1
|
Gonzalez K, Merlin AC, Roye E, Ju B, Lee Y, Chicco AJ, Chung E. Voluntary Wheel Running Reduces Cardiometabolic Risks in Female Offspring Exposed to Lifelong High-Fat, High-Sucrose Diet. Med Sci Sports Exerc 2024; 56:1378-1389. [PMID: 38595204 PMCID: PMC11250925 DOI: 10.1249/mss.0000000000003443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
PURPOSE Maternal and postnatal overnutrition has been linked to an increased risk of cardiometabolic diseases in offspring. This study investigated the impact of adult-onset voluntary wheel running to counteract cardiometabolic risks in female offspring exposed to a life-long high-fat, high-sucrose (HFHS) diet. METHODS Dams were fed either an HFHS or a low-fat, low-sucrose (LFLS) diet starting from 8 wk before pregnancy and continuing throughout gestation and lactation. Offspring followed their mothers' diets. At 15 wk of age, they were divided into sedentary (Sed) or voluntary wheel running (Ex) groups, resulting in four groups: LFLS/Sed ( n = 10), LFLS/Ex ( n = 5), HFHS/Sed ( n = 6), HFHS/Ex ( n = 5). Cardiac function was assessed at 25 wk, with tissue collection at 26 wk for mitochondrial respiratory function and protein analysis. Data were analyzed using two-way ANOVA. RESULTS Although maternal HFHS diet did not affect the offspring's body weight at weaning, continuous HFHS feeding postweaning resulted in increased body weight and adiposity, irrespective of the exercise regimen. HFHS/Sed offspring showed increased left ventricular wall thickness and elevated expression of enzymes involved in fatty acid transport (CD36, FABP3), lipogenesis (DGAT), glucose transport (GLUT4), oxidative stress (protein carbonyls, nitrotyrosine), and early senescence markers (p16, p21). Their cardiac mitochondria displayed lower oxidative phosphorylation (OXPHOS) efficiency and reduced expression of OXPHOS complexes and fatty acid metabolism enzymes (ACSL5, CPT1B). However, HFHS/Ex offspring mitigated these effects, aligning more with LFLS/Sed offspring. CONCLUSIONS Adult-onset voluntary wheel running effectively counteracts the detrimental cardiac effects of a lifelong HFHS diet, improving mitochondrial efficiency, reducing oxidative stress, and preventing early senescence. This underscores the significant role of physical activity in mitigating diet-induced cardiometabolic risks.
Collapse
Affiliation(s)
- Kassandra Gonzalez
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
| | - Andrea Chiñas Merlin
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
- Biomedical Engineering, Tecnologico de Monterrey, Campus Monterrey, MEXICO
| | - Erin Roye
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
| | - Beomsoo Ju
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, University of West Florida, Pensacola, FL
| | - Youngil Lee
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, University of West Florida, Pensacola, FL
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Eunhee Chung
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
| |
Collapse
|
2
|
Rostamzadeh F, Najafipour H, Aminizadeh S, Jafari E. Therapeutic effects of the combination of moderate-intensity endurance training and MitoQ supplementation in rats with isoproterenol-induced myocardial injury: The role of mitochondrial fusion, fission, and mitophagy. Biomed Pharmacother 2024; 170:116020. [PMID: 38147733 DOI: 10.1016/j.biopha.2023.116020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023] Open
Abstract
INTRODUCTION Mitochondrial dysfunction causes myocardial disease. This study investigated the effects of MitoQ alone and in combination with moderate-intensity endurance training (EX) on cardiac function and content and mRNA expression of several proteins involved in mitochondrial quality control in isoproterenol (ISO)-induced heart injuries METHODS: Seven groups of CTL, ISO, ISO-EX, ISO-MitoQ-125, ISO-MitoQ-250, ISO-EX+MitoQ-125, and ISO-EX+MitoQ-250 were assigned. Rats were trained on a treadmill, and the MitoQ groups received MitoQ in drinking water for 8 weeks, starting one week after the induction of heart injury. Arterial pressure and cardiac function indices, mRNA expression, protein content, oxidant and antioxidant markers, fibrosis, and histopathological changes were assessed by physiograph, Real-Time PCR, immunofluorescence, calorimetry, Masson's trichrome, and H&E staining, respectively. RESULTS The impacts of MitoQ-125, EX+MitoQ-125, and EX+MitoQ-250 on arterial pressure and left ventricular systolic pressure were higher than MitoQ-250 or EX alone. ± dp/dt max were higher in ISO-EX+MitoQ-125 and ISO-EX+MitoQ-250 than ISO-MitoQ-125 and ISO-MitoQ-250 groups, respectively. Histopathological scores and fibrosis decreased in ISO-EX, ISO-MitoQ-125, ISO-EX+MitoQ-125, and ISO-EX+MitoQ-250 groups. The restoration of MFN2, PINK-1, and FIS-1 changes was higher in ISO-EX+MitoQ-125 and ISO-EX+MitoQ-250 than ISO-EX, ISO-MitoQ-125 and ISO-MitoQ-250 groups. The expression of MFN2 and PINK-1 was lower in ISO-MitoQ-125 and ISO-EX+MitoQ-125 than ISO and CTL groups. The expression of FIS-1 in ISO-EX and ISO-EX+MitoQ-250 increased compared to CTL and ISO groups. MDA decreased in ISO-MitoQ-125 and ISO-EX+MitoQ-125 groups. CONCLUSION Exercise and MitoQ combination have additive effects on cardiac function by modulating cardiac mitochondria quality. This study provided a possible therapy to treat heart injuries.
Collapse
Affiliation(s)
- Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Soheil Aminizadeh
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Razan MR, Amissi S, Islam RA, Graham JL, Stanhope KL, Havel PJ, Rahimian R. Moderate-Intensity Exercise Improves Mesenteric Arterial Function in Male UC Davis Type-2 Diabetes Mellitus (UCD-T2DM) Rats: A Shift in the Relative Importance of Endothelium-Derived Relaxing Factors (EDRF). Biomedicines 2023; 11:biomedicines11041129. [PMID: 37189747 DOI: 10.3390/biomedicines11041129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
The beneficial cardiovascular effects of exercise are well documented, however the mechanisms by which exercise improves vascular function in diabetes are not fully understood. This study investigates whether there are (1) improvements in blood pressure and endothelium-dependent vasorelaxation (EDV) and (2) alterations in the relative contribution of endothelium-derived relaxing factors (EDRF) in modulating mesenteric arterial reactivity in male UC Davis type-2 diabetes mellitus (UCD-T2DM) rats, following an 8-week moderate-intensity exercise (MIE) intervention. EDV to acetylcholine (ACh) was measured before and after exposure to pharmacological inhibitors. Contractile responses to phenylephrine and myogenic tone were determined. The arterial expressions of endothelial nitric oxide (NO) synthase (eNOS), cyclooxygenase (COX), and calcium-activated potassium channel (KCa) channels were also measured. T2DM significantly impaired EDV, increased contractile responses and myogenic tone. The impairment of EDV was accompanied by elevated NO and COX importance, whereas the contribution of prostanoid- and NO-independent (endothelium-derived hyperpolarization, EDH) relaxation was not apparent compared to controls. MIE 1) enhanced EDV, while it reduced contractile responses, myogenic tone and systolic blood pressure (SBP), and 2) caused a shift away from a reliance on COX toward a greater reliance on EDH in diabetic arteries. We provide the first evidence of the beneficial effects of MIE via the altered importance of EDRF in mesenteric arterial relaxation in male UCD-T2DM rats.
Collapse
Affiliation(s)
- Md Rahatullah Razan
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - Said Amissi
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - Rifat Ara Islam
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - James L Graham
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Roshanak Rahimian
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
4
|
Boldt K, Joumaa V, Turnbull J, Fedak PW, Herzog W. A high-whey-protein diet does not enhance mechanical and structural remodeling of cardiac muscle in response to aerobic exercise in rats. Phys Act Nutr 2022; 26:28-38. [PMID: 35510443 PMCID: PMC9081358 DOI: 10.20463/pan.2022.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/18/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Aerobic exercise training results in distinct structural and mechanical myocardial adaptations. In skeletal muscle, whey protein supplementation is effective in enhancing muscle adaptation following resistance exercise. However, it is unclear whether cardiac adaptation to aerobic exercise can be enhanced by systematic protein supplementation. METHODS Twelve-week-old rats were assigned to 12 weeks of either sedentary or aerobic exercise with either a standard (Sed+Standard, Ex+Standard) or high-protein (Sed+Pro, Ex+Pro) diet. Echocardiography was used to measure cardiac structural remodeling and performance. Skinned cardiac fiber bundles were used to determine the active and passive stress properties, maximum shortening velocity, and calcium sensitivity. RESULTS Aerobic training was characterized structurally by increases in ventricle volume (Ex+Standard, 19%; Ex+Pro, 29%) and myocardial thickness (Ex+Standard, 26%; Ex+- Pro, 12%) compared to that of baseline. Skinned trabecula r fiber bundles also had a greater unloaded shortening velocity (Sed+Standard, 1.04±0.05; Sed+Pro, 1.07±0.03; Ex- +Standard, 1.16±0.04; Ex+Pro, 1.18±0.05 FL/s) and calcium sensitivity (pCa50: Sed+Standard, 6.04±0.17; Sed+Pro, 6.08±0.19; Ex+Standard, 6.30±0.09; Ex+Pro, 6.36±0.12) in trained hearts compared to that of hearts from sedentary animals. However, the addition of a high-protein diet did not provide additional benefits to either the structural or mechanical adaptations of the myocardium. CONCLUSION Therefore, it seems that a high-whey-protein diet does not significantly enhance adaptations of the heart to aerobic exercise in comparison to that of a standard diet.
Collapse
Affiliation(s)
- Kevin Boldt
- Human Performance Laboratory, University of Calgary, Calgary, Canada
| | - Venus Joumaa
- Human Performance Laboratory, University of Calgary, Calgary, Canada
| | - Jeannine Turnbull
- Health Center, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Paul W.M. Fedak
- Health Center, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Walter Herzog
- Human Performance Laboratory, University of Calgary, Calgary, Canada
- Department of Cardiac Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
5
|
Boldt K, Joumaa V, Turnbull J, Fedak PWM, Herzog W. Mechanical and Structural Remodeling of Cardiac Muscle after Aerobic and Resistance Exercise Training in Rats. Med Sci Sports Exerc 2021; 53:1583-1594. [PMID: 33731663 DOI: 10.1249/mss.0000000000002625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Aerobic and resistance exercise training results in distinct structural changes of the heart. The mechanics of how cardiac cells adapt to resistance training and the benefits to cells when combining aerobic and resistance exercise remains largely unknown. The purpose of this study was to compare mechanical adaptations of skinned cardiac fiber bundles after chronic resistance, aerobic and combined exercise training in rats. We hypothesized that differences in mechanical function on the fiber bundle level coincide with differences previously reported in the structure of the heart. METHOD Twelve-week-old rats were assigned to (i) an aerobic running group (n = 6), (ii) a ladder climbing resistance group (n = 6), (iii) a combination group subjected to aerobic and resistance training (n = 6), or (iv) a sedentary (control) group (n = 5). Echocardiography was used to measure cardiac structural remodeling. Skinned cardiac fiber bundles were used to determine active and passive force properties, maximal shortening velocity, and calcium sensitivity. RESULTS Aerobically trained animals had 43%-49% greater ventricular volume and myocardial thickness, and a 4%-17% greater shortening velocity and calcium sensitivity compared with control group rats. Resistance-trained rats had 37%-71% thicker ventricular walls, a 56% greater isometric force production, a 9% greater shortening velocity, and a 4% greater calcium sensitivity compared with control group rats. The combination exercise-trained rats had 25%-43% greater ventricular volume and myocardial wall thickness, a 55% greater active force production, a 7% greater shortening velocity, and a 60% greater cross-bridge cooperativity compared with control group rats. CONCLUSIONS The heart adapts differently to each exercise modality, and a combination of aerobic and resistance training may have the greatest benefit for cardiac health and performance.
Collapse
Affiliation(s)
- Kevin Boldt
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, CANADA
| | - Venus Joumaa
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, CANADA
| | - Jeannine Turnbull
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Libin Cardiovascular Institute, Calgary, Alberta, CANADA
| | - Paul W M Fedak
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Libin Cardiovascular Institute, Calgary, Alberta, CANADA
| | | |
Collapse
|
6
|
Boldt K, Mattiello S, Joumaa V, Turnbull J, Fedak PWM, Herzog W. Consumption of a high-fat-high-sucrose diet partly diminishes mechanical and structural adaptations of cardiac muscle following resistance training. Phys Act Nutr 2021; 25:8-14. [PMID: 34315201 PMCID: PMC8342188 DOI: 10.20463/pan.2021.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022] Open
Abstract
[Purpose] The purpose of this study was to investigate the effects of a high-fat high-sucrose (HFHS) diet on previously reported adaptations of cardiac morphological and contractile properties to resistance training. [Methods] Twelve-week-old rats participated in 12-weeks of resistance exercise training and consumed an HFHS diet. Echocardiography and skinned cardiac muscle fiber bundle testing were performed to determine the structural and mechanical adaptations. [Results] Compared to chow-fed sedentary animals, both HFHS- and chow-fed resistance-trained animals had thicker left ventricular walls. Isolated trabecular fiber bundles from chow-fed resistance-trained animals had greater force output, shortening velocities, and calcium sensitivities than those of chow-fed sedentary controls. However, trabeculae from the HFHS resistance-trained animals had greater force output but no change in unloaded shortening velocity or calcium sensitivity than those of the chow-fed sedentary group animals. [Conclusion] Resistance exercise training led to positive structural and mechanical adaptations of the heart, which were partly offset by the HFHS diet.
Collapse
Affiliation(s)
- Kevin Boldt
- Human Performance Laboratory, University of Calgary, Calgary, Canada
| | - Stela Mattiello
- Department of Physical Therapy, Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Venus Joumaa
- Human Performance Laboratory, University of Calgary, Calgary, Canada
| | - Jeannine Turnbull
- Health Centre, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Paul W M Fedak
- Health Centre, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Walter Herzog
- Human Performance Laboratory, University of Calgary, Calgary, Canada.,Department of Cardiac Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
7
|
Kim SK, Avila JJ, Massett MP. Interaction of genetic background and exercise training intensity on endothelial function in mouse aorta. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:53-68. [PMID: 31908575 PMCID: PMC6940500 DOI: 10.4196/kjpp.2020.24.1.53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/18/2019] [Accepted: 11/07/2019] [Indexed: 01/22/2023]
Abstract
The purpose of this study was to characterize the genetic contribution to endothelial adaptation to exercise training. Vasoreactivity was assessed in aortas from four inbred mouse strains (129S1, B6, NON, and SJL) after 4 weeks of moderate intensity continuous exercise training (MOD), high intensity interval training (HIT) or in sedentary controls (SED). Intrinsic variations in endothelium-dependent vasorelaxation (EDR) to acetylcholine (ACh) as well as vasocontractile responses were observed across SED groups. For responses to exercise training, there was a significant interaction between mouse strain and training intensity on EDR. Exercise training had no effect on EDR in aortas from 129S1 and B6 mice. In NON, EDR was improved in aortas from MOD and HIT compared with respective SED, accompanied by diminished responses to PE in those groups. Interestingly, EDR was impaired in aorta from SJL HIT compared with SED. The transcriptional activation of endothelial genes was also influenced by the interaction between mouse strain and training intensity. The number of genes altered by HIT was greater than MOD, and there was little overlap between genes altered by HIT and MOD. HIT was associated with gene pathways for inflammatory responses. NON MOD genes showed enrichment for vessel growth pathways. These findings indicate that exercise training has non-uniform effects on endothelial function and transcriptional activation of endothelial genes depending on the interaction between genetic background and training intensity.
Collapse
Affiliation(s)
- Seung Kyum Kim
- Department of Sports Science, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Joshua J Avila
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Michael P Massett
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
8
|
Boldt K, Rios JL, Joumaa V, Herzog W. Mechanical function of cardiac fibre bundles is partly protected by exercise in response to diet-induced obesity in rats. Appl Physiol Nutr Metab 2020; 46:46-54. [PMID: 32598858 DOI: 10.1139/apnm-2020-0275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Decrements in contractile function resulting from obesity are thought to be major reasons for the link between obesity and cardiovascular disease, while exercise has been shown to improve cardiac muscle contractile function. The purpose of this study was to evaluate cardiac contractile properties following obesity induction and the potential protective effect of exercise. Twelve-week-old rats (n = 30) were organized into either a chow diet or a high-fat, high-sucrose (HFHS) diet group. Following 12 weeks of obesity induction the HFHS group animals were stratified and grouped into sedentary (HFHS+Sed) and exercise (HFHS+Ex) groups for an additional 12 weeks. Following 24 weeks of diet intervention, with 12 weeks of aerobic exercise (25 m/min, 30 min/day, 5 days/week) for the HFHS+Ex group, skinned cardiac fibre bundle testing was used to evaluate cardiac contractile properties. Body fat and mass were significantly greater in the HFHS-fed animals compared with the chow controls (p < 0.043). Hearts from rats in the HFHS+Sed group had significantly greater mass (p < 0.03), significantly slower maximum shortening velocity (p = 0.001), and tended to have lower calcium sensitivity (p = 0.077) and a lower proportion of α-myosin heavy chain composition (p = 0.074) than the sedentary chow animals. However, 12 weeks of moderate aerobic exercise partially prevented these decrements in contractile properties. Novelty Cardiac muscle from animals exposed to an obesogenic diet for 24 weeks had impaired contractile properties compared with controls. Obesity-induced impairment of contractile properties of the heart were partially prevented by a 12-week aerobic exercise regime.
Collapse
Affiliation(s)
- Kevin Boldt
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.,Human Performance Laboratory, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jaqueline Lourdes Rios
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.,Human Performance Laboratory, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Venus Joumaa
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.,Human Performance Laboratory, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Walter Herzog
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.,Human Performance Laboratory, University of Calgary, Calgary, AB T2N 1N4, Canada.,Biomechanics Laboratory, School of Sports, Federal University of Santa Catarina, SC 88040-900, Brazil
| |
Collapse
|
9
|
Boldt K, MacDonald G, Joumaa V, Herzog W. Mechanical adaptations of skinned cardiac muscle in response to dietary-induced obesity during adolescence in rats. Appl Physiol Nutr Metab 2020; 45:893-901. [PMID: 32134688 DOI: 10.1139/apnm-2019-0726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Childhood obesity is a major risk factor for heart disease during adulthood, independent of adulthood behaviours. Therefore, it seems that childhood obesity leads to partly irreversible decrements in cardiac function. Little is known about how obesity during maturation affects the mechanical properties of the heart. The purpose of this study was to evaluate contractile properties in developing hearts from animals with dietary-induced obesity (high-fat high-sucrose diet). We hypothesized that obesity induced during adolescence results in decrements in cardiac contractile function. Three-week-old rats (n = 16) were randomized into control (chow) or dietary-induced obesity (high-fat high-sucrose diet) groups. Following 14 weeks on the diet, skinned cardiac trabeculae fibre bundle testing was performed to evaluate active and passive force, maximum shortening velocity, and calcium sensitivity. Rats in the high-fat high-sucrose diet group had significantly larger body mass and total body fat percentage. There were no differences in maximal active or passive properties of hearts between groups. Hearts from the high-fat high-sucrose diet rats had significantly slower maximum shortening velocities and lower calcium sensitivity than controls. Decreased shortening velocity and calcium sensitivity in hearts of obese animals may constitute increased risk of cardiac disease in adulthood. Novelty Cardiac muscle from animals exposed to an obesogenic diet during development had lower shortening velocity and calcium sensitivity than those from animals fed a chow diet. These alterations in mechanical function may be a mechanism for the increased risk of cardiac disease observed in adulthood.
Collapse
Affiliation(s)
- Kevin Boldt
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.,Human Performance Laboratory, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Graham MacDonald
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.,Human Performance Laboratory, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Venus Joumaa
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.,Human Performance Laboratory, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Walter Herzog
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.,Human Performance Laboratory, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
10
|
Boldt KR, Rios JL, Joumaa V, Herzog W. Force properties of skinned cardiac muscle following increasing volumes of aerobic exercise in rats. J Appl Physiol (1985) 2018; 125:495-503. [PMID: 29722623 PMCID: PMC6139514 DOI: 10.1152/japplphysiol.00631.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 04/19/2018] [Accepted: 04/30/2018] [Indexed: 11/22/2022] Open
Abstract
The positive effects of chronic endurance exercise training on health and performance have been well documented. These positive effects have been evaluated primarily at the structural level, and work has begun to evaluate mechanical adaptations of the myocardium. However, it remains poorly understood how the volume of exercise training affects cardiac adaptation. To gain some understanding, we subjected 3-mo-old Sprague-Dawley rats ( n = 23) to treadmill running for 11 wk at one of three exercise volumes (moderate, high, and extra high). Following training, hearts were excised and mechanical testing was completed on skinned trabecular fiber bundles. Performance on a maximal fitness test was dose dependent on training volume, where greater levels of training led to greater performance. No differences were observed between animals from any group for maximal active stress and passive stress at a sarcomere length of 2.2 µm. Heart mass and passive stress at sarcomere lengths beyond 2.4 µm increased in a dose-dependent manner for animals in the control and moderate- and high-duration groups. However, hearts from animals in the extra high-duration group presented with inhibited responses for heart mass and passive stress, despite performing greatest on a graded treadmill fitness test. These results suggest that heart mass and passive stress adapt in a dose-dependent manner, until exercise becomes excessive and adaptation is inhibited. Our findings are in agreement with the beneficial role exercise has in cardiac adaptation. However, excessive exercise comes with risks of maladaptation, which must be weighed against the desire to increase performance. NEW & NOTEWORTHY For the first time, we present findings on cardiac trabecular muscle passive stiffness and show the effect of excessive exercise on the heart. We demonstrated that heart mass increases with exercise until a maximum, after which greater exercise volume results in inhibited adaptation. At paraphysiological lengths, passive stiffness increases with exercise but to a lesser degree with excessive training. Despite greater performance on graded exercise tests, animals in the highest trained group exhibited possible maladaptation.
Collapse
Affiliation(s)
- Kevin R Boldt
- Human Performance Laboratory, University of Calgary , Calgary, Alberta , Canada
- Faculty of Kinesiology, University of Calgary , Calgary, Alberta , Canada
| | - Jaqueline L Rios
- Human Performance Laboratory, University of Calgary , Calgary, Alberta , Canada
- Faculty of Kinesiology, University of Calgary , Calgary, Alberta , Canada
| | - Venus Joumaa
- Human Performance Laboratory, University of Calgary , Calgary, Alberta , Canada
- Faculty of Kinesiology, University of Calgary , Calgary, Alberta , Canada
| | - Walter Herzog
- Human Performance Laboratory, University of Calgary , Calgary, Alberta , Canada
- Faculty of Kinesiology, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
11
|
Yoshizaki A, Antonio EL, Silva Junior JA, Crajoinas RO, Silva FA, Girardi ACC, Bocalini DS, Portes LA, Dos Santos LFN, Carlos FP, Camillo de Carvalho PDT, Tucci PJF, Serra AJ. Swimming Training Improves Myocardial Mechanics, Prevents Fibrosis, and Alters Expression of Ca2+ Handling Proteins in Older Rats. J Gerontol A Biol Sci Med Sci 2018; 73:468-474. [PMID: 29253100 DOI: 10.1093/gerona/glx244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/06/2017] [Indexed: 12/24/2022] Open
Abstract
Exercise training effects on the contractility of aged myocardium have been investigated for more than 20 years, but the data are still unclear. This study evaluated the hypothesis that a swimming training (ST) may improve myocardial inotropism in older rats. Male Wistar rats aged 4 (young)-and 21 (old)-months-old were divided into young untrained (YNT), old untrained (ONT), and old trained (OTR; 6 weeks of ST) groups. Echocardiography and hemodynamic were employed to assess left ventricular morphology and function. Myocardial mechanics was evaluated on papillary muscles. Histological and immunoblotting were carried out to evaluate fibrosis and proteins that modulate the myocardial function and calcium handling. We found that older rats did not show cardiac dysfunction, but ONT group showed lower physical performance during a swimming test (YNT: 5 ± 2; ONT: -16 ± 0.4; OTR: 51 ± 3; Δ%, sec). Moreover, ONT group showed worse myocardial inotropism, in which it was reversed by ST (Peak developed tension: YNT: 6.2 ± 0.7; ONT: 3.9 ± 0.3; OTR: 6.9 ± 0.9; g/mm2). The ST was associated with preserved collagen content (YNT: 0.38 ± 0.05; ONT: 0.78 ± 0.12; OTR: 0.34 ± 0.09; %). Exercise partially mitigated the effects of aging on intracellular Ca2+-regulating protein (eg, L-Ca2+ channel and phospholamban) and β-isoform of myosin. Thus, we propose that these molecular alterations together with inhibition of collagen increase contribute to improved myocardial performance in older rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Danilo Sales Bocalini
- Center for Physical Education and Sport, Federal University of Espirito Santo, São Paulo, Brazil
| | | | | | | | | | | | - Andrey Jorge Serra
- Federal University of São Paulo, São Paulo, Brazil.,Laboratory of Biophotonic, Nove de Julho University, São Paulo, Brazil
| |
Collapse
|
12
|
Carthagenes DS, Barreto MDP, Freitas CM, Pedroza ADS, Fernandes MP, Ferreira DS, Lagranha CJ, Nascimento LC, Evencio LB. Moderate physical training counterbalances harmful effects of low-protein diet on heart: metabolic, oxidative and morphological parameters. MOTRIZ: REVISTA DE EDUCACAO FISICA 2017. [DOI: 10.1590/s1980-6574201700030019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Suk M, Shin Y. Effect of high-intensity exercise and high-fat diet on lipid metabolism in the liver of rats. J Exerc Nutrition Biochem 2016; 19:289-95. [PMID: 27274461 PMCID: PMC4886838 DOI: 10.5717/jenb.2015.15122303] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE This study investigated the effects of high-intensity exercise (Ex) and high dietary fat intake on lipid metabolism in the liver of rats. METHODS Male Sprague-Dawley rats were randomly assigned to one of the four groups (n=10 per group) that were maintained on a normal diet (ND) or high-fat diet (HFD) consisting of 30% fat (w/w), with or without exercise on a treadmill at 30 m/min and 8% grade) for 4 weeks (i.e., ND, ND+Ex, HFD, and HFD+Ex groups). RESULTS Body weight (p<.001), total plasma cholesterol (TC) (p<.001), triglyceride (TG) (p<.05), and liver TG levels (p<.05) were increased in the HFD group relative to the ND groups, and serum glucose (p<.05), insulin (p<.05), homeostatic model assessment of insulin resistance (HOMA-IR) (p<.01), and liver TG levels (p<.01) were also higher in the HFD group compared to the ND+Ex group. Plasma free fatty acid was elevated in the HFD+Ex group compared to the HFD group (p<.01). With the exception of acetyl coenzyme A carboxylase, the expression of lipid metabolism-related genes in the liver was altered in the Ex groups compared to the control group (p<.05), with genes involved in lipolysis specifically up regulated in the HFD+Ex group compared to the other groups. CONCLUSION Vigorous exercise may increase glucose utilization and fat oxidation by activating genes in the liver that are associated with lipid metabolism compared to that in animals consuming a HFD without exercise. Therefore, high intensity exercise can be considered to counter the adverse effects of high dietary fat intake.
Collapse
Affiliation(s)
- MinHwa Suk
- College of Sports Science, Department of exercise prescription and rehabilitation, Dankook University, Cheonan Republic of Korea
| | - YunA Shin
- College of Sports Science, Department of exercise prescription and rehabilitation, Dankook University, Cheonan Republic of Korea
| |
Collapse
|
14
|
Zhao J, Gregersen H. Esophageal morphometric and biomechanical changes during aging in rats. Neurogastroenterol Motil 2015; 27:1638-47. [PMID: 26303784 DOI: 10.1111/nmo.12661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/30/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Human studies have demonstrated aging-related changes in esophagus which may contribute to the increased rate of gastro-esophageal reflux in elderly. The aim of this study was to investigate esophageal morphometric and biomechanical remodeling in aging rats to obtain detailed information about aging-related changes. METHODS Twenty-four male Wistar rats, aged from 6 to 22 months, were studied. Morphometric data were obtained by measuring the wall thickness and cross-sectional area. The esophageal diameter and length were obtained from digitized images of the segments at preselected luminal pressure levels and at no-load and zero-stress states. Circumferential and longitudinal stresses (force per area) and strains (deformation) were computed from the length, diameter and pressure data, and from the zero-stress state geometry. KEY RESULTS The esophageal parameters such as the weight per unit length, the wall thickness and the wall cross-sectional area increased slightly from 6 to 22 months (p < 0.05 to p < 0.001). The opening angle gradually decreased during aging (p < 0.05). The interface between the mucosa-submucosa and muscle layers slightly moved outwards and the neutral axis moved inwards during aging. The stress-strain data showed that the esophageal wall became stiffer circumferentially and longitudinally during aging (p < 0.05, p < 0.01). However, the circumferential wall stiffness showed no further change after 12 months. CONCLUSIONS & INFERENCES A pronounced morphometric and biomechanical remodeling occurred in the rat esophagus during aging.
Collapse
Affiliation(s)
- J Zhao
- Giome Academia, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - H Gregersen
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
15
|
LaCroix AS, Duenwald-Kuehl SE, Brickson S, Akins TL, Diffee G, Aiken J, Vanderby R, Lakes RS. Effect of age and exercise on the viscoelastic properties of rat tail tendon. Ann Biomed Eng 2013; 41:1120-8. [PMID: 23549897 DOI: 10.1007/s10439-013-0796-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 03/16/2013] [Indexed: 11/28/2022]
Abstract
Tendon mechanical properties are thought to degrade during aging but improve with exercise. A remaining question is whether exercise in aged animals provides sufficient regenerative, systemic stimulus to restore younger mechanical behaviors. Herein we address that question with tail tendons from aged and exercised rats, which would be subject to systemic effects but not direct loading from the exercise regimen. Twenty-four month old rats underwent one of three treadmill exercise training protocols for 12 months: sedentary (walking at 0° incline for 5 min/day), moderate (running at 0° incline for 30 min/day), or high (running at 4° incline for 30 min/day). A group of 9 month old rats were used to provide an adult control, while a group of 3 month old rats provided a young control. Tendons were harvested at sacrifice and mechanically tested. Results show significant age-dependent differences in modulus, ultimate stress, relaxation rate, and percent relaxation. Relaxation rate was strain-dependent, consistent with nonlinear superposition or Schapery models but not with quasilinear viscoelasticity (QLV). Trends in exercise data suggest that with exercise, tendons assume the elastic character of younger rats (lower elastic modulus and ultimate stress).
Collapse
Affiliation(s)
- Andrew S LaCroix
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|