1
|
Ibáñez-Cabellos JS, Sandoval J, Pallardó FV, García-Giménez JL, Mena-Molla S. A Sex-Specific Minimal CpG-Based Model for Biological Aging Using ELOVL2 Methylation Analysis. Int J Mol Sci 2025; 26:3392. [PMID: 40244262 PMCID: PMC11989821 DOI: 10.3390/ijms26073392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Significant deviations between chronological and biological age can signal the early risk of chronic diseases, driving the need for tools that accurately determine biological age. While DNA methylation-based clocks have demonstrated strong predictive power for biological aging determination, their clinical application is limited by several barriers including high costs, the need to analyze hundreds of methylation sites using sophisticated platforms and the lack of standardized measurement tools and protocols. In this study, we developed a multivariate linear model using the analysis of eight CpGs within the promoter region of the very long chain fatty acid elongase 2 gene (ELOVL2). The model generated predicts biological age with a mean absolute error (MAE) of 5.04, providing a simplified, cost-effective alternative to more complex methylation-based clocks. Additionally, we identified sex-specific biological clocks, achieving MAEs of 4.37 for males and 5.38 for females, highlighting sex-related molecular differences in the methylation of this gene during aging. Our minimal CpG-based clock offers a practical solution for estimating biological age, with potential applications in clinical practice for assessing age-related disease risks and providing personalized healthcare interventions.
Collapse
Affiliation(s)
- José Santiago Ibáñez-Cabellos
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain;
- EpiDisease S.L. (Spin-Off from the CIBER-ISCIII), Parc Científic de la Universitat de Valencia, 46980 Paterna, Spain
| | - Juan Sandoval
- Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain;
| | - Federico V. Pallardó
- Department of Physiology, Medicine and Dentistry School, University of Valencia, 46010 Valencia, Spain; (F.V.P.); (J.L.G.-G.)
- Consortium Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - José Luis García-Giménez
- Department of Physiology, Medicine and Dentistry School, University of Valencia, 46010 Valencia, Spain; (F.V.P.); (J.L.G.-G.)
- Consortium Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Salvador Mena-Molla
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain;
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| |
Collapse
|
2
|
Goering M, Moore A, Barker-Kamps M, Patki A, Tiwari HK, Mrug S. Adolescent empathy and epigenetic aging in adulthood: Substance use as a mediator. Dev Psychol 2025; 61:714-725. [PMID: 39531697 PMCID: PMC11932777 DOI: 10.1037/dev0001893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Prosocial behavior during adolescence has been associated with better physical health, including slower epigenetic aging. However, little is known about the specific role of empathy in epigenetic aging and the mechanisms explaining this relationship. One such mechanism may be substance use, which is predicted by low empathy and contributes to accelerated epigenetic aging. Thus, the present study examined whether empathy during early adolescence predicts epigenetic aging in young adulthood and whether substance use in late adolescence and young adulthood mediates this effect. Participants included 343 individuals (58% female, 81% Black, 19% White) who were interviewed at mean ages of 13, 17, and 27 years. Participants self-reported their empathy at Time 1 and their alcohol, tobacco, and cannabis use at Times 2 and 3. At Time 3, epigenetic aging was assessed from salivary DNA using the GrimAge, DunedinPACE, and PhenoAge clocks. A regression analysis demonstrated that higher empathy in early adolescence uniquely predicted lower epigenetic aging on the GrimAge clock in young adulthood even after adjusting for environmental and sociodemographic risk factors. Mediation models revealed that the link between empathy and lower epigenetic aging on all three clocks was mediated by lower tobacco use. These results suggest that higher empathy during early adolescence may contribute to better health throughout the lifespan due to lower tobacco use and slower epigenetic aging. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
Collapse
Affiliation(s)
- Marlon Goering
- Department of Psychology, University of Alabama at Birmingham; 1720 2nd Ave South, Birmingham, Alabama, USA
| | - Amanda Moore
- Department of Psychology, University of Alabama at Birmingham; 1720 2nd Ave South, Birmingham, Alabama, USA
| | - Malcolm Barker-Kamps
- Department of Psychology, University of Alabama at Birmingham; 1720 2nd Ave South, Birmingham, Alabama, USA
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham; 1720 2nd Ave South, Birmingham, Alabama, USA
| | - Hemant K. Tiwari
- Department of Biostatistics, University of Alabama at Birmingham; 1720 2nd Ave South, Birmingham, Alabama, USA
| | - Sylvie Mrug
- Department of Psychology, University of Alabama at Birmingham; 1720 2nd Ave South, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Bloomberg M, Steptoe A. Sex and education differences in trajectories of physiological ageing: longitudinal analysis of a prospective English cohort study. Age Ageing 2025; 54:afaf067. [PMID: 40156883 PMCID: PMC11954548 DOI: 10.1093/ageing/afaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/08/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Physiological age (PA) derived from clinical indicators including blood-based biomarkers and tests of physiological function can be compared with chronological age to examine disparities in health between older adults of the same age. Though education interacts with sex to lead to inequalities in healthy ageing, their combined influence on longitudinally measured PA has not been explored. We derived PA based on longitudinally measured clinical indicators and examined how sex and education interact to inform PA trajectories. METHODS Three waves of clinical indicators (2004/05-2012/13) drawn from the English Longitudinal Study of Ageing (ages 50-100 years) were used to estimate PA, which was internally validated by confirming associations with incident chronic conditions, functional limitations and memory impairment after adjustment for chronological age and sex. Joint models were used to construct PA trajectories in 8891 English Longitudinal Study of Ageing participants to examine sex and educational disparities in PA. FINDINGS Amongst the least educated participants, there were negligible sex differences in PA until age 60 (sex difference [men-women] age 50 = -0.6 years [95% confidence interval = -2.2 to 0.6]; age 60 = 0.4 [-0.6 to 1.4]); at age 70, women were 1.5 years (0.7-2.2) older than men. Amongst the most educated participants, women were 3.8 years (1.6-6.0) younger than men at age 50 and 2.7 years (0.4-5.0) younger at age 60, with a nonsignificant sex difference at age 70. INTERPRETATION Higher education provides a larger midlife buffer to physiological ageing for women than men. Policies to promote gender equity in higher education may contribute to improving women's health across a range of ageing-related outcomes.
Collapse
Affiliation(s)
- Mikaela Bloomberg
- Department of Epidemiology and Public Health, University College London, 1-19 Torrington Place, London, Greater London WC1E 7HB, UK
| | - Andrew Steptoe
- Department of Behavioural Science and Health, University College London, 1-19 Torrington Place, London, Greater London WC1E 7HB, UK
| |
Collapse
|
4
|
Sosnowski DW, Smail EJ, Maher BS, Moore AZ, Kuo PL, Wu MN, Low DV, Stone KL, Simonsick EM, Ferrucci L, Spira AP. Sleep Duration Polygenic Risk and Phenotype: Associations with Biomarkers of Accelerated Aging in the Baltimore Longitudinal Study of Aging. Int J Aging Hum Dev 2025; 100:135-164. [PMID: 38347745 PMCID: PMC11317550 DOI: 10.1177/00914150241231192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
We sought to explore whether genetic risk for, and self-reported, short sleep are associated with biological aging and whether age and sex moderate these associations. Participants were a subset of individuals from the Baltimore Longitudinal Study of Aging who had complete data on self-reported sleep (n = 567) or genotype (n = 367). Outcomes included: Intrinsic Horvath age, Hannum age, PhenoAge, GrimAge, and DNAm-based estimates of plasminogen activator inhibitor-1 (PAI-1) and granulocyte count. Results demonstrated that polygenic risk for short sleep was positively associated with granulocyte count; compared to those reporting <6 hr sleep, those reporting >7 hr demonstrated faster PhenoAge and GrimAge acceleration and higher estimated PAI-1. Polygenic risk for short sleep and self-reported sleep duration interacted with age and sex in their associations with some of the outcomes. Findings highlight that polygenic risk for short sleep and self-reported long sleep is associated with variation in the epigenetic landscape and subsequently aging.
Collapse
Affiliation(s)
- David W Sosnowski
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Emily J Smail
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Brion S Maher
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ann Zenobia Moore
- Longitudinal Studies Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Pei-Lun Kuo
- Longitudinal Studies Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Mark N Wu
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Dominique V Low
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Katie L Stone
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Eleanor M Simonsick
- Longitudinal Studies Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Adam P Spira
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Services, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Johns Hopkins Center on Aging and Health, Baltimore, MD, USA
| |
Collapse
|
5
|
Shealy EP, Schwartz TS, Cox RM, Reedy AM, Parrott BB. DNA methylation-based age prediction and sex-specific epigenetic aging in a lizard with female-biased longevity. SCIENCE ADVANCES 2025; 11:eadq3589. [PMID: 39888991 PMCID: PMC11784858 DOI: 10.1126/sciadv.adq3589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/02/2025] [Indexed: 02/02/2025]
Abstract
Sex differences in life span are widespread across animal taxa, but their causes remain unresolved. Alterations to the epigenome are hypothesized to contribute to vertebrate aging, and DNA methylation-based aging clocks allow for quantitative estimation of biological aging trajectories. Here, we investigate the influence of age, sex, and their interaction on genome-wide DNA methylation patterns in the brown anole (Anolis sagrei), a lizard with pronounced female-biased survival and longevity. We develop a series of age predictor models and find that, contrary to our predictions, rates of epigenetic aging were not slower in female lizards. However, methylation states at loci acquiring age-associated changes appear to be more "youthful" in young females, suggesting that female DNA methylomes are preemptively fortified in early life in opposition to the direction of age-related drift. Collectively, our findings provide insights into epigenetic aging in reptiles and suggest that early-life epigenetic profiles may be more informative than rates of change for predicting sex biases in longevity.
Collapse
Affiliation(s)
- Ethan P. Shealy
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Tonia S. Schwartz
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Robert M. Cox
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Aaron M. Reedy
- DataClassroom, 1022 Cottonwood Rd, Charlottesville, VA 22901, USA
| | - Benjamin B. Parrott
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
6
|
Stoccoro A. Epigenetic Mechanisms Underlying Sex Differences in Neurodegenerative Diseases. BIOLOGY 2025; 14:98. [PMID: 39857328 PMCID: PMC11761232 DOI: 10.3390/biology14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Neurodegenerative diseases are characterized by profound differences between females and males in terms of incidence, clinical presentation, and disease progression. Furthermore, there is evidence suggesting that differences in sensitivity to medical treatments may exist between the two sexes. Although the role of sex hormones and sex chromosomes in driving differential susceptibility to these diseases is well-established, the molecular alterations underlying these differences remain poorly understood. Epigenetic mechanisms, including DNA methylation, histone tail modifications, and the activity of non-coding RNAs, are strongly implicated in the pathogenesis of neurodegenerative diseases. While it is known that epigenetic mechanisms play a crucial role in sexual differentiation and that distinct epigenetic patterns characterize females and males, sex-specific epigenetic patterns have been largely overlooked in studies aiming to identify epigenetic alterations associated with neurodegenerative diseases. This review aims to provide an overview of sex differences in epigenetic mechanisms, the role of sex-specific epigenetic processes in the central nervous system, and the main evidence of sex-specific epigenetic alterations in three neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Understanding the sex-related differences of these diseases is essential for developing personalized treatments and interventions that account for the unique epigenetic landscapes of each sex.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
7
|
Wang S, Rao Z, Li A, Blaes AH, Blaha MJ, Coresh J, Dubin R, Deo R, Joshu CE, Marshall CH, Pankow JS, Rotter JI, Thyagarajan B, Whelton SP, Ganz P, Guan W, Platz EA, Prizment A. The Association between Proteomic Aging Clocks and the Risk of Cancer in Midlife Individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.05.25320018. [PMID: 39830250 PMCID: PMC11741449 DOI: 10.1101/2025.01.05.25320018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Background To measure the aging process before a cancer diagnosis, we developed the first cancer-specific proteomic aging clock (CaPAC) and examined its association with cancer risk in the Atherosclerosis Risk in Communities (ARIC) and Multi-Ethnic Study of Atherosclerosis (MESA) studies. Methods Using the SomaScan assay, ARIC measured 4,712 proteins in plasma samples collected in 1990-92 from 3,347 participants who developed cancer over follow-up until 2015 and 7,487 who remained cancer-free, all aged 46-70. We constructed CaPAC0 using elastic net regression among two-thirds randomly selected cancer-free participants (N=4,991, training set) and calculated age acceleration for CaPAC0 (CaPAA0) as residuals of CaPAC0 on chronological age in all remaining ARIC participants. We used multivariable-adjusted Cox proportional hazards regression to calculate hazard ratios (HRs) for the risk of overall, obesity-related, smoking-related, and the most common cancers (prostate, lung, breast, colorectal) with CaPAA0 using a case-cohort design. We replicated the analysis in 3,893 MESA participants aged 46-70 at Exam 1 (456 incident cancer). Results CaPAC0 was correlated with chronological age in ARIC and MESA (r=0.82 and 0.86, respectively). In both ARIC and MESA, CaPAA0 was significantly (p<0.05) associated with the risk of overall [HRs per 5-years=1.08 and 1.23, respectively], smoking-related [HRs=1.30 and 1.54, respectively], and lung cancers [HRs=1.54 and 1.94, respectively]. CaPAA0 was also significantly associated with colorectal cancer risk in ARIC [HR=1.31], but not in MESA. CaPAA0 was not associated with obesity-related, breast, or prostate cancers. Conclusion CaPAA0 was associated with several types of cancer with the strongest association observed for lung cancer risk.
Collapse
|
8
|
Bloomberg M, Steptoe A. Sex and education differences in trajectories of physiological ageing: longitudinal analysis of a prospective English cohort study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.06.25320036. [PMID: 39830243 PMCID: PMC11741463 DOI: 10.1101/2025.01.06.25320036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Background Physiological age (PA) derived from clinical indicators including blood-based biomarkers and tests of physiological function can be compared with chronological age to examine disparities in health between older adults of the same age. Though education interacts with sex to lead to inequalities in healthy ageing, their combined influence on longitudinally-measured PA has not been explored. We derived PA based on longitudinally-measured clinical indicators and examined how sex and education interact to inform PA trajectories. Methods Three waves of clinical indicators (2004/05-2012/13) drawn from the English Longitudinal Study of Ageing (ages 50-100 years) were used to estimate PA, which was internally validated by confirming associations with incident chronic conditions, functional limitations, and memory impairment after adjustment for chronological age and sex. Joint models were used to construct PA trajectories in 8,891 ELSA participants to examine sex and educational disparities in PA. Findings Among the least educated participants, there were negligible sex differences in PA until age 60 (sex difference [men-women] age 50=-0.6 years [95% confidence interval=-2.2-0.6]; age 60=0.4 [-0.6-1.4]); at age 70, women were 1.5 years (0.7-2.2) older than men. Among the most educated participants, women were 3.8 years (1.6-6.0) younger than men at age 50, and 2.7 years (0.4-5.0) younger at age 60, with a non-significant sex difference at age 70. Interpretation Higher education provides a larger midlife buffer to physiological ageing for women than men. Policies to promote gender equity in higher education may contribute to improving women's health across a range of ageing-related outcomes.
Collapse
Affiliation(s)
- Mikaela Bloomberg
- Department of Behavioural Science and Health, University College London, UK
| | - Andrew Steptoe
- Department of Behavioural Science and Health, University College London, UK
| |
Collapse
|
9
|
Scholl JL, Pearson K, Fercho KA, Van Asselt AJ, Kallsen NA, Ehli EA, Potter KN, Brown-Rice KA, Forster GL, Baugh LA. Differing Effects of Alcohol Use on Epigenetic and Brain Age in Adult Children of Parents with Alcohol Use Disorder. Brain Sci 2024; 14:1263. [PMID: 39766462 PMCID: PMC11674551 DOI: 10.3390/brainsci14121263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND It is known that being the adult child of a parent with an alcohol use disorder (ACoA) can confer a wide variety of increased health and psychological risks, including higher rates of anxiety, depression, and post-traumatic stress disorder symptoms. Additionally, ACoAs are at greater risk of developing alcohol/substance use disorders (AUDs/SUDs) than individuals from families without a history of AUDs. METHODS ACoA individuals with risky hazardous alcohol use (n = 14) and those not engaged in hazardous use (n = 14) were compared to a group of healthy controls. We examined structural brain differences and applied machine learning algorithms to predict biological brain and DNA methylation ages to investigate differences and determine any accelerated aging between these groups. RESULTS Hazardous and non-hazardous ACoA groups had lower predicted brain ages than the healthy control group (n = 100), which may result from neuro-developmental differences between ACoA groups and controls. Within specific brain regions, we observed decreased cortical volume within bilateral pars orbitalis and frontal poles, and the left middle temporal gyrus and entorhinal cortex within the hazardous alcohol ACoA group. When looking at the epigenetic aging data, the hazardous ACoA participants had increased predicted epigenetic age difference scores compared to the control group (n = 34) and the non-hazardous ACoA participant groups. CONCLUSIONS The results demonstrate a decreased brain age in the ACoAs compared to control, concurrent with increased epigenetic age specifically in the hazardous ACoA group, laying the foundation for future research to identify individuals with an increased susceptibility to developing hazardous alcohol use. Together, these results provide a better understanding of the associations between epigenetic factors, brain structure, and alcohol use disorders.
Collapse
Affiliation(s)
- Jamie L. Scholl
- Division of Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (J.L.S.)
| | - Kami Pearson
- Division of Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (J.L.S.)
- Kansas City University Center for Research, KCU, Kansas City, MO 64106, USA
| | - Kelene A. Fercho
- Division of Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (J.L.S.)
- FAA Civil Aerospace Medical Institute, Oklahoma City, OK 73169, USA
| | | | - Noah A. Kallsen
- Avera Institute for Human Genetics, Sioux Falls, SD 57105, USA (E.A.E.)
| | - Erik. A. Ehli
- Avera Institute for Human Genetics, Sioux Falls, SD 57105, USA (E.A.E.)
| | - Kari N. Potter
- Medical Laboratory Science, School of Health Sciences, University of South Dakota, Vermillion, SD 57069, USA
| | - Kathleen A. Brown-Rice
- Department of Counselor Education, College of Education, Sam Houston State University, Huntsville, TX 77340, USA
| | - Gina L. Forster
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Lee A. Baugh
- Division of Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (J.L.S.)
| |
Collapse
|
10
|
Scheinman SB, Dong H. The impact of sex on memory during aging and Alzheimer's disease progression: Epigenetic mechanisms. J Alzheimers Dis 2024; 102:562-576. [PMID: 39539121 PMCID: PMC11721493 DOI: 10.1177/13872877241288709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, disability, and death in the elderly. While the etiology of AD is unknown, there are several established risk factors for the disease including, aging, female sex, and genetics. However, specific genetic mutations only account for a small percentage (1-5%) of AD cases and the much more common sporadic form of the disease has no causative genetic basis, although certain risk factor genes have been identified. While the genetic code remains static throughout the lifetime, the activation and expression levels of genes change dynamically over time via epigenetics. Recent evidence has emerged linking changes in epigenetics to the pathogenesis of AD, and epigenetic alterations also modulate cognitive changes during physiological aging. Aging is the greatest risk factor for the development of AD and two-thirds of all AD patients are women, who experience an increased rate of symptom progression compared to men of the same age. In humans and other mammalian species, males and females experience aging differently, raising the important question of whether sex differences in epigenetic regulation during aging could provide an explanation for sex differences in neurodegenerative diseases such as AD. This review explores distinct epigenetic changes that impact memory function during aging and AD, with a specific focus on sexually divergent epigenetic alterations (in particular, histone modifications) as a potential mechanistic explanation for sex differences in AD.
Collapse
Affiliation(s)
- Sarah B Scheinman
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
11
|
Tan Q, Alo H, Nygaard M, Sørensen M, Saleh A, Mengel-From J, Christensen K. Age-Dependent DNA Methylation Variability on the X-Chromosome in Male and Female Twins. EPIGENOMES 2024; 8:43. [PMID: 39584966 PMCID: PMC11586961 DOI: 10.3390/epigenomes8040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
We aimed to explore the age-dependent epigenetic variability on the X-chromosome with consideration of X-chromosome inactivation by applying a sex-stratified regression analysis to DNA methylation array data on X-linked CpGs in aging identical twins. We found 13 X-linked CpGs showing age-related significant increase in variability in males (FDR < 0.05) but none in females. In females, we found a significantly higher proportion of CpGs showing increased variability with age among nominally significant (p < 0.05) CpGs under inactivation, but not among CpGs escaping inactivation. Survival analysis showed a slight trend of correlation by directional change in the variable CpGs with mortality in males. Compared with females, the male X-chromosome can be more vulnerable to epigenetic instability during aging.
Collapse
Affiliation(s)
- Qihua Tan
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; (H.A.); (M.N.); (M.S.); (A.S.); (J.M.-F.); (K.C.)
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Hikmat Alo
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; (H.A.); (M.N.); (M.S.); (A.S.); (J.M.-F.); (K.C.)
| | - Marianne Nygaard
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; (H.A.); (M.N.); (M.S.); (A.S.); (J.M.-F.); (K.C.)
| | - Mette Sørensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; (H.A.); (M.N.); (M.S.); (A.S.); (J.M.-F.); (K.C.)
| | - Alisa Saleh
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; (H.A.); (M.N.); (M.S.); (A.S.); (J.M.-F.); (K.C.)
| | - Jonas Mengel-From
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; (H.A.); (M.N.); (M.S.); (A.S.); (J.M.-F.); (K.C.)
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; (H.A.); (M.N.); (M.S.); (A.S.); (J.M.-F.); (K.C.)
| |
Collapse
|
12
|
Yusipov I, Kalyakulina A, Trukhanov A, Franceschi C, Ivanchenko M. Map of epigenetic age acceleration: A worldwide analysis. Ageing Res Rev 2024; 100:102418. [PMID: 39002646 DOI: 10.1016/j.arr.2024.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
We present a systematic analysis of epigenetic age acceleration based on by far the largest collection of publicly available DNA methylation data for healthy samples (93 datasets, 23 K samples), focusing on the geographic (25 countries) and ethnic (31 ethnicities) aspects around the world. We employed the most popular epigenetic tools for assessing age acceleration and examined their quality metrics and ability to extrapolate to epigenetic data from different tissue types and age ranges different from the training data of these models. In most cases, the models proved to be inconsistent with each other and showed different signs of age acceleration, with the PhenoAge model tending to systematically underestimate and different versions of the GrimAge model tending to systematically overestimate the age prediction of healthy subjects. Referring to data availability and consistency, most countries and populations are still not represented in GEO, moreover, different datasets use different criteria for determining healthy controls. Because of this, it is difficult to fully isolate the contribution of "geography/environment", "ethnicity" and "healthiness" to epigenetic age acceleration. Among the explored metrics, only the DunedinPACE, which measures aging rate, appears to adequately reflect the standard of living and socioeconomic indicators in countries, although it has a limited application to blood methylation data only. Invariably, by epigenetic age acceleration, males age faster than females in most of the studied countries and populations.
Collapse
Affiliation(s)
- Igor Yusipov
- Artificial Intelligence Research Center, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| | - Alena Kalyakulina
- Artificial Intelligence Research Center, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| | - Arseniy Trukhanov
- Mriya Life Institute, National Academy of Active Longevity, Moscow 124489, Russia.
| | - Claudio Franceschi
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| | - Mikhail Ivanchenko
- Artificial Intelligence Research Center, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| |
Collapse
|
13
|
Meier M, Kantelhardt S, Gurri L, Stadler C, Schmid M, Clemens V, O’Donovan A, Boonmann C, Bürgin D, Unternaehrer E. Childhood trauma is linked to epigenetic age deceleration in young adults with previous youth residential care placements. Eur J Psychotraumatol 2024; 15:2379144. [PMID: 39051592 PMCID: PMC11275517 DOI: 10.1080/20008066.2024.2379144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Background: Early adversity increases the risk for mental and physical disorders as well as premature death. Epigenetic processes, and altered epigenetic aging in particular, might mediate these effects. While the literature that examined links between early adversity and epigenetic aging is growing, results have been heterogeneous.Objective: In the current work, we explored the link between early adversity and epigenetic aging in a sample of formerly out-of-home placed young adults.Method: A total of N = 117 young adults (32% women, age mean = 26.3 years, SD = 3.6 years) with previous youth residential care placements completed the Childhood Trauma Questionnaire (CTQ) and the Life Events Checklist (LEC-R) and provided blood samples for the analysis of DNA methylation using the Illumina Infinium MethylationEPIC BeadChip Microarray. Epigenetic age was estimated using Hovarth's and Hannum's epigenetic clocks. Furthermore, Hovarth's and Hannum's epigenetic age residuals were calculated as a proxy of epigenetic aging by regressing epigenetic age on chronological age. The statistical analysis plan was preregistered (https://osf.io/b9ev8).Results: Childhood trauma (CTQ) was negatively associated with Hannum's epigenetic age residuals, β = -.23, p = .004 when controlling for sex, BMI, smoking status and proportional white blood cell type estimates. This association was driven by experiences of physical neglect, β = -.25, p = .001. Lifetime trauma exposure (LEC-R) was not a significant predictor of epigenetic age residuals.Conclusion: Childhood trauma, and physical neglect in particular, was associated with decelerated epigenetic aging in our sample. More studies focusing on formerly institutionalized at-risk populations are needed to better understand which factors affect stress-related adaptations following traumatic experiences.
Collapse
Affiliation(s)
- Maria Meier
- Child and Adolescent Psychiatric Research Department, University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Sina Kantelhardt
- Department of Psychology, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Laura Gurri
- Child and Adolescent Psychiatric Research Department, University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - Christina Stadler
- Child and Adolescent Psychiatric Research Department, University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - Marc Schmid
- Child and Adolescent Psychiatric Research Department, University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - Vera Clemens
- Department of Child and Adolescent Psychiatry/Psychotherapy, University of Ulm, Ulm, Germany
| | - Aoife O’Donovan
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, CA, USA
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Cyril Boonmann
- Child and Adolescent Psychiatric Research Department, University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
- Department of Child and Adolescent Psychiatry (LUMC Curium), Leiden University Medical Center, Leiden, The Netherlands
| | - David Bürgin
- Child and Adolescent Psychiatric Research Department, University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - Eva Unternaehrer
- Child and Adolescent Psychiatric Research Department, University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
14
|
Farris T, González-Ochoa S, Mohammed M, Rajakaruna H, Tonello J, Kanagasabai T, Korolkova O, Shimamoto A, Ivanova A, Shanker A. Loss of Mitochondrial Tusc2/Fus1 Triggers a Brain Pro-Inflammatory Microenvironment and Early Spatial Memory Impairment. Int J Mol Sci 2024; 25:7406. [PMID: 39000512 PMCID: PMC11242373 DOI: 10.3390/ijms25137406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Brain pathological changes impair cognition early in disease etiology. There is an urgent need to understand aging-linked mechanisms of early memory loss to develop therapeutic strategies and prevent the development of cognitive impairment. Tusc2 is a mitochondrial-resident protein regulating Ca2+ fluxes to and from mitochondria impacting overall health. We previously reported that Tusc2-/- female mice develop chronic inflammation and age prematurely, causing age- and sex-dependent spatial memory deficits at 5 months old. Therefore, we investigated Tusc2-dependent mechanisms of memory impairment in 4-month-old mice, comparing changes in resident and brain-infiltrating immune cells. Interestingly, Tusc2-/- female mice demonstrated a pro-inflammatory increase in astrocytes, expression of IFN-γ in CD4+ T cells and Granzyme-B in CD8+T cells. We also found fewer FOXP3+ T-regulatory cells and Ly49G+ NK and Ly49G+ NKT cells in female Tusc2-/- brains, suggesting a dampened anti-inflammatory response. Moreover, Tusc2-/- hippocampi exhibited Tusc2- and sex-specific protein changes associated with brain plasticity, including mTOR activation, and Calbindin and CamKII dysregulation affecting intracellular Ca2+ dynamics. Overall, the data suggest that dysregulation of Ca2+-dependent processes and a heightened pro-inflammatory brain microenvironment in Tusc2-/- mice could underlie cognitive impairment. Thus, strategies to modulate the mitochondrial Tusc2- and Ca2+- signaling pathways in the brain should be explored to improve cognitive health.
Collapse
Affiliation(s)
- Tonie Farris
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Salvador González-Ochoa
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Muna Mohammed
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Harshana Rajakaruna
- The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA;
| | - Jane Tonello
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Thanigaivelan Kanagasabai
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Olga Korolkova
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Alla Ivanova
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
- The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
15
|
Föhr T, Hendrix A, Kankaanpää A, Laakkonen EK, Kujala U, Pietiläinen KH, Lehtimäki T, Kähönen M, Raitakari O, Wang X, Kaprio J, Ollikainen M, Sillanpää E. Metabolic syndrome and epigenetic aging: a twin study. Int J Obes (Lond) 2024; 48:778-787. [PMID: 38273034 PMCID: PMC11129944 DOI: 10.1038/s41366-024-01466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Metabolic syndrome (MetS) is associated with premature aging, but whether this association is driven by genetic or lifestyle factors remains unclear. METHODS Two independent discovery cohorts, consisting of twins and unrelated individuals, were examined (N = 268, aged 23-69 years). The findings were replicated in two cohorts from the same base population. One consisted of unrelated individuals (N = 1 564), and the other of twins (N = 293). Participants' epigenetic age, estimated using blood DNA methylation data, was determined using the epigenetic clocks GrimAge and DunedinPACE. The individual-level linear regression models for investigating the associations of MetS and its components with epigenetic aging were followed by within-twin-pair analyses using fixed-effects regression models to account for genetic factors. RESULTS In individual-level analyses, GrimAge age acceleration was higher among participants with MetS (N = 56) compared to participants without MetS (N = 212) (mean 2.078 [95% CI = 0.996,3.160] years vs. -0.549 [-1.053,-0.045] years, between-group p = 3.5E-5). Likewise, the DunedinPACE estimate was higher among the participants with MetS compared to the participants without MetS (1.032 [1.002,1.063] years/calendar year vs. 0.911 [0.896,0.927] years/calendar year, p = 4.8E-11). An adverse profile in terms of specific MetS components was associated with accelerated aging. However, adjustments for lifestyle attenuated these associations; nevertheless, for DunedinPACE, they remained statistically significant. The within-twin-pair analyses suggested that genetics explains these associations fully for GrimAge and partly for DunedinPACE. The replication analyses provided additional evidence that the association between MetS components and accelerated aging is independent of the lifestyle factors considered in this study, however, suggesting that genetics is a significant confounder in this association. CONCLUSIONS The results of this study suggests that MetS is associated with accelerated epigenetic aging, independent of physical activity, smoking or alcohol consumption, and that the association may be explained by genetics.
Collapse
Affiliation(s)
- Tiina Föhr
- Faculty of Sport and Health Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland.
| | - Arne Hendrix
- Physical Activity, Sport & Health Research Group, Department of Movement Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Anna Kankaanpää
- Faculty of Sport and Health Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Eija K Laakkonen
- Faculty of Sport and Health Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Urho Kujala
- Faculty of Sport and Health Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Healthy Weight Hub, Endocrinology, Abdominal Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Xiaoling Wang
- Georgia Prevention Institute (GPI), Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Elina Sillanpää
- Faculty of Sport and Health Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
- The Wellbeing Services County of Central Finland, Jyväskylä, Finland
| |
Collapse
|
16
|
Takeshita RSC. A life for a (shorter) life: The reproduction-longevity trade-off. Proc Natl Acad Sci U S A 2024; 121:e2405089121. [PMID: 38598350 PMCID: PMC11046671 DOI: 10.1073/pnas.2405089121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Affiliation(s)
- Rafaela S. C. Takeshita
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
| |
Collapse
|
17
|
Merrill SM, Letourneau N, Giesbrecht GF, Edwards K, MacIsaac JL, Martin JW, MacDonald AM, Kinniburgh DW, Kobor MS, Dewey D, England-Mason G, The APrON Study Team. Sex-Specific Associations between Prenatal Exposure to Di(2-ethylhexyl) Phthalate, Epigenetic Age Acceleration, and Susceptibility to Early Childhood Upper Respiratory Infections. EPIGENOMES 2024; 8:3. [PMID: 38390895 PMCID: PMC10885049 DOI: 10.3390/epigenomes8010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer that can affect immune system development and susceptibility to infection. Aging processes (measured as epigenetic age acceleration (EAA)) may mediate the immune-related effects of prenatal exposure to DEHP. This study's objective was to examine associations between prenatal DEHP exposure, EAA at three months of age, and the number of upper respiratory infections (URIs) from 12 to 18 months of age using a sample of 69 maternal-child pairs from a Canadian pregnancy cohort. Blood DNA methylation data were generated using the Infinium HumanMethylation450 BeadChip; EAA was estimated using Horvath's pan-tissue clock. Robust regressions examined overall and sex-specific associations. Higher prenatal DEHP exposure (B = 6.52, 95% CI = 1.22, 11.81) and increased EAA (B = 2.98, 95% CI = 1.64, 4.32) independently predicted more URIs. In sex-specific analyses, some similar effects were noted for boys, and EAA mediated the association between prenatal DEHP exposure and URIs. In girls, higher prenatal DEHP exposure was associated with decreased EAA, and no mediation was noted. Higher prenatal DEHP exposure may be associated with increased susceptibility to early childhood URIs, particularly in boys, and aging biomarkers such as EAA may be a biological mechanism. Larger cohort studies examining the potential developmental immunotoxicity of phthalates are needed.
Collapse
Affiliation(s)
- Sarah M Merrill
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Nicole Letourneau
- Faculty of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychology, Faculty of Arts, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Karlie Edwards
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Michael S Kobor
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
- Program in Child and Brain Development, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - The APrON Study Team
- University of Calgary, Calgary, AB T2N 1N4, Canada
- University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
18
|
Kalyakulina A, Yusipov I, Kondakova E, Bacalini MG, Giuliani C, Sivtseva T, Semenov S, Ksenofontov A, Nikolaeva M, Khusnutdinova E, Zakharova R, Vedunova M, Franceschi C, Ivanchenko M. Epigenetics of the far northern Yakutian population. Clin Epigenetics 2023; 15:189. [PMID: 38053163 PMCID: PMC10699032 DOI: 10.1186/s13148-023-01600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Yakuts are one of the indigenous populations of the subarctic and arctic territories of Siberia characterized by a continental subarctic climate with severe winters, with the regular January average temperature in the regional capital city of Yakutsk dipping below - 40 °C. The epigenetic mechanisms of adaptation to such ecologies and environments and, in particular, epigenetic age acceleration in the local population have not been studied before. RESULTS This work reports the first epigenetic study of the Yakutian population using whole-blood DNA methylation data, supplemented with the comparison to the residents of Central Russia. Gene set enrichment analysis revealed, among others, geographic region-specific differentially methylated regions associated with adaptation to climatic conditions (water consumption, digestive system regulation), aging processes (actin filament activity, cell fate), and both of them (channel activity, regulation of steroid and corticosteroid hormone secretion). Further, it is demonstrated that the epigenetic age acceleration of the Yakutian representatives is significantly higher than that of Central Russia counterparts. For both geographic regions, we showed that epigenetically males age faster than females, whereas no significant sex differences were found between the regions. CONCLUSIONS We performed the first study of the epigenetic data of the Yakutia cohort, paying special attention to region-specific features, aging processes, age acceleration, and sex specificity.
Collapse
Affiliation(s)
- Alena Kalyakulina
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia.
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia.
| | - Igor Yusipov
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Elena Kondakova
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | | | - Cristina Giuliani
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126, Bologna, Italy
| | - Tatiana Sivtseva
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Sergey Semenov
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Artem Ksenofontov
- State Budgetary Institution of the Republic of Sakha (Yakutia) Republican Center for Public Health and Medical Prevention, Yakutsk, 677001, Russia
| | - Maria Nikolaeva
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia, 450054
| | - Raisa Zakharova
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Maria Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Mikhail Ivanchenko
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
19
|
Zeidan RS, McElroy T, Rathor L, Martenson MS, Lin Y, Mankowski RT. Sex differences in frailty among older adults. Exp Gerontol 2023; 184:112333. [PMID: 37993077 DOI: 10.1016/j.exger.2023.112333] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
By definition, aging is a natural, gradual and continuous process. On the other hand, frailty reflects the increase in vulnerability to stressors and shortens the time without disease (health span) while longevity refers to the length of life (lifespan). The average life expectancy has significantly increased during the last few decades. A longer lifespan has been accompanied by an increase in frailty and decreased independence in older adults, with major differences existing between men and women. For example, women tend to live longer than men but also experience higher rates of frailty and disability. Sex differences prevent optimization of lifestyle interventions and therapies to effectively prevent frailty. Sex differences in frailty and aging are rooted in a complex interplay between uncontrollable (genetic, epigenetic, physiological), and controllable factors (psychosocial and lifestyle factors). Thus, understanding the underlying causes of sex differences in frailty and aging is essential for developing personalized interventions to promote healthy aging and improve quality of life in older men and women. In this review, we have discussed the key contributors and knowledge gaps related to sex differences in aging and frailty.
Collapse
Affiliation(s)
- Rola S Zeidan
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States of America; Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, United States of America.
| | - Taylor McElroy
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States of America; Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, United States of America.
| | - Laxmi Rathor
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States of America.
| | - Matthew S Martenson
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States of America.
| | - Yi Lin
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States of America.
| | - Robert T Mankowski
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States of America.
| |
Collapse
|
20
|
Meier HCS, Mitchell C, Karadimas T, Faul JD. Systemic inflammation and biological aging in the Health and Retirement Study. GeroScience 2023; 45:3257-3265. [PMID: 37501048 PMCID: PMC10643484 DOI: 10.1007/s11357-023-00880-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023] Open
Abstract
Chronic, low-level systemic inflammation associated with aging, or inflammaging, is a risk factor for several chronic diseases and mortality. Using data from the Health and Retirement Study, we generated a continuous latent variable for systemic inflammation from seven measured indicators of inflammation and examined associations with another biomarker of biological aging, DNA methylation age acceleration measured by epigenetic clocks, and 4-year mortality (N = 3,113). We found that greater systemic inflammation was positively associated with DNA methylation age acceleration for 10 of the 13 epigenetic clocks, after adjustment for sociodemographics and chronic disease risk factors. The latent variable for systemic inflammation was associated with 4-year mortality independent of DNA methylation age acceleration and was a better predictor of 4-year mortality than any of the epigenetic clocks examined, as well as mortality risk factors, including obesity and multimorbidity. Inflammaging and DNA methylation age acceleration may represent different biological processes contributing to mortality risk. Leveraging multiple measured inflammation markers to capture inflammaging is important for biology of aging research.
Collapse
Affiliation(s)
- Helen C S Meier
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson Street, Ann Arbor, MI, 48106-1248, USA.
| | - Colter Mitchell
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson Street, Ann Arbor, MI, 48106-1248, USA
| | - Thomas Karadimas
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson Street, Ann Arbor, MI, 48106-1248, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson Street, Ann Arbor, MI, 48106-1248, USA
| |
Collapse
|
21
|
Janekrongtham C, Salazar M, Doung-ngern P. Sex Differences in Serious Adverse Events Reported Following Booster Doses of COVID-19 Vaccination in Thailand: A Countrywide Nested Unmatched Case-Control Study. Vaccines (Basel) 2023; 11:1772. [PMID: 38140176 PMCID: PMC10747632 DOI: 10.3390/vaccines11121772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 12/24/2023] Open
Abstract
A booster dose of a COVID-19 vaccine has been proven effective in restoring vaccine effectiveness and is currently recommended for use in some populations at risk of severe COVID-19 infection. Since sex differences in adverse events are significant in response to the vaccines, the safety of booster selection must be studied to avoid serious adverse events (SAE), such as life-threatening diseases. First, this study aimed to identify sex differences in SAE incidences using a prospective cohort design. Second, a nested unmatched case-control study was used to identify factors associated with reported SAE within 30 days after the booster shot. Multivariable logistic regression indicated the adjusted odds ratio by accounting for host and vaccine variables, thus, policy effects. The findings confirmed that SAE was rare and that age-sex-dominated disease classifications differed. Specific to SAE following the booster dose, we found that females aged 12-40 had a higher risk of being reported with SAE than males of the same age, while males over 50 had a higher risk than females. Other risk factors identified were the presence of metabolic syndrome and the use of certain vaccine brands. Mechanisms could be explained by individual host responses rather than the vaccines' direct effect. Therefore, SAE could be preventable by age-sex-specific vaccine selection, post-vaccination precautions, and early symptom detection. Future vaccine development should aim to limit host-specific reactogenicity for safety concerns.
Collapse
Affiliation(s)
- Chawisar Janekrongtham
- Division of AIDS and STIs, Department of Disease Control, Ministry of Public Health, 88/21 Tiwanon Rd., Nonthaburi 11000, Thailand
| | - Mariano Salazar
- Department of Global Public Health, Karolinska Institutet, Widerströmska huset Tomtebodavägen 18 A, Plan 3, 17165 Stockholm, Sweden;
| | - Pawinee Doung-ngern
- Division of Epidemiology, Department of Disease Control, Ministry of Public Health, 88/21 Tiwanon Rd., Nonthaburi 11000, Thailand;
| |
Collapse
|
22
|
Vasileva D, Greenwood CMT, Daley D. A Review of the Epigenetic Clock: Emerging Biomarkers for Asthma and Allergic Disease. Genes (Basel) 2023; 14:1724. [PMID: 37761864 PMCID: PMC10531327 DOI: 10.3390/genes14091724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
DNA methylation (DNAm) is a dynamic, age-dependent epigenetic modification that can be used to study interactions between genetic and environmental factors. Environmental exposures during critical periods of growth and development may alter DNAm patterns, leading to increased susceptibility to diseases such as asthma and allergies. One method to study the role of DNAm is the epigenetic clock-an algorithm that uses DNAm levels at select age-informative Cytosine-phosphate-Guanine (CpG) dinucleotides to predict epigenetic age (EA). The difference between EA and calendar age (CA) is termed epigenetic age acceleration (EAA) and reveals information about the biological capacity of an individual. Associations between EAA and disease susceptibility have been demonstrated for a variety of age-related conditions and, more recently, phenotypes such as asthma and allergic diseases, which often begin in childhood and progress throughout the lifespan. In this review, we explore different epigenetic clocks and how they have been applied, particularly as related to childhood asthma. We delve into how in utero and early life exposures (e.g., smoking, air pollution, maternal BMI) result in methylation changes. Furthermore, we explore the potential for EAA to be used as a biomarker for asthma and allergic diseases and identify areas for further study.
Collapse
Affiliation(s)
- Denitsa Vasileva
- Centre for Heart Lung Innovation, University of British Columbia and Saint Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada;
| | - Celia M. T. Greenwood
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada;
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC H3A 0G4, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada
| | - Denise Daley
- Centre for Heart Lung Innovation, University of British Columbia and Saint Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada;
- Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
23
|
Jackson P, Spector AL, Strath LJ, Antoine LH, Li P, Goodin BR, Hidalgo BA, Kempf MC, Gonzalez CE, Jones AC, Foster TC, Peterson JA, Quinn T, Huo Z, Fillingim R, Cruz-Almeida Y, Aroke EN. Epigenetic age acceleration mediates the relationship between neighborhood deprivation and pain severity in adults with or at risk for knee osteoarthritis pain. Soc Sci Med 2023; 331:116088. [PMID: 37473540 PMCID: PMC10407756 DOI: 10.1016/j.socscimed.2023.116088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/08/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
An estimated 250 million people worldwide suffer from knee osteoarthritis (KOA), with older adults having greater risk. Like other age-related diseases, residents of high-deprivation neighborhoods experience worse KOA pain outcomes compared to their more affluent neighbors. The purpose of this study was to examine the relationship between neighborhood deprivation and pain severity in KOA and the influence of epigenetic age acceleration (EpAA) on that relationship. The sample of 128 participants was mostly female (60.9%), approximately half non-Hispanic Black (49.2%), and had a mean age of 58 years. Spearman bivariate correlations revealed that pain severity positively correlated with EpAA (ρ = 0.47, p ≤ 0.001) and neighborhood deprivation (ρ = 0.25, p = 0.004). We found a positive significant relationship between neighborhood deprivation and EpAA (ρ = 0.47, p ≤ 0.001). Results indicate a mediating relationship between neighborhood deprivation (predictor), EpAA (mediator), and pain severity (outcome variable). There was a significant indirect effect of neighborhood deprivation on pain severity through EpAA, as the mediator accounted for a moderate portion of the total effect, PM = 0.44. Epigenetic age acceleration may act as a mechanism through which neighborhood deprivation leads to worse KOA pain outcomes and may play a role in the well-documented relationship between the neighborhood of residence and age-related diseases.
Collapse
Affiliation(s)
- Pamela Jackson
- School of Public Health, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Antoinette L Spector
- School of Rehabilitation Sciences and Technology, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI, 53201, USA; Pain Research and Intervention Center of Excellence (PRICE), University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA.
| | - Larissa J Strath
- Department of Community Dentistry and Behavioral Science, University of Florida, 1329 16th Street Southwest, Gainesville, FL, 32608, USA; Pain Research and Intervention Center of Excellence (PRICE), University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA.
| | - Lisa H Antoine
- Department of Psychology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Peng Li
- School of Nursing, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Burel R Goodin
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, USA.
| | - Bertha A Hidalgo
- School of Public Health, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Mirjam-Colette Kempf
- School of Nursing, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Cesar E Gonzalez
- Department of Psychology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Alana C Jones
- School of Public Health, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Thomas C Foster
- Department of Neuroscience, University of Florida, 1149 Newell Dr, Gainesville, FL, 32610, USA.
| | - Jessica A Peterson
- Pain Research and Intervention Center of Excellence (PRICE), University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA.
| | - Tammie Quinn
- Department of Psychology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, 2004 Mowry Road, Gainesville, FL, 32603, USA.
| | - Roger Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, 1329 16th Street Southwest, Gainesville, FL, 32608, USA; Pain Research and Intervention Center of Excellence (PRICE), University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA.
| | - Yenisel Cruz-Almeida
- Department of Community Dentistry and Behavioral Science, University of Florida, 1329 16th Street Southwest, Gainesville, FL, 32608, USA; Pain Research and Intervention Center of Excellence (PRICE), University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA; Department of Neuroscience, University of Florida, 1149 Newell Dr, Gainesville, FL, 32610, USA.
| | - Edwin N Aroke
- School of Nursing, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
24
|
Mareckova K, Pacinkova A, Marecek R, Sebejova L, Izakovicova Holla L, Klanova J, Brazdil M, Nikolova YS. Longitudinal study of epigenetic aging and its relationship with brain aging and cognitive skills in young adulthood. Front Aging Neurosci 2023; 15:1215957. [PMID: 37593374 PMCID: PMC10427722 DOI: 10.3389/fnagi.2023.1215957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction The proportion of older adults within society is sharply increasing and a better understanding of how we age starts to be critical. However, given the paucity of longitudinal studies with both neuroimaging and epigenetic data, it remains largely unknown whether the speed of the epigenetic clock changes over the life course and whether any such changes are proportional to changes in brain aging and cognitive skills. To fill these knowledge gaps, we conducted a longitudinal study of a prenatal birth cohort, studied epigenetic aging across adolescence and young adulthood, and evaluated its relationship with brain aging and cognitive outcomes. Methods DNA methylation was assessed using the Illumina EPIC Platform in adolescence, early and late 20 s, DNA methylation age was estimated using Horvath's epigenetic clock, and epigenetic age gap (EpiAGE) was calculated as DNA methylation age residualized for batch, chronological age and the proportion of epithelial cells. Structural magnetic resonance imaging (MRI) was acquired in both the early 20 s and late 20 s using the same 3T Prisma MRI scanner and brain age was calculated using the Neuroanatomical Age Prediction using R (NAPR) platform. Cognitive skills were assessed using the Wechsler Adult Intelligence Scale (WAIS) in the late 20 s. Results The EpiAGE in adolescence, the early 20 s, and the late 20 s were positively correlated (r = 0.34-0.47), suggesting that EpiAGE is a relatively stable characteristic of an individual. Further, a faster pace of aging between the measurements was positively correlated with EpiAGE at the end of the period (r = 0.48-0.77) but negatively correlated with EpiAGE at the earlier time point (r = -0.42 to -0.55), suggesting a compensatory mechanism where late matures might be catching up with the early matures. Finally, higher positive EpiAGE showed small (Adj R2 = 0.03) but significant relationships with a higher positive brain age gap in all participants and lower full-scale IQ in young adult women in the late 20 s. Discussion We conclude that the EpiAGE is a relatively stable characteristic of an individual across adolescence and early adulthood, but that it shows only a small relationship with accelerated brain aging and a women-specific relationship with worse performance IQ.
Collapse
Affiliation(s)
- Klara Mareckova
- Brain and Mind Research, Central European Institute of Technology (CEITEC), Masaryk University (MU), Brno, Czechia
- 1 Department of Neurology, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Anna Pacinkova
- Brain and Mind Research, Central European Institute of Technology (CEITEC), Masaryk University (MU), Brno, Czechia
- Faculty of Informatics, Masaryk University, Brno, Czechia
| | - Radek Marecek
- Brain and Mind Research, Central European Institute of Technology (CEITEC), Masaryk University (MU), Brno, Czechia
| | | | - Lydie Izakovicova Holla
- Department of Stomatology, St. Anne’s Univ. Hospital and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Milan Brazdil
- Brain and Mind Research, Central European Institute of Technology (CEITEC), Masaryk University (MU), Brno, Czechia
- 1 Department of Neurology, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Yuliya S. Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Iannuzzi V, Bacalini MG, Franceschi C, Giuliani C. The role of genetics and epigenetics in sex differences in human survival. GENUS 2023. [DOI: 10.1186/s41118-023-00181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
AbstractSex differences in human survival have been extensively investigated in many studies that have in part uncovered the biological determinants that promote a longer life in females with respect to males. Moreover, researches performed in the past years have prompted increased awareness about the biological effects of environmental factors that can modulate the magnitude of the sex gap in survival. Besides the genetic background, epigenetic modifications like DNA methylation, that can modulate cell function, have been particularly studied in this framework. In this review, we aim to summarize the role of the genetic and epigenetic mechanisms in promoting female advantage from the early in life (“INNATE” features), and in influencing the magnitude of the gap in sex differences in survival and ageing (“VARIABLE” features). After briefly discussing the biological bases of sex determination in humans, we will provide much evidence showing that (i) “innate” mechanisms common to all males and to all females (both genetic and epigenetic) play a major role in sex differences in lifespan; (ii) “variable” genetic and epigenetic patterns, that vary according to context, populations and exposures to different environments, can affect the magnitude of the gap in sex differences in survival. Then we will describe recent findings in the use of epigenetic clocks to uncover sex differences in biological age and thus potentially in mortality. In conclusion, we will discuss how environmental factors cannot be kept apart from the biological factors providing evidence from the field of human ecology.
Collapse
|
26
|
O’Shea DM, Galvin JE. Female APOE ɛ4 Carriers with Slow Rates of Biological Aging Have Better Memory Performances Compared to Female ɛ4 Carriers with Accelerated Aging. J Alzheimers Dis 2023; 92:1269-1282. [PMID: 36872781 PMCID: PMC10535361 DOI: 10.3233/jad-221145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND Evidence suggests that APOE ɛ4 carriers have worse memory performances compared to APOE ɛ4 non-carriers and effects may vary by sex and age. Estimates of biological age, using DNA methylation may enhance understanding of the associations between sex and APOE ɛ4 on cognition. OBJECTIVE To investigate whether associations between APOE ɛ4 status and memory vary according to rates of biological aging, using a DNA methylation age biomarker, in older men and women without dementia. METHODS Data were obtained from 1,771 adults enrolled in the 2016 wave of the Health and Retirement Study. A series of ANCOVAs were used to test the interaction effects of APOE ɛ4 status and aging rates (defined as 1 standard deviation below (i.e., slow rate), or above (i.e., fast rate) their sex-specific mean rate of aging on a composite measure of verbal learning and memory. RESULTS APOE ɛ4 female carriers with slow rates of GrimAge had significantly better memory performances compared to fast and average aging APOE ɛ4 female carriers. There was no effect of aging group rate on memory in the female non-carriers and no significant differences in memory according to age rate in either male APOE ɛ4 carriers or non-carriers. CONCLUSION Slower rates of aging in female APOE ɛ4 carriers may buffer against the negative effects of the ɛ4 allele on memory. However, longitudinal studies with larger sample sizes are needed to evaluate risk of dementia/memory impairment based on rates of aging in female APOE ɛ4 carriers.
Collapse
Affiliation(s)
- Deirdre M. O’Shea
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| | - James E. Galvin
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| |
Collapse
|
27
|
Engelbrecht HR, Merrill SM, Gladish N, MacIsaac JL, Lin DTS, Ecker S, Chrysohoou CA, Pes GM, Kobor MS, Rehkopf DH. Sex differences in epigenetic age in Mediterranean high longevity regions. FRONTIERS IN AGING 2022; 3:1007098. [PMID: 36506464 PMCID: PMC9726738 DOI: 10.3389/fragi.2022.1007098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
Abstract
Sex differences in aging manifest in disparities in disease prevalence, physical health, and lifespan, where women tend to have greater longevity relative to men. However, in the Mediterranean Blue Zones of Sardinia (Italy) and Ikaria (Greece) are regions of centenarian abundance, male-female centenarian ratios are approximately one, diverging from the typical trend and making these useful regions in which to study sex differences of the oldest old. Additionally, these regions can be investigated as examples of healthy aging relative to other populations. DNA methylation (DNAm)-based predictors have been developed to assess various health biomarkers, including biological age, Pace of Aging, serum interleukin-6 (IL-6), and telomere length. Epigenetic clocks are biological age predictors whose deviation from chronological age has been indicative of relative health differences between individuals, making these useful tools for interrogating these differences in aging. We assessed sex differences between the Horvath, Hannum, GrimAge, PhenoAge, Skin and Blood, and Pace of Aging predictors from individuals in two Mediterranean Blue Zones and found that men displayed positive epigenetic age acceleration (EAA) compared to women according to all clocks, with significantly greater rates according to GrimAge (β = 3.55; p = 1.22 × 10-12), Horvath (β = 1.07; p = 0.00378) and the Pace of Aging (β = 0.0344; p = 1.77 × 10-08). Other DNAm-based biomarkers findings indicated that men had lower DNAm-predicted serum IL-6 scores (β = -0.00301, p = 2.84 × 10-12), while women displayed higher DNAm-predicted proportions of regulatory T cells than men from the Blue Zone (p = 0.0150, 95% Confidence Interval [0.00131, 0.0117], Cohen's d = 0.517). All clocks showed better correlations with chronological age in women from the Blue Zones than men, but all clocks showed large mean absolute errors (MAE >30 years) in both sexes, except for PhenoAge (MAE <5 years). Thus, despite their equal survival to older ages in these Mediterranean Blue Zones, men in these regions remain biologically older by most measured DNAm-derived metrics than women, with the exception of the IL-6 score and proportion of regulatory T cells.
Collapse
Affiliation(s)
- Hannah-Ruth Engelbrecht
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Sarah M. Merrill
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Nicole Gladish
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Julie L. MacIsaac
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - David T. S. Lin
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Simone Ecker
- UCL Cancer Institute, University College London, London, United Kingdom
| | | | - Giovanni M. Pes
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Michael S. Kobor
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Michael S. Kobor, ; David H. Rehkopf,
| | - David H. Rehkopf
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Palo Alto, CA, United States,*Correspondence: Michael S. Kobor, ; David H. Rehkopf,
| |
Collapse
|