1
|
Harrer P, Inderhees J, Zhao C, Schormair B, Tilch E, Gieger C, Peters A, Jöhren O, Fleming T, Nawroth PP, Berger K, Hermesdorf M, Winkelmann J, Schwaninger M, Oexle K. Phenotypic and genome-wide studies on dicarbonyls: major associations to glomerular filtration rate and gamma-glutamyltransferase activity. EBioMedicine 2024; 101:105007. [PMID: 38354534 PMCID: PMC10875252 DOI: 10.1016/j.ebiom.2024.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND The dicarbonyl compounds methylglyoxal (MG), glyoxal (GO) and 3-deoxyglucosone (3-DG) have been linked to various diseases. However, disease-independent phenotypic and genotypic association studies with phenome-wide and genome-wide reach, respectively, have not been provided. METHODS MG, GO and 3-DG were measured by LC-MS in 1304 serum samples of two populations (KORA, n = 482; BiDirect, n = 822) and assessed for associations with genome-wide SNPs (GWAS) and with phenome-wide traits. Redundancy analysis (RDA) was used to identify major independent trait associations. FINDINGS Mutual correlations of dicarbonyls were highly significant, being stronger between MG and GO (ρ = 0.6) than between 3-DG and MG or GO (ρ = 0.4). Significant phenotypic results included associations of all dicarbonyls with sex, waist-to-hip ratio, glomerular filtration rate (GFR), gamma-glutamyltransferase (GGT), and hypertension, of MG and GO with age and C-reactive protein, of GO and 3-DG with glucose and antidiabetics, of MG with contraceptives, of GO with ferritin, and of 3-DG with smoking. RDA revealed GFR, GGT and, in case of 3-DG, glucose as major contributors to dicarbonyl variance. GWAS did not identify genome-wide significant loci. SNPs previously associated with glyoxalase activity did not reach nominal significance. When multiple testing was restricted to the lead SNPs of GWASs on the traits selected by RDA, 3-DG was found to be associated (p = 2.3 × 10-5) with rs1741177, an eQTL of NF-κB inhibitor NFKBIA. INTERPRETATION This large-scale, population-based study has identified numerous associations, with GFR and GGT being of pivotal importance, providing unbiased perspectives on dicarbonyls beyond the current state. FUNDING Deutsche Forschungsgemeinschaft, Helmholtz Munich, German Centre for Cardiovascular Research (DZHK), German Federal Ministry of Research and Education (BMBF).
Collapse
Affiliation(s)
- Philip Harrer
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julica Inderhees
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lubeck, Lubeck, Germany; Bioanalytic Core Facility, Center for Brain, Behavior and Metabolism, University of Lübeck, Germany; German Centre for Cardiovascular Research (DZHK), Hamburg-Lübeck-Kiel, Germany
| | - Chen Zhao
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany; Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
| | - Barbara Schormair
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Erik Tilch
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany; Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Munich, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Munich, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Chair of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Olaf Jöhren
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lubeck, Lubeck, Germany; Bioanalytic Core Facility, Center for Brain, Behavior and Metabolism, University of Lübeck, Germany
| | - Thomas Fleming
- Department of Internal Medicine, University of Heidelberg, Heidelberg, Germany
| | - Peter P Nawroth
- Department of Internal Medicine, University of Heidelberg, Heidelberg, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Marco Hermesdorf
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Centre for Mental Health (DZPG), Munich-Augsburg, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lubeck, Lubeck, Germany; German Centre for Cardiovascular Research (DZHK), Hamburg-Lübeck-Kiel, Germany
| | - Konrad Oexle
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany.
| |
Collapse
|
2
|
Portero-Otin M, de la Maza MP, Uribarri J. Dietary Advanced Glycation End Products: Their Role in the Insulin Resistance of Aging. Cells 2023; 12:1684. [PMID: 37443718 PMCID: PMC10340703 DOI: 10.3390/cells12131684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Insulin resistance (IR) is commonly observed during aging and is at the root of many of the chronic nontransmissible diseases experienced as people grow older. Many factors may play a role in causing IR, but diet is undoubtedly an important one. Whether it is total caloric intake or specific components of the diet, the factors responsible remain to be confirmed. Of the many dietary influences that may play a role in aging-related decreased insulin sensitivity, advanced glycation end products (AGEs) appear particularly important. Herein, we have reviewed in detail in vitro, animal, and human evidence linking dietary AGEs contributing to the bodily burden of AGEs with the development of IR. We conclude that numerous small clinical trials assessing the effect of dietary AGE intake in combination with strong evidence in many animal studies strongly suggest that reducing dietary AGE intake is associated with improved IR in a variety of disease conditions. Reducing AGE content of common foods by simple changes in culinary techniques is a feasible, safe, and easily applicable intervention in both health and disease. Large-scale clinical trials are still needed to provide broader evidence for the deleterious role of dietary AGEs in chronic disease.
Collapse
Affiliation(s)
- Manuel Portero-Otin
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad de Lleida, 25196 Lleida, Spain;
| | - M. Pia de la Maza
- Centro de Nutricion y Diabetes, Departamento de Medicina, Clinica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile;
| | - Jaime Uribarri
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10021, USA
| |
Collapse
|
3
|
Cruz N, Flores M, Urquiaga I, Ávila F. Modulation of 1,2-Dicarbonyl Compounds in Postprandial Responses Mediated by Food Bioactive Components and Mediterranean Diet. Antioxidants (Basel) 2022; 11:1513. [PMID: 36009232 PMCID: PMC9405221 DOI: 10.3390/antiox11081513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 01/17/2023] Open
Abstract
Glycoxidative stress with the consequent generation of advanced glycation end products has been implied in the etiology of numerous non-communicable chronic diseases. During the postprandial state, the levels of 1,2-dicarbonyl compounds can increase, depending on numerous factors, including characteristics of the subjects mainly related to glucose metabolism disorders and nutritional status, as well as properties related to the chemical composition of meals, including macronutrient composition and the presence of dietary bioactive molecules and macromolecules. In this review, we examine the chemical, biochemical, and physiological pathways that contribute to postprandial generation of 1,2-dicarbonyl compounds. The modulation of postprandial 1,2-dicarbonyl compounds is discussed in terms of biochemical pathways regulating the levels of these compounds, as well as the effect of phenolic compounds, dietary fiber, and dietary patterns, such as Mediterranean and Western diets.
Collapse
Affiliation(s)
- Nadia Cruz
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, Talca 3460000, Chile;
| | - Marcos Flores
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Talca 3460000, Chile;
| | - Inés Urquiaga
- Center for Molecular Nutrition and Chronic Diseases, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago 8331150, Chile;
| | - Felipe Ávila
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, Talca 3460000, Chile;
| |
Collapse
|