1
|
Létocart AJ, Svensson RB, Mabesoone F, Charleux F, Marin F, Dermigny Q, Magnusson SP, Couppé C, Grosset JF. Structure and function of Achilles and patellar tendons following moderate slow resistance training in young and old men. Eur J Appl Physiol 2024; 124:2707-2723. [PMID: 38649478 DOI: 10.1007/s00421-024-05461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/05/2024] [Indexed: 04/25/2024]
Abstract
The aim of this study was to investigate the effect of aging and resistance training with a moderate load on the size and mechanical properties of the patellar (PT) and Achilles tendon (AT) and their associated aponeuroses; medial gastrocnemius (MG) and vastus lateralis (VL). Young (Y55; 24.8 ± 3.8 yrs, n = 11) and old men (O55; 70.0 ± 4.6 yrs, n = 13) were assigned to undergo a training program (12 weeks; 3 times/week) of moderate slow resistance training [55% of one repetition maximum (RM)] of the triceps surae and quadriceps muscles. Tendon dimensions were assessed using 1.5 T magnetic resonance imaging before and after 12 weeks. AT and PT cross sectional area (CSA) were determined every 10% of tendon length. Mechanical properties of the free AT, MG aponeurosis, PT, and VL aponeurosis were assessed using ultrasonography (deformation) and tendon force measurements. CSA of the AT but not PT was greater in O55 compared with Y55. At baseline, mechanical properties were generally lower in O55 than Y55 for AT, MG aponeurosis and VL aponeurosis (Young's modulus) but not for PT. CSA of the AT and PT increased equally in both groups following training. Further, for a given force, stiffness and Young's modulus also increased equally for VL aponeurosis and AT, for boths groups. The present study highlights that except for the PT, older men have lower tendon (AT, MG aponeurosis, and VL aponeurosis) mechanical properties than young men and 12-weeks of moderate slow resistance training appears sufficient to improve tendon size and mechanical adaptations in both young and older men. New and Noteworthy: These novel findings suggest that short-term moderate slow resistance training induces equal improvements in tendon size and mechanics regardless of age.
Collapse
Affiliation(s)
- Adrien J Létocart
- UMR CNRS 7338 Biomécanique et Bioingénierie, Sorbonne Universités, Université de Technologie de Compiègne, 60205, Compiègne Cedex, France.
| | - René B Svensson
- Department of Physical and Occupational Therapy, Bispebjerg-Frederiksberg Hospitals, Copenhagen, Denmark
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Frédéric Marin
- UMR CNRS 7338 Biomécanique et Bioingénierie, Sorbonne Universités, Université de Technologie de Compiègne, 60205, Compiègne Cedex, France
| | - Quentin Dermigny
- UMR CNRS 7338 Biomécanique et Bioingénierie, Sorbonne Universités, Université de Technologie de Compiègne, 60205, Compiègne Cedex, France
| | - S Peter Magnusson
- Department of Physical and Occupational Therapy, Bispebjerg-Frederiksberg Hospitals, Copenhagen, Denmark
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Couppé
- Department of Physical and Occupational Therapy, Bispebjerg-Frederiksberg Hospitals, Copenhagen, Denmark
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Jean-François Grosset
- UMR CNRS 7338 Biomécanique et Bioingénierie, Sorbonne Universités, Université de Technologie de Compiègne, 60205, Compiègne Cedex, France.
| |
Collapse
|
2
|
Adam NC, Smith CR, Herzog W, Amis AA, Arampatzis A, Taylor WR. In Vivo Strain Patterns in the Achilles Tendon During Dynamic Activities: A Comprehensive Survey of the Literature. SPORTS MEDICINE - OPEN 2023; 9:60. [PMID: 37466866 DOI: 10.1186/s40798-023-00604-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 07/02/2023] [Indexed: 07/20/2023]
Abstract
Achilles' tendon (AT) injuries such as ruptures and tendinopathies have experienced a dramatic rise in the mid- to older-aged population. Given that the AT plays a key role at all stages of locomotion, unsuccessful rehabilitation after injury often leads to long-term, deleterious health consequences. Understanding healthy in vivo strains as well as the complex muscle-tendon unit interactions will improve access to the underlying aetiology of injuries and how their functionality can be effectively restored post-injury. The goals of this survey of the literature with a systematic search were to provide a benchmark of healthy AT strains measured in vivo during functional activities and identify the sources of variability observed in the results. Two databases were searched, and all articles that provided measured in vivo peak strains or the change in strain with respect to time were included. In total, 107 articles that reported subjects over the age of 18 years with no prior AT injury and measured while performing functional activities such as voluntary contractions, walking, running, jumping, or jump landing were included in this review. In general, unclear anatomical definitions of the sub-tendon and aponeurosis structures have led to considerable confusion in the literature. MRI, ultrasound, and motion capture were the predominant approaches, sometimes coupled with modelling. The measured peak strains increased from 4% to over 10% from contractions, to walking, running, and jumping, in that order. Importantly, measured AT strains were heavily dependent on measurement location, measurement method, measurement protocol, individual AT geometry, and mechanical properties, as well as instantaneous kinematics and kinetics of the studied activity. Through a comprehensive review of approaches and results, this survey of the literature therefore converges to a united terminology of the structures and their common underlying characteristics and presents the state-of-knowledge on their functional strain patterns.
Collapse
Affiliation(s)
- Naomi C Adam
- Institute for Biomechanics, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Colin R Smith
- Institute for Biomechanics, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, Calgary, Canada
| | - Andrew A Amis
- Department of Mechanical Engineering, Imperial College London, London, UK
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, and Berlin School of Movement Science, Berlin, Germany
| | - William R Taylor
- Institute for Biomechanics, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
3
|
Phillips KC, Noh B, Gage M, Yoon T. Neural and muscular alterations of the plantar flexors in middle-aged women. Exp Gerontol 2021; 159:111674. [PMID: 34954012 DOI: 10.1016/j.exger.2021.111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Considering the large population of middle-aged adults, it is important to understand the age-related change in lower limb muscles and the possible mechanisms before old age (> 65 years old). The purpose of this study was to investigate age-related neural and muscular alterations of the plantar flexors in young and middle-aged women. METHODS Twenty two middle-aged (54.0 ± 5.8 yrs) and 17 young (21.8 ± 1.4 yrs) recreationally active women performed rapid maximal voluntary isometric contractions (MVIC) of the plantar flexors. Absolute and normalized rate of torque development (RTD) and electromyography (EMG) were examined. Electrical stimulation was used to examine voluntary activation and contractile properties of the muscle. Ultrasonography was used to examine medial and lateral gastrocnemius muscle thickness and pennation angle. A 6-minute walk and sit to stand task were also performed by all participants. RESULTS The middle-aged women had significantly lower MVIC torque (141 ± 49 vs. 109 ± 30 Nm, P = 0.031), absolute RTD (753.0 ± 313.6 vs. 423.0 ± 156.1 Nm/s, P = 0.001), and normalized peak RTD (554.0 ± 191.0 vs. 388.0 ± 91.9% MVIC/s, P = 0.001). Normalized early RTD0-50 and late RTD100-200, voluntary activation, and EMG were similar between groups. Resting twitch data showed that time to peak (124.0 ± 20.4 vs. 143.0 ± 16.7 ms, P = 0.002) and half relaxation time (73.1 ± 15.2 vs. 107.0 ± 28.2 ms, P < 0.001) was significantly faster for the young women. Thickness was greater in the lateral gastrocnemius (1.6 ± 0.2 vs. 1.4 ± 0.2 cm, P = 0.006) for the young women. Pennation angle of both muscles were greater for the young women (15.8 ± 3.9 vs. 13.1 ± 2.7 degrees, P < 0.05). Performance of the 6-minute walk was similar between groups, however, the young women performed more repetitions during the sit to stand task (25.6 ± 6.7 vs. 18.3 ± 4.7 reps, P < 0.001). CONCLUSION Compared to young women, middle-age women were shown to have lower MVIC torque, peak RTD, and functional performance. Muscle architecture and contractile properties are affected by aging.
Collapse
Affiliation(s)
- Kevin C Phillips
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton 49931, USA; Exercise Science Program, Brevard College, Brevard 28712, USA
| | - Byungjoo Noh
- Department of Kinesiology, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Matthew Gage
- Career Program, Gogebic Community College, Houghton 49931, USA
| | - Tejin Yoon
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton 49931, USA; Department of Physical Education, Kangwon National University, Chuncheon 24341, Republic of Korea; Interdisciplinary Program in Biohealth-machinery Convergence Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
4
|
Epro G, König M, James D, Lambrianides Y, Werth J, Hunter S, Karamanidis K. Evidence that ageing does not influence the uniformity of the muscle-tendon unit adaptation in master sprinters. J Biomech 2021; 120:110364. [PMID: 33743395 DOI: 10.1016/j.jbiomech.2021.110364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 01/18/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Differences in the adaptation processes between muscle and tendon in response to mechanical loading can lead to non-uniform mechanical properties within the muscle-tendon unit (MTU), potentially increasing injury risk. The current study analysed the mechanical properties of the triceps surae (TS) MTU in 10 young (YS; 22 ± 3 yrs) and 10 older (OS; age 65 ± 8 yrs; i.e. master) (inter)national level sprinters and 11 young recreationally active adults (YC; 23 ± 3 yrs) to detect possible non-uniformities in muscle and tendon adaptation due to habitual mechanical loading and ageing. Triceps surae muscle strength, tendon stiffness and maximal tendon strain were assessed in both legs during maximal voluntary isometric plantarflexion contractions via dynamometry and ultrasonography. Irrespective of the leg, OS and YC in comparison to YS demonstrated significantly (P < 0.05) lower TS muscle strength and tendon stiffness, with no differences between OS and YC. Furthermore, no group differences were detected in the maximal tendon strain (average of both legs: OS 3.7 ± 0.8%, YC 4.4 ± 0.8% and YS 4.3 ± 0.9%) as well as in the inter-limb symmetry indexes in muscle strength, tendon stiffness and maximal tendon strain (range across groups: -5.8 to 4.9%; negative value reflects higher value for the non-preferred leg). Thus, the findings provide no clear evidence for a disruption in the TS MTU uniformity in master sprinters, demonstrating that ageing tendons can maintain their integrity to meet the increased functional demand due to elite sports.
Collapse
Affiliation(s)
- G Epro
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom.
| | - M König
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| | - D James
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| | - Y Lambrianides
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| | - J Werth
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| | - S Hunter
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| | - K Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| |
Collapse
|
5
|
Létocart AJ, Mabesoone F, Charleux F, Couppé C, Svensson RB, Marin F, Magnusson SP, Grosset JF. Muscles adaptation to aging and training: architectural changes - a randomised trial. BMC Geriatr 2021; 21:48. [PMID: 33441116 PMCID: PMC7807501 DOI: 10.1186/s12877-020-02000-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022] Open
Abstract
Background To investigate how anatomical cross-sectional area and volume of quadriceps and triceps surae muscles were affected by ageing, and by resistance training in older and younger men, in vivo. Methods The old participants were randomly assigned to moderate (O55, n = 13) or high-load (O80, n = 14) resistance training intervention (12 weeks; 3 times/week) corresponding to 55% or 80% of one repetition maximum, respectively. Young men (Y55, n = 11) were assigned to the moderate-intensity strengthening exercise program. Each group received the exact same training volume on triceps surae and quadriceps group (Reps x Sets x Intensity). The fitting polynomial regression equations for each of anatomical cross-sectional area-muscle length curves were used to calculate muscle volume (contractile content) before and after 12 weeks using magnetic resonance imaging scans. Results Only Rectus femoris and medial gastrocnemius muscle showed a higher relative anatomical cross-sectional area in the young than the elderly on the proximal end. The old group displayed a higher absolute volume of non-contractile material than young men in triceps surae (+ 96%). After training, Y55, O55 and O80 showed an increase in total quadriceps (+ 4.3%; + 6.7%; 4.2% respectively) and triceps surae (+ 2.8%; + 7.5%; 4.3% respectively) volume. O55 demonstrated a greater increase on average gains compared to Y55, while no difference between O55 and O80 was observed. Conclusions Muscle loss with aging is region-specific for some muscles and uniform for others. Equivalent strength training volume at moderate or high intensities increased muscle volume with no differences in muscle volume gains for old men. These data suggest that physical exercise at moderate intensity (55 to 60% of one repetition maximum) can reverse the aging related loss of muscle mass. Trial registration NCT03079180 in ClinicalTrials.gov. Registration date: March 14, 2017.
Collapse
Affiliation(s)
- Adrien J Létocart
- Sorbonne Universités, Biomécanique et Bioingénierie, Université de Technologie de Compiègne, UMR CNRS 7338, Compiègne, France.
| | | | | | - Christian Couppé
- Institute of Sports Medicine Copenhagen / Dept of Physical Therapy, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - René B Svensson
- Institute of Sports Medicine Copenhagen / Dept of Physical Therapy, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frédéric Marin
- Sorbonne Universités, Biomécanique et Bioingénierie, Université de Technologie de Compiègne, UMR CNRS 7338, Compiègne, France
| | - S Peter Magnusson
- Institute of Sports Medicine Copenhagen / Dept of Physical Therapy, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jean-François Grosset
- Sorbonne Universités, Biomécanique et Bioingénierie, Université de Technologie de Compiègne, UMR CNRS 7338, Compiègne, France
| |
Collapse
|
6
|
Wu R, Ditroilo M, Delahunt E, De Vito G. Age Related Changes in Motor Function (II). Decline in Motor Performance Outcomes. Int J Sports Med 2020; 42:215-226. [PMID: 33137831 DOI: 10.1055/a-1265-7073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Age-related impairments in motor performance are caused by a deterioration in mechanical and neuromuscular functions, which have been investigated from the macro-level of muscle-tendon unit to the micro-level of the single muscle fiber. When compared to the healthy young skeletal muscle, aged skeletal muscle is: (1) weaker, slower and less powerful during the performance of voluntary contractions; (2) less steady during the performance of isometric contractions, particularly at low levels of force; and (3) less susceptible to fatigue during the performance of sustained isometric contractions, but more susceptible to fatigue during the performance of high-velocity dynamic contractions. These impairments have been discussed to be mainly the result of: a) loss of muscle mass and selective atrophy of type II muscle fibers; b) altered tendon mechanical properties (decreased tendon stiffness); c) reduced number and altered function of motor units; d) slower muscle fiber shortening velocity; e) increased oscillation in common synaptic input to motor neurons; and f) altered properties and activity of sarcoplasmic reticulum. In this second part of a two-part review we have detailed the age-related impairments in motor performance with a reference to the most important mechanical and neuromuscular contributing factors.
Collapse
Affiliation(s)
- Rui Wu
- School of Public Health Physiotherapy and Sports Science, University College Dublin, Dublin
| | - Massimiliano Ditroilo
- School of Public Health Physiotherapy and Sports Science, University College Dublin, Dublin
| | - Eamonn Delahunt
- School of Public Health Physiotherapy and Sports Science, University College Dublin, Dublin
| | | |
Collapse
|
7
|
Dai G, Li Y, Liu J, Zhang C, Chen M, Lu P, Rui Y. Higher BMP Expression in Tendon Stem/Progenitor Cells Contributes to the Increased Heterotopic Ossification in Achilles Tendon With Aging. Front Cell Dev Biol 2020; 8:570605. [PMID: 33102476 PMCID: PMC7546413 DOI: 10.3389/fcell.2020.570605] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
Although the mineralization in tendon tissue has been reported in a series of aging and disease models, the underlying mechanisms remain unknown. This study aimed to describe the appearance of heterotopic ossification in rat Achilles tendon and further verify whether this tissue metaplasia is related to the enhanced osteogenic differentiation of tendon stem/progenitor cells (TSPCs) owing to the higher expression of bone morphogenetic proteins (BMP-2/4/7) with aging. The male SD rats, aged 4, 8, and 20 months (M), were used. The analyses of ossification and BMP expression in tendon were tested by radiological view (X-ray and CT), histological staining [hematoxylin and eosin (HE), Alcian blue, and Alizarin red], immunohistochemistry, and Western blot. The osteogenic differentiation potential and BMP expression of TSPCs were examined by Alizarin red S staining and real-time PCR. TSPCs were treated with BMP-2 or noggin, and the osteogenic differentiation potential was also examined. X-ray and CT showed the appearance of heterotopic ossification in tendon, and the volume and density of ossification was increased with aging. Histological staining showed the appearance of calcified region surrounded by chondrocyte-like cells and the increased osteogenesis-related gene and BMP expression in ossified tendon with aging. Moreover, the osteogenic differentiation potential and BMP expression in TSPCs isolated from ossified tendon were increased with aging. Additionally, BMP-2 increased the calcium nodule formation and osteogenesis-related gene expression in TSPCs. The addition of noggin inhibited BMP-induced enhancement of osteogenic differentiation. Thus, these findings suggested that the enhanced osteogenic differentiation of TSPCs contributes to the increased heterotopic ossification in aged tendon, which might be induced by the higher expression of BMPs with aging.
Collapse
Affiliation(s)
- Guangchun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yingjuan Li
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Junyan Liu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Cheng Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Minhao Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Panpan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
- China Orthopedic Regenerative Medicine Group, Hangzhou, China
| |
Collapse
|
8
|
Claudon L, Desbrosses K, Gilles MA, Pichené-Houard A, Remy O, Wild P. Temporal leeway: can it help to reduce biomechanical load for older workers performing repetitive light assembly tasks? APPLIED ERGONOMICS 2020; 86:103081. [PMID: 32174446 DOI: 10.1016/j.apergo.2020.103081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Current industrial production systems allow assembly of customised products which include additional elements distinguishing them from a reference model. This customisation can result in significant additional time constraints which compel workers to complete their tasks faster, which may pose problems for older workers. The objective of this laboratory study was to investigate the impact of restrictive or flexible pacing during assembly of customised products among groups of younger and older participants. The data gathered were used to analyse cycle-time, assembly performance, muscular load, and kinematic adaptations. The flexible pacing condition was found to improve production performance, increasing customised assembly cycle-time and reducing biomechanical load, for both young and older participants. However, as the task required fine manual dexterity, older participants were subjected to a higher biomechanical load, even in the flexible pacing scenario. These results should encourage assembly-line designers to allow flexible time constraints as much as possible and to be particularly attentive to the needs of older workers.
Collapse
Affiliation(s)
- L Claudon
- Working Life Department, Physiology - Movement - Work Laboratory, INRS (Institut National de Recherche et de Sécurité), 1 rue du Morvan, CS 60027, F-54519, Vandœuvre cedex, France
| | - K Desbrosses
- Working Life Department, Physiology - Movement - Work Laboratory, INRS (Institut National de Recherche et de Sécurité), 1 rue du Morvan, CS 60027, F-54519, Vandœuvre cedex, France
| | - M A Gilles
- Working Life Department, Physiology - Movement - Work Laboratory, INRS (Institut National de Recherche et de Sécurité), 1 rue du Morvan, CS 60027, F-54519, Vandœuvre cedex, France.
| | - A Pichené-Houard
- Working Life Department, Physiology - Movement - Work Laboratory, INRS (Institut National de Recherche et de Sécurité), 1 rue du Morvan, CS 60027, F-54519, Vandœuvre cedex, France
| | - O Remy
- Working Life Department, Physiology - Movement - Work Laboratory, INRS (Institut National de Recherche et de Sécurité), 1 rue du Morvan, CS 60027, F-54519, Vandœuvre cedex, France
| | - P Wild
- Working Life Department, Physiology - Movement - Work Laboratory, INRS (Institut National de Recherche et de Sécurité), 1 rue du Morvan, CS 60027, F-54519, Vandœuvre cedex, France
| |
Collapse
|
9
|
Mechanical properties and collagen fiber orientation of tendon in young and elderly. Clin Biomech (Bristol, Avon) 2020; 71:5-10. [PMID: 31675513 DOI: 10.1016/j.clinbiomech.2019.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/09/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The purpose of this study was to investigate differences in the mechanical properties and collagen fiber orientation of tendon structures between young and elderly groups. METHODS The mechanical properties of tendon structures in medial gastrocnemius muscle were measured using ultrasonography during ramp and ballistic contractions. Tendon collagen fiber orientation was estimated from coefficient of variation (CV) of echogenicity on transverse ultrasonic images of Achilles tendon. FINDINGS Differences in elongation between ramp and ballistic contractions of elderly were significantly smaller than those of young group at 20-80% of MVC. During ramp contraction, hysteresis of elderly was significantly higher than that of young, whereas no difference in hysteresis during ballistic contraction was found between the two groups. Difference in hysteresis between ramp and ballistic contractions of elderly tended to be lower than that of young group. Mean echogenicity of elderly was significantly higher than that of young group, whereas no difference in CV of echogenicity was found between the two groups. INTERPRETATION These results suggest that smaller differences in elongation and hysteresis between ramp and ballistic contractions of elderly may be related to decreased water content within tendons. Furthermore, no difference in collagen fiber orientation of tendons was noted between the two groups.
Collapse
|
10
|
Ishikawa A, Otaka Y, Kamisako M, Suzuki T, Miyata C, Tsuji T, Matsumoto H, Kato J, Mori T, Okamoto S, Liu M. Factors affecting lower limb muscle strength and cardiopulmonary fitness after allogeneic hematopoietic stem cell transplantation. Support Care Cancer 2018; 27:1793-1800. [PMID: 30155567 PMCID: PMC6449287 DOI: 10.1007/s00520-018-4433-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/20/2018] [Indexed: 12/04/2022]
Abstract
Purpose The aim of this study is to clarify the factors affecting physical function after allogeneic hematopoietic stem cell transplantation (HSCT). Methods We retrospectively analyzed 88 patients (median age, 44.5 years) who received allogeneic HSCT. Leg extension torque and peak oxygen consumption (VO2) were evaluated before and after HSCT. Patient factors (age, sex, underlying diseases, hemoglobin, serum albumin, and Karnofsky performance status score before transplant) and transplant factors (conditioning regimen, days to neutrophil engraftment, grades of acute graft-versus-host disease [GVHD], infections, and the interval between pre- and post-evaluation) were collected via chart review, and were used for correlational and comparison analyses in order to identify the variables associated with reduced post-HSCT leg extension torque and peak VO2. Stepwise multiple regression analyses for post-HSCT leg extension torque and post-HSCT peak VO2 were performed using age, sex, and the related variables with a p value < 0.2 in the correlational and comparison analyses. Results Leg extension torque and peak VO2 were significantly reduced after HSCT (p < 0.001). Pre-HSCT leg extension torque, grades of acute GVHD, age, and the interval between pre- and post-evaluation were identified as significant factors associated with reduced post-HSCT leg extension torque. However, none of these factors were significantly associated with reduced post-HSCT peak VO2, and only its pre-transplant value was identified as a significant factor. Conclusions These findings suggest that improvements in muscle strength and cardiopulmonary fitness before HSCT are crucial for maintaining post-treatment physical function, especially in elderly individuals with acute GVHD requiring a long-term stay in a protective environment.
Collapse
Affiliation(s)
- Aiko Ishikawa
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Otaka
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Aichi, Japan.
| | - Michiyo Kamisako
- Department of Rehabilitation Medicine, Keio University Hospital, Tokyo, Japan
| | - Tetsuya Suzuki
- Department of Rehabilitation Medicine, Keio University Hospital, Tokyo, Japan
| | - Chieko Miyata
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuya Tsuji
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hideo Matsumoto
- Institute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jun Kato
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takehiko Mori
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Yamada Y. Muscle Mass, Quality, and Composition Changes During Atrophy and Sarcopenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:47-72. [PMID: 30390247 DOI: 10.1007/978-981-13-1435-3_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscle mass (SMM) and muscle strengh reach their peak in 20s to 40s of age in human life and then decrease with advancing age. The decrease rate of muscle strength or power was twice to four times as large as that of the SMM. Thus, the normalized muscle force (muscle strength divided by SMM) also decreases in aging. It depends on the number of factors in skeletal muscle tissues and neuromuscular system. In human study, SMM cannot be measured directly without dissection so that all of the methodologies are indirect methods to assess SMM, even computing tomography or magnetic resonance imaging. Dual-energy X-ray absorptiometry, ultrasonography, anthropometry, and bioelectrical impedance analysis (BIA) are used as secondary indirect methods to estimate SMM. Recent researches show muscle composition changes in aging, and in particular, the ratio of muscle cell mass (MCM) against SMM decrease and relative expansion of extracellular water (ECW) and extracellular space is observed with advancing age and/or decrease of physical function. The intracellular water (ICW) and ECW estimated by segmental bioelectrical impedance spectroscopy or multifrequency BIA are good biomarkers of the ratio of MCM against SMM in limbs. The BIS and other state-of-the-art technology for assessment of muscle mass, quality, and composition are useful to fully understand the muscle atrophy in a living organism.
Collapse
Affiliation(s)
- Yosuke Yamada
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition Tokyo, Tokyo, Japan.
| |
Collapse
|
12
|
Evaluation of microstructurally motivated constitutive models to describe age-dependent tendon healing. Biomech Model Mechanobiol 2017; 17:793-814. [PMID: 29234987 PMCID: PMC5948310 DOI: 10.1007/s10237-017-0993-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/30/2017] [Indexed: 12/27/2022]
Abstract
Tendon injuries are common to all ages. Injured tendons typically do not recover full functionality. The amount and organization of tendon constituents dictate their mechanical properties. The impact of changes in these constituents during (patho)physiologic processes (e.g., aging and healing) are not fully understood. Toward this end, microstructurally motivated strain energy functions (SEFs) offer insight into underlying mechanisms of age-dependent healing. Several SEFs have been adapted for tendon; however, most are phenomenological. Therefore, the aims of this study are: (1) evaluate the descriptive capability of SEFs in age-dependent murine patellar tendon healing and (2) identify a SEF for implementation in a growth and remodeling (G&R) model. To accomplish these aims, models were fitted to patellar tendon tensile data from multiple age groups and post-injury timepoints. Model sensitivity to parameters and the determinability of the parameters were assessed. A two-way analysis of variance was used to identify changes in parameters and the feasibility of implementing each model into a G&R model is discussed. The evaluated SEFs exhibited adequate descriptive capability. Parameter determinability and sensitivity analysis, however, highlighted the need for additional data to inform and validate the models to increase physiologic relevance and enable G&R model formulation to determine underlying mechanisms of age-dependent healing. This work, as a first, evaluated changes in tendon mechanical properties both as functions of age and injury in an age-dependent manner using microstructurally motivated models, highlights inherent dependencies between parameters of widely used hyperelastic models, and identified unique post-injury behavior by the aging group compared to the mature and aged groups.
Collapse
|
13
|
Gilles MA, Guélin JC, Desbrosses K, Wild P. Motor adaptation capacity as a function of age in carrying out a repetitive assembly task at imposed work paces. APPLIED ERGONOMICS 2017; 64:47-55. [PMID: 28610813 DOI: 10.1016/j.apergo.2017.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
The working population is getting older. Workers must adapt to changing conditions to respond to the efforts required by the tasks they have to perform. In this laboratory-based study, we investigated the capacities of motor adaptation as a function of age and work pace. Two phases were identified in the task performed: a collection phase, involving dominant use of the lower limbs; and an assembly phase, involving bi-manual motor skills. Results showed that senior workers were mainly limited during the collection phase, whereas they had less difficulty completing the assembly phase. However, senior workers did increase the vertical force applied while assembling parts, whatever the work pace. In younger and middle-aged subjects, vertical force was increased only for the faster pace. Older workers could adapt to perform repetitive tasks under different time constraints, but adaptation required greater effort than for younger workers. These results point towards a higher risk of developing musculoskeletal disorders among seniors.
Collapse
Affiliation(s)
- Martine Annie Gilles
- Working Life Department, INRS Lorraine, 1, Rue Du Morvan, CS60027, 54 519 Vandœuvre Cedex, France.
| | - Jean-Charles Guélin
- Working Life Department, INRS Lorraine, 1, Rue Du Morvan, CS60027, 54 519 Vandœuvre Cedex, France
| | - Kévin Desbrosses
- Working Life Department, INRS Lorraine, 1, Rue Du Morvan, CS60027, 54 519 Vandœuvre Cedex, France
| | - Pascal Wild
- Working Life Department, INRS Lorraine, 1, Rue Du Morvan, CS60027, 54 519 Vandœuvre Cedex, France
| |
Collapse
|
14
|
Epro G, Mierau A, Doerner J, Luetkens JA, Scheef L, Kukuk GM, Boecker H, Maganaris CN, Brüggemann GP, Karamanidis K. The Achilles tendon is mechanosensitive in older adults: adaptations following 14 weeks versus 1.5 years of cyclic strain exercise. ACTA ACUST UNITED AC 2017; 220:1008-1018. [PMID: 28298464 DOI: 10.1242/jeb.146407] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/19/2016] [Indexed: 01/25/2023]
Abstract
The aging musculoskeletal system experiences a general decline in structure and function, characterized by a reduced adaptability to environmental stress. We investigated whether the older human Achilles tendon (AT) demonstrates mechanosensitivity (via biomechanical and morphological adaptations) in response to long-term mechanical loading. Thirty-four female adults (60-75 years) were allocated to either a medium-term (14 weeks; N=21) high AT strain cyclic loading exercise intervention or a control group (N=13), with 12 participants continuing with the intervention for 1.5 years. AT biomechanical properties were assessed using ultrasonography and dynamometry. Tendon cross-sectional area (CSA) was investigated by means of magnetic resonance imaging. A 22% exercise-related increment in ankle plantarflexion joint moment, along with increased AT stiffness (598.2±141.2 versus 488.4±136.9 N mm-1 at baseline), Young's modulus (1.63±0.46 versus 1.37±0.39 GPa at baseline) and about 6% hypertrophy along the entire free AT were identified after 14 weeks of strength training, with no further improvement after 1.5 years of intervention. The aging AT appears to be capable of increasing its stiffness in response to 14 weeks of mechanical loading exercise by changing both its material and dimensional properties. Continuing exercise seems to maintain, but not cause further adaptive changes in tendons, suggesting that the adaptive time-response relationship of aging tendons subjected to mechanical loading is nonlinear.
Collapse
Affiliation(s)
- Gaspar Epro
- Institute of Movement and Sport Gerontology, German Sport University Cologne, 50933 Cologne, Germany .,Institute of Biomechanics and Orthopaedics, German Sport University Cologne, 50933 Cologne, Germany.,Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| | - Andreas Mierau
- Institute of Movement and Neurosciences, German Sport University Cologne, 50933 Cologne, Germany
| | - Jonas Doerner
- Department of Radiology, University of Bonn, 53127 Bonn, Germany
| | | | - Lukas Scheef
- Department of Radiology, University of Bonn, 53127 Bonn, Germany
| | - Guido M Kukuk
- Department of Radiology, University of Bonn, 53127 Bonn, Germany
| | - Henning Boecker
- Department of Radiology, University of Bonn, 53127 Bonn, Germany
| | - Constantinos N Maganaris
- Research Institute for Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Gert-Peter Brüggemann
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, 50933 Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Kiros Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| |
Collapse
|
15
|
Borges VS, Silva NS, Malta AC, Xavier NC, Bernardes LES. Falls, muscle strength, and functional abilities in community-dwelling elderly women. FISIOTERAPIA EM MOVIMENTO 2017. [DOI: 10.1590/1980-5918.030.002.ao16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract Introduction: Falls are among the most common and serious problems facing elderly women. Falling is associated with increased mortality, morbidity, reduced functioning, loss of independence and hospitalization. Objective: The aim of this study was to investigate the association among fear of falling, muscle strength, and functional abilities in community-dwelling elderly women. Methods: Forty-nine elderly women (70.57 ± 5.59 years) participated in this study. Records of falls, self-efficacy associated with falls (FES-I Brazil), functional abilities (the Timed Up and Down Stairs test [TUDS] and the Timed Up and Go test [TUG]), lower limb muscle strength (knee extensors and ankle plantar flexors), and hand grip strength were investigated as variables of interest. Descriptive statistics, the one-way ANOVA, and linear regression tests were used to analyze the association between fear of falling and falls with other variables (α = 0.05). Results: Elderly women who presented records of falls within the last year had lesser strength of knee extensors and plantar flexors (p ≤. 05). Those who had low self-efficacy associated with falls presented lower strength of knee extensors (p ≤. 01). Variables associated with functional abilities (r = 0.70) and lower limb strength (r = 0.53) showed a positive correlation (p ≤. 01). Conclusion: The concern with the fear of falling and falls may be negative effects caused by lower limb muscle weakness.
Collapse
|
16
|
Svensson RB, Heinemeier KM, Couppé C, Kjaer M, Magnusson SP. Effect of aging and exercise on the tendon. J Appl Physiol (1985) 2016; 121:1237-1246. [DOI: 10.1152/japplphysiol.00328.2016] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/29/2016] [Indexed: 12/27/2022] Open
Abstract
Here, we review the literature on how tendons respond and adapt to ageing and exercise. With respect to aging, there are considerable changes early in life, but this seems to be maturation rather than aging per se. In vitro data indicate that aging is associated with a decreased potential for cell proliferation and a reduction in the number of stem/progenitor-like cells. Further, there is persuasive evidence that turnover in the core of the tendon after maturity is very slow or absent. Tendon fibril diameter, collagen content, and whole tendon size appear to be largely unchanged with aging, while glycation-derived cross-links increase substantially. Mechanically, aging appears to be associated with a reduction in modulus and strength. With respect to exercise, tendon cells respond by producing growth factors, and there is some support for a loading-induced increase in tendon collagen synthesis in humans, which likely reflects synthesis at the very periphery of the tendon rather than the core. Average collagen fibril diameter is largely unaffected by exercise, while there can be some hypertrophy of the whole tendon. In addition, it seems that resistance training can yield increased stiffness and modulus of the tendon and may reduce the amount of glycation. Exercise thereby tends to counteract the effects of aging.
Collapse
Affiliation(s)
- Rene B. Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Katja Maria Heinemeier
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Biomedical Sciences, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; and
| | - Christian Couppé
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Musculoskeletal Rehabilitation Research Unit, Bispebjerg Hospital, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Biomedical Sciences, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; and
| | - S. Peter Magnusson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Biomedical Sciences, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; and
- Musculoskeletal Rehabilitation Research Unit, Bispebjerg Hospital, Denmark
| |
Collapse
|
17
|
Saito A, Ema R, Inami T, Maeo S, Otsuka S, Higuchi M, Shibata S, Kawakami Y. Anatomical cross-sectional area of the quadriceps femoris and sit-to-stand test score in middle-aged and elderly population: development of a predictive equation. J Physiol Anthropol 2016; 36:3. [PMID: 27405228 PMCID: PMC4940975 DOI: 10.1186/s40101-016-0099-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the sit-to-stand (STS) test score has been shown to relate to the strength and size of the quadriceps femoris (QF) for elderly population, it is unknown whether this relationship is influenced by a posture (i.e., the trunk being allowed to stoop or not) during the STS test. The present study investigated the relationship between STS test score and QF anatomical cross-sectional area (ACSA) in the middle-aged and elderly population with regard to the difference in the posture during STS test, and aimed to develop an accurate predicting equation of the QF ACSA from the STS test score. METHODS 105 males (40-81 years) and 113 females (41-79 years) participated in the present study, then the subjects were divided at random as validation and cross-validation groups. Mid-thigh QF ACSA was determined by magnetic resonance imaging. Subjects performed a 10-repeated STS as fast as possible in two conditions: (1) with the trunk being allowed to stoop during the sitting phases, and (2) kept upright throughout the test. A power index of the STS test score was calculated based on an equation obtained in a previous study using the time taken for each test condition, the thigh and shank lengths, and body mass. In the validation group (n = 109), a stepwise multiple linear regression analysis was performed to create a predictive model of the ACSA with sex, age, the STS time, and power for both conditions as independent variables. The formulated predictive equation was examined in the cross-validation group (n = 109). RESULTS In the validation group, a stepwise regression analysis revealed that STS power with upright trunk condition, sex, and age but not with the stooping condition, were selected as variables to predict QF ACSA (R (2) = 0.64, P < 0.001). There was no systematic error for the relationship between predicted and measured values in the cross-validation group. CONCLUSIONS These results indicate that STS test score with upright trunk condition is one of the indices of QF muscle size of the middle-aged and elderly population. The estimated predicting equation should be useful in clinical and practical settings for the health promotion.
Collapse
Affiliation(s)
- Akira Saito
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, Japan.
| | - Ryoichi Ema
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, Japan.,Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, Japan.,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, Japan
| | - Takayuki Inami
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, Japan
| | - Sumiaki Maeo
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, Japan.,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, Japan
| | - Shun Otsuka
- Graduate School of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, Japan
| | - Mitsuru Higuchi
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, Japan.,Institute of Advanced Active Aging Research, 2-579-15 Mikajima, Tokorozawa, Saitama, Japan
| | - Shigenobu Shibata
- School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku-ku, Tokyo, Japan
| | - Yasuo Kawakami
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, Japan
| |
Collapse
|
18
|
Holt NC, Danos N, Roberts TJ, Azizi E. Stuck in gear: age-related loss of variable gearing in skeletal muscle. J Exp Biol 2016; 219:998-1003. [PMID: 27030778 PMCID: PMC4852693 DOI: 10.1242/jeb.133009] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/20/2016] [Indexed: 11/20/2022]
Abstract
Skeletal muscles power a broad diversity of animal movements, despite only being able to produce high forces over a limited range of velocities. Pennate muscles use a range of gear ratios, the ratio of muscle shortening velocity to fiber shortening velocity, to partially circumvent these force-velocity constraints. Muscles operate with a high gear ratio at low forces; fibers rotate to greater angles of pennation, enhancing velocity but compromising force. At higher forces, muscles operate with a lower gear ratio; fibers rotate little so limiting muscle shortening velocity, but helping to preserve force. This ability to shift gears is thought to be due to the interplay of contractile force and connective tissue constraints. In order to test this hypothesis, gear ratios were determined in the medial gastrocnemius muscles of both healthy young rats, and old rats where the interaction between contractile and connective tissue properties was assumed to be disrupted. Muscle fiber and aponeurosis stiffness increased with age (P<0.05) from 19.1±5.0 kPa and 188.5±24.2 MPa, respectively, in young rats to 39.1±4.2 kPa and 328.0±48.3 MPa in old rats, indicating a mechanical change in the interaction between contractile and connective tissues. Gear ratio decreased with increasing force in young (P<0.001) but not old (P=0.72) muscles, indicating that variable gearing is lost in old muscle. These findings support the hypothesis that variable gearing results from the interaction between contractile and connective tissues and suggest novel explanations for the decline in muscle performance with age.
Collapse
Affiliation(s)
- Natalie C Holt
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Nicole Danos
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Thomas J Roberts
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Emanuel Azizi
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
19
|
Frizziero A, Salamanna F, Della Bella E, Vittadini F, Gasparre G, Nicoli Aldini N, Masiero S, Fini M. The Role of Detraining in Tendon Mechanobiology. Front Aging Neurosci 2016; 8:43. [PMID: 26973517 PMCID: PMC4770795 DOI: 10.3389/fnagi.2016.00043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/15/2016] [Indexed: 12/18/2022] Open
Abstract
Introduction: Several conditions such as training, aging, estrogen deficiency and drugs could affect the biological and anatomo-physiological characteristics of the tendon. Additionally, recent preclinical and clinical studies examined the effect of detraining on tendon, showing alterations in its structure and morphology and in tenocyte mechanobiology. However, few data evaluated the importance that cessation of training might have on tendon. Basically, we do not fully understand how tendons react to a phase of training followed by sudden detraining. Therefore, within this review, we summarize the studies where tendon detraining was examined. Materials and Methods: A descriptive systematic literature review was carried out by searching three databases (PubMed, Scopus and Web of Knowledge) on tendon detraining. Original articles in English from 2000 to 2015 were included. In addition, the search was extended to the reference lists of the selected articles. A public reference manager (www.mendeley.com) was adopted to remove duplicate articles. Results: An initial literature search yielded 134 references (www.pubmed.org: 53; www.scopus.com: 11; www.webofknowledge.com: 70). Fifteen publications were extracted based on the title for further analysis by two independent reviewers. Abstracts and complete articles were after that reviewed to evaluate if they met inclusion criteria. Conclusions: The revised literature comprised four clinical studies and an in vitro and three in vivo reports. Overall, the results showed that tendon structure and properties after detraining are compromised, with an alteration in the tissue structural organization and mechanical properties. Clinical studies usually showed a lesser extent of tendon alterations, probably because preclinical studies permit an in-depth evaluation of tendon modifications, which is hard to perform in human subjects. In conclusion, after a period of sudden detraining (e.g., after an injury), physical activity should be taken with caution, following a targeted rehabilitation program. However, further research should be performed to fully understand the effect of sudden detraining on tendons.
Collapse
Affiliation(s)
- Antonio Frizziero
- Department of Physical and Rehabilitation Medicine, University of Padua Padua, Italy
| | - Francesca Salamanna
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, RIT Department, Rizzoli Orthopedic Institute Bologna, Italy
| | - Elena Della Bella
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic InstituteBologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of BolognaBologna, Italy
| | - Filippo Vittadini
- Department of Physical and Rehabilitation Medicine, University of Padua Padua, Italy
| | - Giuseppe Gasparre
- Department of Physical and Rehabilitation Medicine, University of Padua Padua, Italy
| | - Nicolò Nicoli Aldini
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, RIT Department, Rizzoli Orthopedic InstituteBologna, Italy; Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic InstituteBologna, Italy
| | - Stefano Masiero
- Department of Physical and Rehabilitation Medicine, University of Padua Padua, Italy
| | - Milena Fini
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, RIT Department, Rizzoli Orthopedic InstituteBologna, Italy; Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic InstituteBologna, Italy
| |
Collapse
|
20
|
Kubo K, Miyazaki D, Shimoju S, Tsunoda N. Relationship between elastic properties of tendon structures and performance in long distance runners. Eur J Appl Physiol 2015; 115:1725-33. [PMID: 25813019 DOI: 10.1007/s00421-015-3156-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The purpose of this study was to investigate the relationship between running performance (best official record in a 5000 m race) and elastic properties of tendon structures in knee extensors and plantar flexors among a large population of long distance runners. METHODS Sixty-four highly trained male long distance runners participated in this study. Elongation of tendon structures in the knee extensors and plantar flexors was measured using ultrasonography while subjects performed ramp isometric contractions up to the voluntary maximum. The relationship between the estimated muscle force and tendon elongation was fit to a linear regression, the slope of which was defined as the stiffness of the tendon structures. Muscle and tendon thicknesses were also measured in the knee extensors and plantar flexors using ultrasonography. RESULTS The best official record in a 5000 m race was negatively correlated to the stiffness of the tendon structures in the knee extensors (r = -0.341, p < 0.01), whereas it was positively correlated to the stiffness of the tendon structures in the plantar flexors (r = 0.414, p < 0.001). In both the knee extensors and plantar flexors, the other measured variables of muscle and tendon structures did not correlate with the best official record in a 5000 m race. CONCLUSION These results suggested that better long distance runners had stiffer tendon structures in the knee extensors and more compliant ones in the plantar flexors. These results implied that tendon structures in knee extensors and plantar flexors adapted to endurance running training and contributed to running performance of long distance runners separately.
Collapse
Affiliation(s)
- Keitaro Kubo
- Department of Life Science (Sports Sciences), The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan,
| | | | | | | |
Collapse
|
21
|
Donath L, Kurz E, Roth R, Zahner L, Faude O. Different ankle muscle coordination patterns and co-activation during quiet stance between young adults and seniors do not change after a bout of high intensity training. BMC Geriatr 2015; 15:19. [PMID: 25888336 PMCID: PMC4409995 DOI: 10.1186/s12877-015-0017-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/17/2015] [Indexed: 11/13/2022] Open
Abstract
Background Available evidence suggests that young adults and seniors use different strategies to adjust for increasing body sway during quiet standing. Altered antagonist muscle co-activation and different ankle muscle coordination patterns may account for this finding. Consequently, we aimed at addressing whether aging leads to changes in neuromuscular coordination patterns as well as co-activation during quiet stance. We additionally investigated whether a bout of high intensity interval training additionally alters these patterns. Methods Twenty healthy seniors (age: 70 ± 4 y) and twenty young adults (age: 27 ± 3 y) were enrolled in the present study. In between the testing procedures, four consecutive high-intensity intervals of 4 min duration at a target exercise intensity of 90 to 95% HRmax were completed on a treadmill. The total center of pressure (COP) path length displacement served as standing balance performance outcome. In order to assess ankle muscle coordination patterns, amplitude ratios (AR) were calculated for each muscle (e.g. tibialis anterior (TA) [%] = (TA × 100)/(gastrocnemius medialis (GM) + soleus (SOL) + peroneus longus (PL) + TA). The co-activation was calculated for the SOL and TA muscles computing the co-activation index (CAI = 2 × TA/TA + SOL). Results Seniors showed an inverted ankle muscle coordination pattern during single limb stance with eyes open (SLEO), compared to young adults (rest: GM, S: 15 ± 8% vs Y: 24 ± 9%; p = 0.03; SOL, S: 27 ± 14% vs Y: 37 ± 18%; p = 0.009; TA, S: 31 ± 13% vs Y: 13 ± 7%; p = 0.003). These patterns did not change after a high-intensity training session. A moderate correlation between amplitude ratios of the TA-contribution and postural sway was observed for seniors during SLEO (r = 0.61). Ankle co-activation was twofold elevated in seniors compared to young adults during SLEO (p < 0.001). These findings were also not affected by high intensity training. Conclusion Increased ankle co-activation in the anterior-posterior plane and inverted ankle muscle coordination pattern merely occurred during single-leg stance. Seniors with decreased postural control showed higher TA contributions during SLEO. These neuromuscular changes are not affected by acute intermittent high intensity aerobic exercise.
Collapse
Affiliation(s)
- Lars Donath
- Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320-B, 4052, Basel, Switzerland.
| | - Eduard Kurz
- Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320-B, 4052, Basel, Switzerland. .,Clinic for Trauma, Hand and Reconstructive Surgery, Division of Motor Research, Pathophysiology and Biomechanics, Jena University Hospital, Bachstrasse 18, 07743, Jena, Germany.
| | - Ralf Roth
- Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320-B, 4052, Basel, Switzerland.
| | - Lukas Zahner
- Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320-B, 4052, Basel, Switzerland.
| | - Oliver Faude
- Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320-B, 4052, Basel, Switzerland.
| |
Collapse
|
22
|
Svensson RB, Couppé C, Magnusson SP. Mechanical Properties of the Aging Tendon. ENGINEERING MATERIALS AND PROCESSES 2015. [DOI: 10.1007/978-3-319-03970-1_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Hvid L, Suetta C, Nielsen J, Jensen M, Frandsen U, Ørtenblad N, Kjaer M, Aagaard P. Aging impairs the recovery in mechanical muscle function following 4days of disuse. Exp Gerontol 2014; 52:1-8. [DOI: 10.1016/j.exger.2014.01.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 01/05/2014] [Accepted: 01/08/2014] [Indexed: 12/16/2022]
|
24
|
Couppé C, Svensson RB, Grosset JF, Kovanen V, Nielsen RH, Olsen MR, Larsen JO, Praet SFE, Skovgaard D, Hansen M, Aagaard P, Kjaer M, Magnusson SP. Life-long endurance running is associated with reduced glycation and mechanical stress in connective tissue. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9665. [PMID: 24997017 PMCID: PMC4150896 DOI: 10.1007/s11357-014-9665-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 06/18/2014] [Indexed: 05/07/2023]
Abstract
Life-long regular endurance exercise is known to counteract the deterioration of cardiovascular and metabolic function and overall mortality. Yet it remains unknown if life-long regular endurance exercise can influence the connective tissue accumulation of advanced glycation endproducts (AGEs) that is associated with aging and lifestyle-related diseases. We therefore examined two groups of healthy elderly men: 15 master athletes (64 ± 4 years) who had been engaged in life-long endurance running and 12 old untrained (66 ± 4 years) together with two groups of healthy young men; ten young athletes matched for running distance (26 ± 4 years), and 12 young untrained (24 ± 3 years). AGE cross-links (pentosidine) of the patellar tendon were measured biochemically, and in the skin, it was assessed by a fluorometric method. In addition, we determined mechanical properties and microstructure of the patellar tendon. Life-long regular endurance runners (master athletes) had a 21 % lower AGE cross-link density compared to old untrained. Furthermore, both master athletes and young athletes displayed a thicker patellar tendon. These cross-sectional data suggest that life-long regular endurance running can partly counteract the aging process in connective tissue by reducing age-related accumulation of AGEs. This may not only benefit skin and tendon but also other long-lived protein tissues in the body. Furthermore, it appears that endurance running yields tendon tissue hypertrophy that may serve to lower the stress on the tendon and thereby reduce the risk of injury.
Collapse
Affiliation(s)
- Christian Couppé
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Bldg. 8, Bispebjerg Bakke 23, DK-2400, Copenhagen, NV, Denmark,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Vestergaard P, Jørgensen JOL, Olesen JL, Bosnjak E, Holm L, Frystyk J, Langberg H, Kjaer M, Hansen M. Local administration of growth hormone stimulates tendon collagen synthesis in elderly men. J Appl Physiol (1985) 2012; 113:1432-8. [DOI: 10.1152/japplphysiol.00816.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tendon collagen content and circulating growth hormone (GH) are reduced in elderly. In a placebo-controlled, double-blinded study, we examined if local injections of rhGH enhance collagen synthesis in healthy elderly men (61 ± 1 yr). Two injections of rhGH or saline (control) were injected into each of the patient's patellar tendons, respectively. Subsequently, tendon collagen fractional synthesis rate (FSR) and an indirect marker of type I collagen synthesis (PINP) were measured. Within the first 6 h after the last injections, a tendency towards a higher tendon collagen FSR was observed in 10 out of 12 subjects ( P = 0.08). Similarly, PINP was higher 3–4 h after the last GH injection ( P = 0.05). Serum IGF-I did not change from baseline, whereas peritendinous bioactive IGF-I was higher in the GH leg vs. control ( P = 0.05). In conclusion, local injections of rhGH increase tendon collagen synthesis in humans, either directly or indirectly by increasing local bioactive IGF-I.
Collapse
Affiliation(s)
- Poul Vestergaard
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital and Medical Research Laboratories, Institute of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Jens Otto Lunde Jørgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital and Medical Research Laboratories, Institute of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Jens L. Olesen
- Department of Rheumatology, Aalborg Hospital–Aarhus University Hospital, Aalborg, Denmark
| | - Ermina Bosnjak
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital and Medical Research Laboratories, Institute of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Lars Holm
- Institute of Sports Medicine, Department Orthopedic Surgery M81, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Frystyk
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital and Medical Research Laboratories, Institute of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Henning Langberg
- Institute of Sports Medicine, Department Orthopedic Surgery M81, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health and Centre for Healthy Ageing, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and
| | - Michael Kjaer
- Institute of Sports Medicine, Department Orthopedic Surgery M81, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Hansen
- Institute of Sports Medicine, Department Orthopedic Surgery M81, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Section of Sports Science, Institute of Public Health, Aarhus University, Aarhus Denmark
| |
Collapse
|
26
|
Akagi R, Takai Y, Ohta M, Kanehisa H, Fukunaga T, Kawakami Y. Size–strength relationships of the elbow flexors and extensors are not affected by age or gender. Eur J Sport Sci 2011. [DOI: 10.1080/17461391.2010.509890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Hvid L, Aagaard P, Justesen L, Bayer ML, Andersen JL, Ørtenblad N, Kjaer M, Suetta C. Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining. J Appl Physiol (1985) 2010; 109:1628-34. [PMID: 20864557 DOI: 10.1152/japplphysiol.00637.2010] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Very little attention has been given to the combined effects of aging and disuse as separate factors causing deterioration in muscle mechanical function. Thus the purpose of this study was to investigate the effects of 2 wk of immobilization followed by 4 wk of retraining on knee extensor muscle mechanical function (e.g., maximal strength and rapid force capacity) and muscle fiber morphology in 9 old (OM: 67.3 ± 1.3 yr) and 11 young healthy men (YM: 24.4 ± 0.5 yr) with comparable levels of physical activity. Following immobilization, OM demonstrated markedly larger decreases in rapid force capacity (i.e., rate of force development, impulse) than YM (∼ 20-37 vs. ∼ 13-16%; P < 0.05). In contrast, muscle fiber area decreased in YM for type I, IIA, and IIx fibers (∼ 15-30%; P < 0.05), whereas only type IIa area decreased in OM (13.2%; P < 0.05). Subsequent retraining fully restored muscle mechanical function and muscle fiber area in YM, whereas OM showed an attenuated recovery in muscle fiber area and rapid force capacity (tendency). Changes in maximal isometric and dynamic muscle strength were similar between OM and YM. In conclusion, the present data reveal that OM may be more susceptible to the deleterious effects of short-term muscle disuse on muscle fiber size and rapid force capacity than YM. Furthermore, OM seems to require longer time to recover and regain rapid muscle force capacity, which may lead to a larger risk of falling in aged individuals after periods of short-term disuse.
Collapse
Affiliation(s)
- Lars Hvid
- Institute of Sports Medicine, Bispebjerg Hospital and Center of Healthy Aging, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Takai Y, Ohta M, Akagi R, Kanehisa H, Kawakami Y, Fukunaga T. Sit-to-stand test to evaluate knee extensor muscle size and strength in the elderly: a novel approach. J Physiol Anthropol 2009; 28:123-8. [PMID: 19483373 DOI: 10.2114/jpa2.28.123] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The present study examined whether a sit-to-stand score can be related to the force-generating capacity of knee extensor muscles. Fifty-seven subjects (28 men, 63.0+/-7.8 yrs, and 29 women, 64.2+/-7.5 yrs, means+/-SDs) performed a 10-repeated sit-to-stand test as fast as possible, on a steel molded chair. The time taken (T(sit-stand)) was measured with a manual stopwatch. The leg length (L), defined as the distance from the great trochanter of the femur to the malleolus lateralis, was measured using a tape. A power index of the test (P(sit-stand)) was calculated by using the following equation: P(sit-stand)=(L-0.4) x body mass x g x 10/T(sit-stand). The cross-sectional area of the quadriceps femoris muscle (CSA(KE)) and the maximal voluntary isometric knee extension force (F(KE)) were measured using MRI and a static myometer, respectively. There was no significant correlation between T(sit-stand) and each of CSA(KE) and F(KE). On the other hand, the P(sit-stand) was highly correlated with CSA(KE) and F(KE), even after the influence of body mass and L was statistically eliminated. These results indicate that P(sit-stand), derived from three variables of body mass, leg length, and time taken for a sit-to-stand test, can be a useful index to assess the force-generating capacity of the knee extensor muscles of elderly individuals.
Collapse
Affiliation(s)
- Yohei Takai
- Graduate School of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Couppé C, Hansen P, Kongsgaard M, Kovanen V, Suetta C, Aagaard P, Kjaer M, Magnusson SP. Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. J Appl Physiol (1985) 2009; 107:880-6. [PMID: 19556458 DOI: 10.1152/japplphysiol.00291.2009] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Age-related loss in muscle mass and strength impairs daily life function in the elderly. However, it remains unknown whether tendon properties also deteriorate with age. Cross-linking of collagen molecules provides structural integrity to the tendon fibrils and has been shown to change with age in animals but has never been examined in humans in vivo. In this study, we examined the mechanical properties and pyridinoline and pentosidine cross-link and collagen concentrations of the patellar tendon in vivo in old (OM) and young men (YM). Seven OM (67 +/- 3 years, 86 +/- 10 kg) and 10 YM (27 +/- 2 years, 81 +/- 8 kg) with a similar physical activity level (OM 5 +/- 6 h/wk, YM 5 +/- 2 h/wk) were examined. MRI was used to assess whole tendon dimensions. Tendon mechanical properties were assessed with the use of simultaneous force and ultrasonographic measurements during ramped isometric contractions. Percutaneous tendon biopsies were taken and analyzed for hydroxylysyl pyridinoline (HP), lysyl pyridinoline (LP), pentosidine, and collagen concentrations. We found no significant differences in the dimensions or mechanical properties of the tendon between OM and YM. Collagen concentrations were lower in OM than in YM (0.49 +/- 0.27 vs. 0.73 +/- 0.14 mg/mg dry wt; P < 0.05). HP concentrations were higher in OM than in YM (898 +/- 172 vs. 645 +/- 183 mmol/mol; P < 0.05). LP concentrations were higher in OM than in YM (49 +/- 38 vs. 16 +/- 8 mmol/mol; P < 0.01), and pentosidine concentrations were higher in OM than in YM (73 +/- 13 vs. 11 +/- 2 mmol/mol; P < 0.01). These cross-sectional data raise the possibility that age may not appreciably influence the dimensions or mechanical properties of the human patellar tendon in vivo. Collagen concentration was reduced, whereas both enzymatic and nonenzymatic cross-linking of concentration was elevated in OM vs. in YM, which may be a mechanism to maintain the mechanical properties of tendon with aging.
Collapse
Affiliation(s)
- C Couppé
- Institute of Sports Medicine, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, 2400 Copenhagen NV, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Tanaka K, Abe C, Awazu C, Morita H. Vestibular system plays a significant role in arterial pressure control during head-up tilt in young subjects. Auton Neurosci 2009; 148:90-6. [DOI: 10.1016/j.autneu.2009.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/12/2009] [Accepted: 03/18/2009] [Indexed: 10/20/2022]
|
31
|
Smith T, Nichols R, Harle D, Donell S. Do the vastus medialis obliquus and vastus medialis longus really exist? A systematic review. Clin Anat 2009; 22:183-99. [DOI: 10.1002/ca.20737] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|