carlos Flores
- Department of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - William R Engels
- Department of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Robert V, Bessereau JL. Targeted engineering of the Caenorhabditis elegans genome following Mos1-triggered chromosomal breaks. EMBO J 2006; 26:170-83. [PMID: 17159906 PMCID: PMC1782371 DOI: 10.1038/sj.emboj.7601463] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 11/02/2006] [Indexed: 01/08/2023] Open
Abstract
The Drosophila element Mos1 is a class II transposon, which moves by a 'cut-and-paste' mechanism and can be experimentally mobilized in the Caenorhabditis elegans germ line. Here, we triggered the excision of identified Mos1 insertions to create chromosomal breaks at given sites and further manipulate the broken loci. Double-strand break (DSB) repair could be achieved by gene conversion using a transgene containing sequences homologous to the broken chromosomal region as a repair template. Consequently, mutations engineered in the transgene could be copied to a specific locus at high frequency. This pathway was further characterized to develop an efficient tool--called MosTIC--to manipulate the C. elegans genome. Analysis of DSB repair during MosTIC experiments demonstrated that DSBs could also be sealed by end-joining in the germ line, independently from the evolutionarily conserved Ku80 and ligase IV factors. In conjunction with a publicly available Mos1 insertion library currently being generated, MosTIC will provide a general tool to customize the C. elegans genome.
Collapse
Affiliation(s)
- Valérie Robert
- ENS, Biologie cellulaire de la synapse, Paris, France; Inserm, U789, Paris, France
| | - Jean-Louis Bessereau
- ENS, Biologie cellulaire de la synapse, Paris, France; Inserm, U789, Paris, France
- Ecole Normale Supérieure, INSERM U789, 46 Rue d'Ulm, Paris 75005, France. Tel.: +33 1 44 32 23 05; Fax: +33 1 44 32 36 54; E-mail:
| |
Collapse
|
28
|
Clejan I, Boerckel J, Ahmed S. Developmental modulation of nonhomologous end joining in Caenorhabditis elegans. Genetics 2006; 173:1301-17. [PMID: 16702421 PMCID: PMC1526663 DOI: 10.1534/genetics.106.058628] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homologous recombination and nonhomologous end joining (NHEJ) are important DNA double-strand break repair pathways in many organisms. C. elegans strains harboring mutations in the cku-70, cku-80, or lig-4 NHEJ genes displayed multiple developmental abnormalities in response to radiation-induced DNA damage in noncycling somatic cells. These phenotypes did not result from S-phase, DNA damage, or mitotic checkpoints, apoptosis, or stress response pathways that regulate dauer formation. However, an additional defect in him-10, a kinetochore component, synergized with NHEJ mutations for the radiation-induced developmental phenotypes, suggesting that they may be triggered by mis-segregation of chromosome fragments. Although NHEJ was an important DNA repair pathway for noncycling somatic cells in C. elegans, homologous recombination was used to repair radiation-induced DNA damage in cycling somatic cells and in germ cells at all times. Noncycling germ cells that depended on homologous recombination underwent cell cycle arrest in G2, whereas noncycling somatic cells that depended on NHEJ arrested in G1, suggesting that cell cycle phase may modulate DNA repair during development. We conclude that error-prone NHEJ plays little or no role in DNA repair in C. elegans germ cells, possibly ensuring homology-based double-strand break repair and transmission of a stable genome from one generation to the next.
Collapse
Affiliation(s)
- Iuval Clejan
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | |
Collapse
|
29
|
Chmuzh EV, Shestakova LA, Volkova VS, Zakharov IK. Diversity of mechanisms and functions of enzyme systems of DNA repair in Drosophila melanogaster. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406040028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
End-joining repair of double-strand breaks in Drosophila melanogaster is largely DNA ligase IV independent. Genetics 2005; 168:2067-76. [PMID: 15611176 DOI: 10.1534/genetics.104.033902] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Repair of DNA double-strand breaks can occur by either nonhomologous end joining or homologous recombination. Most nonhomologous end joining requires a specialized ligase, DNA ligase IV (Lig4). In Drosophila melanogaster, double-strand breaks created by excision of a P element are usually repaired by a homologous recombination pathway called synthesis-dependent strand annealing (SDSA). SDSA requires strand invasion mediated by DmRad51, the product of the spn-A gene. In spn-A mutants, repair proceeds through a nonconservative pathway involving the annealing of microhomologies found within the 17-nt overhangs produced by P excision. We report here that end joining of P-element breaks in the absence of DmRad51 does not require Drosophila LIG4. In wild-type flies, SDSA is sometimes incomplete, and repair is finished by an end-joining pathway that also appears to be independent of LIG4. Loss of LIG4 does not increase sensitivity to ionizing radiation in late-stage larvae, but lig4 spn-A double mutants do show heightened sensitivity relative to spn-A single mutants. Together, our results suggest that a LIG4-independent end-joining pathway is responsible for the majority of double-strand break repair in the absence of homologous recombination in flies.
Collapse
|
31
|
Romeijn RJ, Gorski MM, van Schie MA, Noordermeer JN, Mullenders LH, Ferro W, Pastink A. Lig4 and rad54 are required for repair of DNA double-strand breaks induced by P-element excision in Drosophila. Genetics 2004; 169:795-806. [PMID: 15545651 PMCID: PMC1449100 DOI: 10.1534/genetics.104.033464] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Site-specific double-strand breaks (DSBs) were generated in the white gene located on the X chromosome of Drosophila by excision of the w(hd) P-element. To investigate the role of nonhomologous end joining (NHEJ) and homologous recombination (HR) in the repair of these breaks, the w(hd) P-element was mobilized in flies carrying mutant alleles of either lig4 or rad54. The survival of both lig4- and rad54-deficient males was reduced to 25% in comparison to the wild type, indicating that both NHEJ and HR are involved in the repair P-induced gaps in males. Survival of lig4-deficient females was not affected at all, implying that HR using the homologous chromosome as a template can partially compensate for the impaired NHEJ pathway. In rad54 mutant females survival was reduced to 70% after w(hd) excision. PCR analysis indicated that the undamaged homologous chromosome may compensate for the potential loss of the broken chromosome in rad54 mutant females after excision. Molecular analysis of the repair junctions revealed microhomology (2-8 bp)-dependent DSB repair in most products. In the absence of Lig4, the 8-bp target site duplication is used more frequently for repair. Our data indicate the presence of efficient alternative end-joining mechanisms, which partly depend on the presence of microhomology but do not require Lig4.
Collapse
Affiliation(s)
- Ron J Romeijn
- Department of Toxicogenetics, Leiden University Medical Center (LUMC), 2333 AL, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Bi X, Wei SCD, Rong YS. Telomere protection without a telomerase; the role of ATM and Mre11 in Drosophila telomere maintenance. Curr Biol 2004; 14:1348-53. [PMID: 15296751 DOI: 10.1016/j.cub.2004.06.063] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 05/24/2004] [Accepted: 06/14/2004] [Indexed: 10/26/2022]
Abstract
The conserved ATM checkpoint kinase and the Mre11 DNA repair complex play essential and overlapping roles in maintaining genomic integrity. We conducted genetic and cytological studies on Drosophila atm and mre11 knockout mutants and discovered a telomere defect that was more severe than in any of the non-Drosophila systems studied. In mutant mitotic cells, an average of 30% of the chromosome ends engaged in telomere fusions. These fusions led to the formation and sometimes breakage of dicentric chromosomes, thus starting a devastating breakage-fusion-bridge cycle. Some of the fusions depended on DNA ligase IV, which suggested that they occurred by a nonhomologous end-joining (NHEJ) mechanism. Epistasis analyses results suggest that ATM and Mre11 might also act in the same telomere maintenance pathway in metazoans. Since Drosophila telomeres are not added by a telomerase, our findings support an additional role for both ATM and Mre11 in telomere maintenance that is independent of telomerase regulation.
Collapse
Affiliation(s)
- Xiaolin Bi
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
33
|
Busygina V, Suphapeetiporn K, Marek LR, Stowers RS, Xu T, Bale AE. Hypermutability in a Drosophila model for multiple endocrine neoplasia type 1. Hum Mol Genet 2004; 13:2399-408. [PMID: 15333582 DOI: 10.1093/hmg/ddh271] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Multiple endocrine neoplasia type I (MEN1) is an autosomal dominant cancer predisposition syndrome, the gene for which encodes a nuclear protein, menin. The biochemical function of this protein has not been completely elucidated, but several studies have shown a role in transcriptional modulation through recruitment of histone deacetylase. The mechanism by which MEN1 mutations cause tumorigenesis is unknown. The Drosophila homolog of MEN1, Mnn1, encodes a protein 50% identical to human menin. In order to further elucidate the function of MEN1, we generated a null allele of this gene in Drosophila and showed that homozygous inactivation results in morphologically normal flies that are hypersensitive to ionizing radiation and two DNA cross-linking agents, nitrogen mustard and cisplatinum. The spectrum of agents to which mutant flies are sensitive and analysis of the molecular mechanisms of this sensitivity suggest a defect in nucleotide excision repair. Drosophila Mnn1 mutants have an elevated rate of both sporadic and DNA damage-induced mutations. In a genetic background heterozygous for lats, a Drosophila and vertebrate tumor suppressor gene, homozygous inactivation of Mnn1 enhanced somatic mutation of the second allele of lats and formation of multiple primary tumors. Our data indicate that Mnn1 is a novel member of the class of autosomal dominant cancer genes that function in maintenance of genomic integrity, similar to the BRCA and HNPCC genes.
Collapse
Affiliation(s)
- Valeria Busygina
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520-8005, USA
| | | | | | | | | | | |
Collapse
|