1
|
Zhang C, Tian Y, Liu X, Yang X, Jiang S, Zhang G, Yang C, Liu W, Guo W, Zhao W, Yin D. MiR-495 reverses in the mechanical unloading, random rotating and aging induced muscle atrophy via targeting MyoD and inactivating the Myostatin/TGF-β/Smad3 axis. Arch Biochem Biophys 2025; 764:110273. [PMID: 39701202 DOI: 10.1016/j.abb.2024.110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Mechanical unloading can lead to homeostasis imbalance and severe muscle disease, in which muscle atrophy was one of the disused diseases. However, there were limited therapeutic targets for such diseases. In this study, miR-495 was found dramatically reduced in atrophic skeletal muscle induced by mechanical unloading models both in vitro and in vivo, including the random positioning model (RPM), tail-suspension (TS) model, and aged mice model. Enforced miR-495 expression by its mimic could enormously facilitate the differentiation and regeneration of both mouse myoblast C2C12 cells and muscle satellite cells. Furthermore, MyoD was proved as the directly interacted gene of miR-495, and their interaction was crucial for myotube formation. Enforced miR-495 expression could intensively strengthen the muscle mass, in situ muscular electrophysiological indexes, including peak tetanic tension (Po) and peak twitch tension (Pt), and the cross-sectional areas (CSA) of muscle fibers via targeting MyoD and inactivating the Myostatin/TGF-β/Smad3 signaling pathway, indicating that miR-495 can be proposed as an effective target for muscle atrophy treatment induced by in the mechanical unloading, random rotating and aging.
Collapse
Affiliation(s)
- Chenyan Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, China; Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
| | - Yile Tian
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, China; Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Xinli Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Xuezhou Yang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Shanfeng Jiang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Ge Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, China; Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Changqing Yang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Wenjing Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Weihong Guo
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, China; Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Wenzhe Zhao
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Dachuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
| |
Collapse
|
2
|
Shademan M, Mei H, van Engelen B, Ariyurek Y, Kloet S, Raz V. PABPN1 loss-of-function causes APA-shift in oculopharyngeal muscular dystrophy. HGG ADVANCES 2024; 5:100269. [PMID: 38213032 PMCID: PMC10840355 DOI: 10.1016/j.xhgg.2024.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
Alternative polyadenylation (APA) at the 3' UTR of transcripts contributes to the cell transcriptome. APA is suppressed by the nuclear RNA-binding protein PABPN1. Aging-associated reduced PABPN1 levels in skeletal muscles lead to muscle wasting. Muscle weakness in oculopharyngeal muscular dystrophy (OPMD) is caused by short alanine expansion in PABPN1 exon1. The expanded PABPN1 forms nuclear aggregates, an OPMD hallmark. Whether the expanded PABPN1 affects APA and how it contributes to muscle pathology is unresolved. To investigate these questions, we developed a procedure including RNA library preparation and a simple pipeline calculating the APA-shift ratio as a readout for PABPN1 activity. Comparing APA-shift results to previously published PAS utilization and APA-shift results, we validated this procedure. The procedure was then applied on the OPMD cell model and on RNA from OPMD muscles. APA-shift was genome-wide in the mouse OPMD model, primarily affecting muscle transcripts. In OPMD individuals, APA-shift was enriched with muscle transcripts. In an OPMD cell model APA-shift was not significant. APA-shift correlated with reduced expression levels of a subset of PABPN1 isoforms, whereas the expression of the expanded PABPN1 did not correlate with APA-shift. PABPN1 activity is not affected by the expression of expanded PABPN1, but rather by reduced PABPN1 expression levels. In muscles, PABPN1 activity initially affects muscle transcripts. We suggest that muscle weakness in OPMD is caused by PABPN1 loss-of-function leading to APA-shift that primarily affects in muscle transcripts.
Collapse
Affiliation(s)
- Milad Shademan
- Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, the Netherlands
| | - Baziel van Engelen
- Department of Neurology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Yavuz Ariyurek
- Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Susan Kloet
- Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Vered Raz
- Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
3
|
Gallicchio L, Olivares GH, Berry CW, Fuller MT. Regulation and function of alternative polyadenylation in development and differentiation. RNA Biol 2023; 20:908-925. [PMID: 37906624 PMCID: PMC10730144 DOI: 10.1080/15476286.2023.2275109] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Alternative processing of nascent mRNAs is widespread in eukaryotic organisms and greatly impacts the output of gene expression. Specifically, alternative cleavage and polyadenylation (APA) is a co-transcriptional molecular process that switches the polyadenylation site (PAS) at which a nascent mRNA is cleaved, resulting in mRNA isoforms with different 3'UTR length and content. APA can potentially affect mRNA translation efficiency, localization, stability, and mRNA seeded protein-protein interactions. APA naturally occurs during development and cellular differentiation, with around 70% of human genes displaying APA in particular tissues and cell types. For example, neurons tend to express mRNAs with long 3'UTRs due to preferential processing at PASs more distal than other PASs used in other cell types. In addition, changes in APA mark a variety of pathological states, including many types of cancer, in which mRNAs are preferentially cleaved at more proximal PASs, causing expression of mRNA isoforms with short 3'UTRs. Although APA has been widely reported, both the function of APA in development and the mechanisms that regulate the choice of 3'end cut sites in normal and pathogenic conditions are still poorly understood. In this review, we summarize current understanding of how APA is regulated during development and cellular differentiation and how the resulting change in 3'UTR content affects multiple aspects of gene expression. With APA being a widespread phenomenon, the advent of cutting-edge scientific techniques and the pressing need for in-vivo studies, there has never been a better time to delve into the intricate mechanisms of alternative cleavage and polyadenylation.
Collapse
Affiliation(s)
- Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, USA
| | - Gonzalo H. Olivares
- Escuela de Kinesiología, Facultad de Medicina y Ciencias de la Salud, Center for Integrative Biology (CIB), Universidad Mayor, Chile and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Margaret T. Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|