1
|
Cho J, Lu J, Kim D, Park Y. Determination of health status during aging using bending and pumping rates at various survival rates in Caenorhabditis elegans. Sci Rep 2025; 15:9057. [PMID: 40090929 PMCID: PMC11911424 DOI: 10.1038/s41598-025-93876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
Alongside recognizing the importance of extending lifespan, an emerging focus has appeared on improving health in longevity, defined as healthspan. Aging is a process for all animal species; however, due to the time limitation in aging studies, Caenorhabditis elegans is an established model used for studying aging. In the current study, we evaluated various markers of muscle functions and determined that bending or pharyngeal pumping rate can represent worms' healthiness. A new concept named 'dynamic-scaled value' was developed, rescaling health markers to the corresponding markers in the control group at the same survival rate. Using these dynamic-scaled values of bending or pumping rates, we determined the health status of various treatments, including whether health improvement over aging depended on lifespan extension. Co-treatment of cranberry juice with Lactobacillus plantarum significantly improved health status during the mid-late life stage, while cranberry juice alone did not improve compared to the control. The dynamic-scaled value can be used as a complementary indicator to the quality-adjusted values to determine the health status. In addition, the dynamic-scaled values would allow us to compare results from others based on adjustments using their respective controls and relatively simple measurements to obtain the results.
Collapse
Affiliation(s)
- Junhyo Cho
- Department of Food Science, University of Massachusetts Amherst, 01003, Amherst, MA, US
| | - Jiakai Lu
- Department of Food Science, University of Massachusetts Amherst, 01003, Amherst, MA, US
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts Amherst, 01003, Amherst, MA, US
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts Amherst, 01003, Amherst, MA, US.
| |
Collapse
|
2
|
Xu Q, Zheng B, Li T, Liu RH. Black goji berry anthocyanins extend lifespan and enhance the antioxidant defenses in Caenorhabditis elegans via the JNK-1 and DAF-16/FOXO pathways. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2282-2293. [PMID: 39483065 DOI: 10.1002/jsfa.13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND The black goji berry (Lycium ruthenicum Murr.) is known for its abundance of high-quality natural antioxidants, particularly anthocyanins. Black goji berry anthocyanins (BGA) are receiving increasing attention because of their high safety and beneficial biological activities. Studies have shown that oxidative stress is a key factor affecting aging, whereas antioxidants are critical preventive and delaying strategies. RESULTS In the present study, we investigated the potential anti-aging effects and mechanism of BGA using the Caenorhabditis elegans model. We found that BGA prolonged the mean lifespan of nematodes and improve their healthspan, including locomotion, pharyngeal pumping rate and stress resistance. Subsequently, we observed a significant decrease in reactive oxygen species and malondialdehyde levels in nematodes after administering BGA. Moreover, BGA enhanced the activities of the antioxidant enzymes superoxide dismutase and catalase, and elevated the glutathione disulfide/glutathione ratio. We confirmed that BGA exerted excellent antioxidative stress activity in nematodes, which may contribute substantially to its anti-aging effects. The health benefits of BGA in C. elegans might be closely related to petunidin-3-O-glucoside, the most abundant anthocyanin in BGA. Further mechanistic investigation revealed that the JNK-1 and DAF-16/FOXO pathways, rather than the calorie restriction pathway, were responsible for the antioxidant stress and life-prolonging effects of BGA in nematodes. CONCLUSION Our research provides a theoretical foundation for studying the anti-aging effect of BGA and a basis for developing black goji berry and its anthocyanins as functional foods with anti-aging and antioxidative stress benefits. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiuxiong Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Bisheng Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Tong Li
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, USA
| | - Rui Hai Liu
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, USA
| |
Collapse
|
3
|
Ősz F, Nazir A, Takács-Vellai K, Farkas Z. Mutations of the Electron Transport Chain Affect Lifespan and ROS Levels in C. elegans. Antioxidants (Basel) 2025; 14:76. [PMID: 39857410 PMCID: PMC11761250 DOI: 10.3390/antiox14010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Mutations in highly conserved genes encoding components of the electron transport chain (ETC) provide valuable insights into the mechanisms of oxidative stress and mitochondrial ROS (mtROS) in a wide range of diseases, including cancer, neurodegenerative disorders, and aging. This review explores the structure and function of the ETC in the context of its role in mtROS generation and regulation, emphasizing its dual roles in cellular damage and signaling. Using Caenorhabditis elegans as a model organism, we discuss how ETC mutations manifest as developmental abnormalities, lifespan alterations, and changes in mtROS levels. We highlight the utility of redox sensors in C. elegans for in vivo studies of reactive oxygen species, offering both quantitative and qualitative insights. Finally, we examine the potential of C. elegans as a platform for testing ETC-targeting drug candidates, including OXPHOS inhibitors, which represent promising avenues in cancer therapeutics. This review underscores the translational relevance of ETC research in C. elegans, bridging fundamental biology and therapeutic innovation.
Collapse
Affiliation(s)
- Fanni Ősz
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| | - Aamir Nazir
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India;
| | - Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| | - Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| |
Collapse
|
4
|
Tissenbaum HA. Characterizing the Role of daf-16/C. elegans FOXO in Lifespan and Healthspan. Methods Mol Biol 2025; 2871:193-200. [PMID: 39565590 DOI: 10.1007/978-1-0716-4217-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In Caenorhabditis elegans (C. elegans), there is a single FOXO transcription factor homolog, encoded by the gene, daf-16. As a central regulator for multiple pathways, DAF-16 integrates these signals to result in changes in longevity, development, fat storage, stress resistance, innate immunity, and reproduction. One of the main advantages of using C. elegans is the ability to study FOXO in the context of the whole animal. Therefore, manipulating the levels or the activity of daf-16 results in visible, scorable phenotypic changes. DAF-16 is the downstream target of the conserved insulin/IGF-1 signaling (IIS) pathway, a PI 3-kinase signaling cascade that ultimately controls its nuclear localization. Since the IIS pathway is a major regulator of lifespan, almost all studies of lifespan modulation examine the requirement of daf-16. More recently, lifespan analysis has been accompanied by healthspan analysis, referring to the time an animal is healthy. In this chapter, I will focus on the assays to assess lifespan and healthspan of C. elegans FOXO/daf-16, in the context of a whole animal.
Collapse
Affiliation(s)
- Heidi A Tissenbaum
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Wang RJ, Ni YJ, Liu YQ. Hesperetin Increases Lifespan and Antioxidant Ability Correlating with IIS, HSP, mtUPR, and JNK Pathways of Chronic Oxidative Stress in Caenorhabditis elegans. Int J Mol Sci 2024; 25:13148. [PMID: 39684858 DOI: 10.3390/ijms252313148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Hesperetin (Hst) is a common citrus fruit flavonoid with antioxidant, anti-inflammatory, and anti-neurodegenerative effects. To explore the antioxidant and anti-aging effects and mechanisms of Hst, we induced chronic oxidative stress in Caenorhabditis elegans (C. elegans) using low-concentration H2O2 and examined its effects on lifespan, healthy life index, reactive oxygen species (ROS), antioxidant enzymes, and transcriptomic metrics. Hst significantly prolonged lifespan, increased body bending and pharyngeal pumping frequency, decreased ROS accumulation, and increased antioxidant enzyme activity in normal and stressed C. elegans. Hst significantly upregulated daf-18, daf-16, gst-2, gst-3, gst-4, gst-39, hsp-16.11, sip-1, clpp-1, and dve-1 and downregulated ist-1 and kgb-1 mRNAs in stressed C. elegans. These genes are involved in the insulin/insulin-like growth factor-1 signaling (IIS), heat shock protein (HSP), mitochondrial unfolded protein response (mtUPR), and c-Jun N-terminal kinase (JNK) pathways. In summary, Hst increases lifespan and antioxidant ability, correlating with these pathways, during chronic oxidative stress in C. elegans.
Collapse
Affiliation(s)
- Run-Jia Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ya-Jing Ni
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Subhadra M, Mir DA, Ankita K, Sindunathy M, Kishore HD, Ravichandiran V, Balamurugan K. Exploring diabesity pathophysiology through proteomic analysis using Caenorhabditis elegans. Front Endocrinol (Lausanne) 2024; 15:1383520. [PMID: 39539936 PMCID: PMC11557309 DOI: 10.3389/fendo.2024.1383520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/15/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Diabesity, characterized by obesity-driven Type 2 diabetes mellitus (T2DM), arises from intricate genetic and environmental interplays that induce various metabolic disorders. The systemic lipid and glucose homeostasis is controlled by an intricate cross-talk of internal glucose/insulin and fatty acid molecules to maintain a steady state of internal environment. Methods In this study, Caenorhabditis elegans were maintained to achieve glucose concentrations resembling the hyperglycemic conditions in diabetic patients to delve into the mechanistic foundations of diabesity. Various assays were conducted to measure intracellular triglyceride levels, lifespan, pharyngeal pumping rate, oxidative stress indicators, locomotor behavior, and dopamine signaling. Proteomic analysis was also performed to identify differentially regulated proteins and dysregulated KEGG pathways, and microscopy and immunofluorescence staining were employed to assess collagen production and anatomical integrity. Results Worms raised on diets high in glucose and cholesterol exhibited notably increased intracellular triglyceride levels, a decrease in both mean and maximum lifespan, and reduced pharyngeal pumping. The diabesity condition induced oxidative stress, evident from heightened ROS levels and distinct FT-IR spectroscopy patterns revealing lipid and protein alterations. Furthermore, impaired dopamine signaling and diminished locomotors behavior in diabesity-afflicted worms correlated with reduced motility. Through proteomic analysis, differentially regulated proteins encompassing dysregulated KEGG pathways included insulin signaling, Alzheimer's disease, and nicotinic acetylcholine receptor signaling pathways were observed. Moreover, diabesity led to decreased collagen production, resulting in anatomical disruptions validated through microscopy and immunofluorescence staining. Discussion This underscores the impact of diabesity on cellular components and structural integrity in C. elegans, providing insights into diabesity-associated mechanisms.
Collapse
Affiliation(s)
- Malaimegu Subhadra
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Dilawar Ahmad Mir
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Koley Ankita
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Hambram David Kishore
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | | |
Collapse
|
7
|
Sirwani N, Hedtke SM, Grant K, McColl G, Grant WN. Levels of Amyloid Beta ( Aβ) Expression in the Caenorhabditis elegans Neurons Influence the Onset and Severity of Neuronally Mediated Phenotypes. Cells 2024; 13:1598. [PMID: 39329779 PMCID: PMC11430350 DOI: 10.3390/cells13181598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
A characteristic feature of Alzheimer's disease (AD) is the formation of neuronal extracellular senile plaques composed of aggregates of fibrillar amyloid β (Aβ) peptides, with the Aβ1-42 peptide being the most abundant species. These Aβ peptides have been proposed to contribute to the pathophysiology of the disease; however, there are few tools available to test this hypothesis directly. In particular, there are no data that establish a dose-response relationship between Aβ peptide expression level and disease. We have generated a panel of transgenic Caenorhabditis elegans strains expressing the human Aβ1-42 peptide under the control of promoter regions of two pan-neuronal expressed genes, snb-1 and rgef-1. Phenotypic data show strong age-related defects in motility, subtle changes in chemotaxis, reduced median and maximum lifespan, changes in health span indicators, and impaired learning. The Aβ1-42 expression level of these strains differed as a function of promoter identity and transgene copy number, and the timing and severity of phenotypes mediated by Aβ1-42 were strongly positively correlated with expression level. The pan-neuronal expression of varying levels of human Aβ1-42 in a nematode model provides a new tool to investigate the in vivo toxicity of neuronal Aβ expression and the molecular and cellular mechanisms underlying AD progression in the absence of endogenous Aβ peptides. More importantly, it allows direct quantitative testing of the dose-response relationship between neuronal Aβ peptide expression and disease for the first time. These strains may also be used to develop screens for novel therapeutics to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Neha Sirwani
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; (S.M.H.); (W.N.G.)
| | - Shannon M. Hedtke
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; (S.M.H.); (W.N.G.)
| | - Kirsten Grant
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; (S.M.H.); (W.N.G.)
| | - Gawain McColl
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia;
| | - Warwick N. Grant
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; (S.M.H.); (W.N.G.)
| |
Collapse
|
8
|
Yarmey VR, San-Miguel A. Biomarkers for aging in Caenorhabditis elegans high throughput screening. Biochem Soc Trans 2024; 52:1405-1418. [PMID: 38884801 DOI: 10.1042/bst20231303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Aging is characterized by a functional decline in organism fitness over time due to a complex combination of genetic and environmental factors [ 1-4]. With an increasing elderly population at risk of age-associated diseases, there is a pressing need for research dedicated to promoting health and longevity through anti-aging interventions. The roundworm Caenorhabditis elegans is an established model organism for aging studies due to its short life cycle, ease of culture, and conserved aging pathways. These benefits also make the worm well-suited for high-throughput screening (HTS) methods to study biomarkers of the molecular changes, cellular dysfunction, and physiological decline associated with aging. Within this review, we offer a summary of recent advances in HTS techniques to study biomarkers of aging in C. elegans.
Collapse
Affiliation(s)
- Victoria R Yarmey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27603, U.S.A
| | - Adriana San-Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27603, U.S.A
| |
Collapse
|
9
|
Redl M, Shayegan A, Rollinger JM. Application of 3Rs in Caenorhabditis elegans Research for the Identification of Health-Promoting Natural Products. PLANTA MEDICA 2024; 90:576-587. [PMID: 38843797 DOI: 10.1055/a-2254-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The average age of the population is increasing worldwide, which has a profound impact on our society. This leads to an increasing demand for medicines and requires the development of new strategies to promote health during the additional years. In the search for resources and therapeutics for improved health during an extended life span, attention has to be paid to environmental exposure and ecosystem burdens that inevitably emerge with the extended consumption of medicines and drug development, even in the preclinical stage. The hereby introduced sustainable strategy for drug discovery is built on 3Rs, "R: obustness, R: eliability, and saving R: esources", inspired by both the 3Rs used in animal experiments and environmental protection, and centers on the usefulness and the variety of the small model organism Caenorhabditis elegans for detecting health-promoting natural products. A workflow encompassing a multilevel screening approach is presented to maximize the amount of information on health-promoting samples, while considering the 3Rs. A detailed, methodology- and praxis-oriented compilation and discussion of proposed C. elegans health span assays and more disease-specific assays are presented to offer guidance for scientists intending to work with C. elegans, thus facilitating the initial steps towards the integration of C. elegans assays in their laboratories.
Collapse
Affiliation(s)
- Martina Redl
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional, and Sport Sciences, University of Vienna, Vienna, Austria
| | - Anusha Shayegan
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Judith M Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Mir DA, Cox M, Horrocks J, Ma Z, Rogers A. Roles of Progranulin and FRamides in Neural Versus Non-Neural Tissues on Dietary Restriction-Related Longevity and Proteostasis in C. elegans. JOURNAL OF CLINICAL AND MEDICAL SCIENCES 2024; 8:276. [PMID: 39323482 PMCID: PMC11423770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Dietary Restriction (DR) mitigates loss of proteostasis associated with aging that underlies neurodegenerative conditions including Alzheimer's disease and related dementias. Previously, we observed increased translational efficiency of certain FMRFamide-Like neuro-Peptide (FLP) genes and the neuroprotective growth factor progranulin gene prgn-1 under dietary restriction in C. elegans. Here, we tested the effects of flp-5, flp-14, flp-15 and pgrn-1 on lifespan and proteostasis under both standard and dietary restriction conditions. We also tested and distinguished function based on their expression in either neuronal or non-neuronal tissue. Lowering the expression of pgrn-1 and flp genes selectively in neural tissue showed no difference in survival under normal feeding conditions nor under DR in two out of three experiments performed. Reduced expression of flp-14 in non-neuronal tissue showed decreased lifespan that was not specific to DR. With respect to proteostasis, a genetic model of DR from mutation of the eat-2 gene that showed increased thermotolerance compared to fully fed wild type animals demonstrated no change in thermotolerance in response to knockdown of pgrn-1 or flp genes. Finally, we tested effects on motility in a neural-specific model of proteotoxicity and found that neuronal knockdown of pgrn-1 and flp genes improved motility in early life regardless of diet. However, knocking these genes down in non-neuronal tissue had variable results. RNAi targeting flp-14 increased motility by day seven of adulthood regardless of diet. Interestingly, non-neuronal RNAi of pgrn-1 decreased motility under standard feeding conditions while DR increased motility for this gene knockdown by day seven (early mid-life). Results show that pgrn-1, flp-5, flp-14, and flp-15 do not have major roles in diet-related changes in longevity or whole-body proteostasis. However, reduced expression of these genes in neurons increases motility early in life in a neural-specific model of proteotoxicity, whereas knockdown of non-neuronal expression mostly increases motility in mid-life under the same conditions.
Collapse
Affiliation(s)
- Dilawar Ahmad Mir
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Matthew Cox
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Jordan Horrocks
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Zhengxin Ma
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Aric Rogers
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| |
Collapse
|
11
|
Rubio-Tomás T, Alegre-Cortés E, Lionaki E, Fuentes JM, Tavernarakis N. Heat shock and thermotolerance in Caenorhabditis elegans: An overview of laboratory techniques. Methods Cell Biol 2024; 185:1-17. [PMID: 38556443 DOI: 10.1016/bs.mcb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The soil nematode worm Caenorhabditis elegans is a simple and well-established model for the study of many biological processes. Heat shock and thermotolerance assays have been developed for this nematode, and have been used to decipher the molecular relationships between thermal stress and aging, among others. Nevertheless, a systematic and methodological comparison of the different approaches and tools utilized is lacking in the literature. Here, we aim to provide a comprehensive summary of the most commonly used strategies for carrying out heat shock and thermotolerance assays that have been reported, highlighting specific readouts and scientific questions that can be addressed. Furthermore, we offer examples of thermotolerance assays performed with wild type nematodes, that can serve as a gauge of the animal survival under diverse conditions of stress.
Collapse
Affiliation(s)
- Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Eva Alegre-Cortés
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Cáceres, Spain; Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - José M Fuentes
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Cáceres, Spain; Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain.
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece.
| |
Collapse
|
12
|
Gioran A, Paikopoulos Y, Panagiotidou E, Rizou AEI, Nasi GI, Dimaki VD, Vraila KD, Bezantakou DS, Spatharas PM, Papandreou NC, Magafa V, Lamari FN, Iconomidou VA, Chondrogianni N. Beneficial Effects of Sideritis clandestina Extracts and Sideridiol against Amyloid β Toxicity. Antioxidants (Basel) 2024; 13:261. [PMID: 38539796 PMCID: PMC10967505 DOI: 10.3390/antiox13030261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 11/03/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Given the link between oxidative stress and AD, many studies focus on the identification of natural antioxidants against AD. Although their antioxidant capacity is important, increasing data suggest that additional activities are related to their beneficial effects, including properties against amyloid beta (Aβ) aggregation. Sideritis spp. (mountain tea) extracts possess not only antioxidant activity but also other bioactivities that confer neuroprotection. Although various Sideritis spp. extracts have been extensively studied, there are scarce data on S. clandestina subsp. peloponnesiaca (SCP) phytochemical composition and neuroprotective potential, while nothing is known of the responsible compounds. Given that SCP is a weaker antioxidant compared to other Sideritis spp., here, we investigated its potential beneficial properties against Aβ aggregation. We characterized different SCP extracts and revealed their anti-aggregation activity by taking advantage of established C. elegans AD models. Importantly, we identified two pure compounds, namely, sideridiol and verbascoside, being responsible for the beneficial effects. Furthermore, we have revealed a potential anti-Aβ aggregation mechanism for sideridiol. Our results support the use of mountain tea in the elderly against dementia and demonstrate the activity of sideridiol against Aβ aggregation that could be exploited for drug development.
Collapse
Affiliation(s)
- Anna Gioran
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.G.); (Y.P.); (E.P.)
| | - Yiorgos Paikopoulos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.G.); (Y.P.); (E.P.)
| | - Eleni Panagiotidou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.G.); (Y.P.); (E.P.)
- Department of Biochemistry and Biotechnology, University of Thessaly, 41334 Larissa, Greece
| | - Aikaterini E. I. Rizou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (A.E.I.R.); (G.I.N.); (K.D.V.); (D.S.B.); (P.M.S.); (N.C.P.); (V.A.I.)
| | - Georgia I. Nasi
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (A.E.I.R.); (G.I.N.); (K.D.V.); (D.S.B.); (P.M.S.); (N.C.P.); (V.A.I.)
| | - Virginia D. Dimaki
- Laboratory of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, University of Patras, 26504 Patras, Greece; (V.D.D.); (V.M.); (F.N.L.)
| | - Konstantina D. Vraila
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (A.E.I.R.); (G.I.N.); (K.D.V.); (D.S.B.); (P.M.S.); (N.C.P.); (V.A.I.)
| | - Dimitra S. Bezantakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (A.E.I.R.); (G.I.N.); (K.D.V.); (D.S.B.); (P.M.S.); (N.C.P.); (V.A.I.)
| | - Panagiotis M. Spatharas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (A.E.I.R.); (G.I.N.); (K.D.V.); (D.S.B.); (P.M.S.); (N.C.P.); (V.A.I.)
| | - Nikos C. Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (A.E.I.R.); (G.I.N.); (K.D.V.); (D.S.B.); (P.M.S.); (N.C.P.); (V.A.I.)
| | - Vassiliki Magafa
- Laboratory of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, University of Patras, 26504 Patras, Greece; (V.D.D.); (V.M.); (F.N.L.)
| | - Fotini N. Lamari
- Laboratory of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, University of Patras, 26504 Patras, Greece; (V.D.D.); (V.M.); (F.N.L.)
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (A.E.I.R.); (G.I.N.); (K.D.V.); (D.S.B.); (P.M.S.); (N.C.P.); (V.A.I.)
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.G.); (Y.P.); (E.P.)
| |
Collapse
|
13
|
Mir DA, Cox M, Horrocks J, Ma Z, Rogers A. Roles of progranulin and FRamides in neural versus non-neural tissues on dietary restriction-related longevity and proteostasis in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579250. [PMID: 38370756 PMCID: PMC10871266 DOI: 10.1101/2024.02.06.579250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Dietary restriction (DR) mitigates loss of proteostasis associated with aging that underlies neurodegenerative conditions including Alzheimer's disease and related dementias. Previously, we observed increased translational efficiency of certain FMRFamide-like neuropeptide ( flp ) genes and the neuroprotective growth factor progranulin gene prgn-1 under dietary restriction in C. elegans . Here, we tested the effects of flp-5 , flp-14 , flp-15 and pgrn-1 on lifespan and proteostasis under both standard and dietary restriction conditions. We also tested and distinguished function based on their expression in either neuronal or non-neuronal tissue. Lowering the expression of pgrn-1 and flp genes selectively in neural tissue showed no difference in survival under normal feeding conditions nor under DR in two out of three experiments performed. Reduced expression of flp-14 in non-neuronal tissue showed decreased lifespan that was not specific to DR. With respect to proteostasis, a genetic model of DR from mutation of the eat-2 gene that showed increased thermotolerance compared to fully fed wild type animals demonstrated no change in thermotolerance in response to knockdown of pgrn-1 or flp genes. Finally, we tested effects on motility in a neural-specific model of proteotoxicity and found that neuronal knockdown of pgrn-1 and flp genes improved motility in early life regardless of diet. However, knocking these genes down in non-neuronal tissue had variable results. RNAi targeting flp-14 increased motility by day seven of adulthood regardless of diet. Interestingly, non-neuronal RNAi of pgrn-1 decreased motility under standard feeding conditions while DR increased motility for this gene knockdown by day seven (early mid-life). Results show that pgrn-1 , flp-5 , flp-14 , and flp-15 do not have major roles in diet-related changes in longevity or whole-body proteostasis. However, reduced expression of these genes in neurons increases motility early in life in a neural-specific model of proteotoxicity, whereas knockdown of non-neuronal expression mostly increases motility in mid-life under the same conditions.
Collapse
|
14
|
Fabrizio P, Alcolei A, Solari F. Considering Caenorhabditis elegans Aging on a Temporal and Tissue Scale: The Case of Insulin/IGF-1 Signaling. Cells 2024; 13:288. [PMID: 38334680 PMCID: PMC10854721 DOI: 10.3390/cells13030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
The aging process is inherently complex, involving multiple mechanisms that interact at different biological scales. The nematode Caenorhabditis elegans is a simple model organism that has played a pivotal role in aging research following the discovery of mutations extending lifespan. Longevity pathways identified in C. elegans were subsequently found to be conserved and regulate lifespan in multiple species. These pathways intersect with fundamental hallmarks of aging that include nutrient sensing, epigenetic alterations, proteostasis loss, and mitochondrial dysfunction. Here we summarize recent data obtained in C. elegans highlighting the importance of studying aging at both the tissue and temporal scale. We then focus on the neuromuscular system to illustrate the kinetics of changes that take place with age. We describe recently developed tools that enabled the dissection of the contribution of the insulin/IGF-1 receptor ortholog DAF-2 to the regulation of worm mobility in specific tissues and at different ages. We also discuss guidelines and potential pitfalls in the use of these new tools. We further highlight the opportunities that they present, especially when combined with recent transcriptomic data, to address and resolve the inherent complexity of aging. Understanding how different aging processes interact within and between tissues at different life stages could ultimately suggest potential intervention points for age-related diseases.
Collapse
Affiliation(s)
- Paola Fabrizio
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM 1210, University Claude Bernard Lyon 1, 69364 Lyon, France;
| | - Allan Alcolei
- INMG, MeLiS, CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Florence Solari
- INMG, MeLiS, CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008 Lyon, France;
| |
Collapse
|
15
|
Sharma A, Ewald CY. Clearance of extracellular human amyloid-β aggregates in C. elegans by nutraceutical and pharmaceutical interventions. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.000907. [PMID: 38287930 PMCID: PMC10823790 DOI: 10.17912/micropub.biology.000907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024]
Abstract
Numerous anti-amyloid therapies have seen recent clinical development and approval, such as the monoclonal antibodies aducanumab and lecanemab. However, in Alzheimer's disease patients, amyloid-β (Aβ) plaques are found embedded in the extracellular matrix and surrounded by collagens, which might hinder these antibodies from targeting the plaques. We reasoned that various different nutraceutical and pharmaceutical agents might induce collagen and extracellular matrix turnover and removal of these collagen-embedded amyloid-β (Aβ) plaques. To address this idea, here, we used a transgenic C. elegans strain, LSD2104 , expressing fluorescent human Aβ 1-42 as an in-vivo model for secreted amyloid aggregation in the extracellular matrix. We performed a screen of various nutraceuticals and pharmaceuticals along with different combinations, and we found that quercetin 350 µM and rifampicin 75 µM successfully cleared the extracellular amyloid plaque burden compared to the 0.2% DMSO control group, with a combination of the two agents producing the maximum effect compared to either drug alone. These results may implicate the exploration of combination therapeutics of nutraceuticals and pharmaceuticals in the clearance of amyloid-β (Aβ) plaques in Alzheimer's disease.
Collapse
Affiliation(s)
- Arastu Sharma
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, 8603 Schwerzenbach-Zürich, Switzerland
- Johns Hopkins University, Baltimore, Maryland, United States
| | - Collin Y Ewald
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, 8603 Schwerzenbach-Zürich, Switzerland
| |
Collapse
|
16
|
Bak NK, Rohde PD, Kristensen TN. Strong Sex-Dependent Effects of Malnutrition on Life- and Healthspan in Drosophila melanogaster. INSECTS 2023; 15:9. [PMID: 38249015 PMCID: PMC10816799 DOI: 10.3390/insects15010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024]
Abstract
Insufficient intake of essential nutrients, malnutrition is a major issue for millions of people and has a strong impact on the distribution and abundance of species in nature. In this study, we investigated the effect of malnutrition on several fitness components in the vinegar fly Drosophila melanogaster. Four diets with different nutritional values, including three diluted diets of an optimal nutritional balanced diet, were used as feed sources. The effect of malnutrition on fitness components linked to healthspan, the period of life spent in good health conditions, was evaluated by quantifying the flies' lifespan, locomotor activity, heat stress tolerance, lipid content, and dry weight. The results showed that malnutrition had severe negative impact, such as reduced lifespan, locomotor activity, heat stress tolerance, fat content, and dry weight. The negative phenotypic effects were highly sex-dependent, with males being more negatively impacted by malnutrition compared to females. These findings highlight important detrimental and sex-specific effects of malnutrition not only on lifespan but also on traits related to healthspan.
Collapse
Affiliation(s)
- Nikolaj Klausholt Bak
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK 9220 Aalborg, Denmark;
| | - Palle Duun Rohde
- Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, DK 9260 Gistrup, Denmark
| | - Torsten Nygaard Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK 9220 Aalborg, Denmark;
| |
Collapse
|
17
|
Kirchweger B, Zwirchmayr J, Grienke U, Rollinger JM. The role of Caenorhabditis elegans in the discovery of natural products for healthy aging. Nat Prod Rep 2023; 40:1849-1873. [PMID: 37585263 DOI: 10.1039/d3np00021d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Covering: 2012 to 2023The human population is aging. Thus, the greatest risk factor for numerous diseases, such as diabetes, cancer and neurodegenerative disorders, is increasing worldwide. Age-related diseases do not typically occur in isolation, but as a result of multi-factorial causes, which in turn require holistic approaches to identify and decipher the mode of action of potential remedies. With the advent of C. elegans as the primary model organism for aging, researchers now have a powerful in vivo tool for identifying and studying agents that effect lifespan and health span. Natural products have been focal research subjects in this respect. This review article covers key developments of the last decade (2012-2023) that have led to the discovery of natural products with healthy aging properties in C. elegans. We (i) discuss the state of knowledge on the effects of natural products on worm aging including methods, assays and involved pathways; (ii) analyze the literature on natural compounds in terms of their molecular properties and the translatability of effects on mammals; (iii) examine the literature on multi-component mixtures with special attention to the studied organisms, extraction methods and efforts regarding the characterization of their chemical composition and their bioactive components. (iv) We further propose to combine small in vivo model organisms such as C. elegans and sophisticated analytical approaches ("wormomics") to guide the way to dissect complex natural products with anti-aging properties.
Collapse
Affiliation(s)
- Benjamin Kirchweger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Julia Zwirchmayr
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Ulrike Grienke
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Judith M Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
18
|
Loo J, Shah Bana MAF, Tan JK, Goon JA. Effect of dietary restriction on health span in Caenorhabditis elegans: A systematic review. Exp Gerontol 2023; 182:112294. [PMID: 37730186 DOI: 10.1016/j.exger.2023.112294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/03/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Dietary restriction (DR) interventions have demonstrated their efficacy in extending lifespan; however, the association between lifespan extension and health span remains unclear. This article aims to analyze the relationship between DR-induced lifespan and health span in Caenorhabditis elegans (C. elegans), a widely used animal model in lifespan studies. By examining various parameters such as lipofuscin accumulation (an aging marker) and locomotor and feeding capacities (indicators of muscle degradation rate), we have compiled papers that investigate and report on these DR-induced effects.The majority of the papers reviewed consistently demonstrate that DR improves both lifespan and health span in C. elegans. Worms subjected to DR exhibit slower lipofuscin accumulation compared to those fed ad libitum, indicating a reduction in age-related cellular damage. Additionally, DR-treated worms display a higher locomotion capacity, suggesting a slower rate of muscle degradation. However, it is worth noting that there are some discrepancies among the papers regarding feeding capacity. These contradictions can be attributed to the different methods employed to initiate DR. While many approaches slow muscle degeneration and enhance pumping rates through adaptation to limited food sources, other methods, such as using eat-2 mutant worms or interventions that mimic the effects of eat-2, reduce feeding capacity and consequently restrict food intake. In conclusion, the findings suggest a strong correlation between DR-induced longevity and the extension of health span in C. elegans, as evidenced by improvements in various health span parameters. DR interventions not only extend lifespan but also mitigate age-related markers and preserve locomotor capacity. Although conflicting results are observed regarding feeding capacity, the overall evidence supports the notion that DR promotes healthier aging in this animal model.
Collapse
Affiliation(s)
- Jazween Loo
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | | | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
19
|
Vintila AR, Slade L, Cooke M, Willis CRG, Torregrossa R, Rahman M, Anupom T, Vanapalli SA, Gaffney CJ, Gharahdaghi N, Szabo C, Szewczyk NJ, Whiteman M, Etheridge T. Mitochondrial sulfide promotes life span and health span through distinct mechanisms in developing versus adult treated Caenorhabditis elegans. Proc Natl Acad Sci U S A 2023; 120:e2216141120. [PMID: 37523525 PMCID: PMC10410709 DOI: 10.1073/pnas.2216141120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/30/2023] [Indexed: 08/02/2023] Open
Abstract
Living longer without simultaneously extending years spent in good health ("health span") is an increasing societal burden, demanding new therapeutic strategies. Hydrogen sulfide (H2S) can correct disease-related mitochondrial metabolic deficiencies, and supraphysiological H2S concentrations can pro health span. However, the efficacy and mechanisms of mitochondrion-targeted sulfide delivery molecules (mtH2S) administered across the adult life course are unknown. Using a Caenorhabditis elegans aging model, we compared untargeted H2S (NaGYY4137, 100 µM and 100 nM) and mtH2S (AP39, 100 nM) donor effects on life span, neuromuscular health span, and mitochondrial integrity. H2S donors were administered from birth or in young/middle-aged animals (day 0, 2, or 4 postadulthood). RNAi pharmacogenetic interventions and transcriptomics/network analysis explored molecular events governing mtH2S donor-mediated health span. Developmentally administered mtH2S (100 nM) improved life/health span vs. equivalent untargeted H2S doses. mtH2S preserved aging mitochondrial structure, content (citrate synthase activity) and neuromuscular strength. Knockdown of H2S metabolism enzymes and FoxO/daf-16 prevented the positive health span effects of mtH2S, whereas DCAF11/wdr-23 - Nrf2/skn-1 oxidative stress protection pathways were dispensable. Health span, but not life span, increased with all adult-onset mtH2S treatments. Adult mtH2S treatment also rejuvenated aging transcriptomes by minimizing expression declines of mitochondria and cytoskeletal components, and peroxisome metabolism hub components, under mechanistic control by the elt-6/elt-3 transcription factor circuit. H2S health span extension likely acts at the mitochondrial level, the mechanisms of which dissociate from life span across adult vs. developmental treatment timings. The small mtH2S doses required for health span extension, combined with efficacy in adult animals, suggest mtH2S is a potential healthy aging therapeutic.
Collapse
Affiliation(s)
- Adriana Raluca Vintila
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Luke Slade
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Michael Cooke
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham Biomedical Research Center, School of Medicine, Royal Derby Hospital, University of Nottingham, DerbyDE22 3DT, United Kingdom
| | - Craig R. G. Willis
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, BradfordBD7 1DP, United Kingdom
| | - Roberta Torregrossa
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Mizanur Rahman
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX79409
| | - Taslim Anupom
- Department of Electrical Engineering, Texas Tech University, Lubbock, TX74909
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX79409
| | - Christopher J. Gaffney
- Lancaster University Medical School, Lancaster University, LancasterLA1 4YW, United Kingdom
| | - Nima Gharahdaghi
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, FribourgCH-1700, Switzerland
| | - Nathaniel J. Szewczyk
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham Biomedical Research Center, School of Medicine, Royal Derby Hospital, University of Nottingham, DerbyDE22 3DT, United Kingdom
- Ohio Musculoskeletal and Neurologic Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH45701
| | - Matthew Whiteman
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Timothy Etheridge
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| |
Collapse
|
20
|
Mora I, Pérez-Santamaria A, Tortajada-Pérez J, Vázquez-Manrique RP, Arola L, Puiggròs F. Structured Docosahexaenoic Acid (DHA) Enhances Motility and Promotes the Antioxidant Capacity of Aged C. elegans. Cells 2023; 12:1932. [PMID: 37566010 PMCID: PMC10417004 DOI: 10.3390/cells12151932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
The human lifespan has increased over the past century; however, healthspans have not kept up with this trend, especially cognitive health. Among nutrients for brain function maintenance, long-chain omega-3 polyunsaturated fatty acids (ω-3 LCPUFA): DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) must be highlighted, particularly structured forms of EPA and DHA which were developed to improve bioavailability and bioactivity in comparison with conventional ω-3 supplements. This study aims to elucidate the effect of a structured triglyceride form of DHA (DHA-TG) on the healthspan of aged C. elegans. Using a thrashing assay, the nematodes were monitored at 4, 8, and 12 days of adulthood, and DHA-TG improved its motility at every age without affecting lifespan. In addition, the treatment promoted antioxidant capacity by enhancing the activity and expression of SOD (superoxide dismutase) in the nematodes. Lastly, as the effect of DHA-TG was lost in the DAF-16 mutant strain, it might be hypothesized that the effects of DHA need DAF-16/FOXO as an intermediary. In brief, DHA-TG exerted a healthspan-promoting effect resulting in both enhanced physical fitness and increased antioxidant defense in aged C. elegans. For the first time, an improvement in locomotive function in aged wild-type nematodes is described following DHA-TG treatment.
Collapse
Affiliation(s)
- Ignasi Mora
- Brudy Technology S.L., 08006 Barcelona, Spain
| | | | - Julia Tortajada-Pérez
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (R.P.V.-M.)
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - Rafael P. Vázquez-Manrique
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (R.P.V.-M.)
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Tarragona, Spain
| |
Collapse
|
21
|
Croft JC, Colunga A, Solh L, Dillon MK, Lee TWS. Pharyngeal pumping rate does not reflect lifespan extension in C. elegans transgenerational longevity mutants. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000719. [PMID: 36793895 PMCID: PMC9923420 DOI: 10.17912/micropub.biology.000719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/17/2023]
Abstract
Epigenetic modifications must be reprogrammed with each new generation. In Caenorhabditis elegans , defects in histone methylation reprogramming allow for the transgenerational acquisition of longevity. For example, mutations in the putative H3K9 demethylase JHDM-1 extend lifespan after six to ten generations. We noticed that long-lived jhdm-1 mutants appear healthier than wild-type animals from the same generation. To quantify health, we compared the common metric of pharyngeal pumping rate at specific adult ages between early-gen populations with normal lifespans and late-gen populations with long lifespans. Longevity did not affect pumping rate, but long-lived mutants stop pumping at a younger age, suggesting a possible conservation of energy to extend lifespan.
Collapse
Affiliation(s)
- Jaime C. Croft
- Department of Biological Sciences, University of Massachusetts Lowell, MA, USA
| | - Arthur Colunga
- Department of Biological Sciences, University of Massachusetts Lowell, MA, USA
| | - Lea Solh
- Department of Biological Sciences, University of Massachusetts Lowell, MA, USA
| | - Michaela K. Dillon
- Department of Biological Sciences, University of Massachusetts Lowell, MA, USA
| | - Teresa Wei-sy Lee
- Department of Biological Sciences, University of Massachusetts Lowell, MA, USA
,
Correspondence to: Teresa Wei-sy Lee (
)
| |
Collapse
|
22
|
Tamagno WA, Alves C, Pompermaier A, Dos Santos HC, Barcellos LJG. Effects of used and under-used doses of Transfluthrin-based insecticide on Caenorhabditis elegans metabolism. Toxicol Appl Pharmacol 2023; 461:116410. [PMID: 36738974 DOI: 10.1016/j.taap.2023.116410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Different classes of insecticide compounds have been employed to control insects and mosquitoes; Pyrethroids are one of the most common used in both urban and rural household environments. This study investigated the effects of exposure of two doses of commercial transfluthrin-based insecticide (T-BI) on behavior (body bends, pharyngeal pumping rate, and feeding attributes) and biochemical biomarkers (AChE, PolyQ40 aggregations, HSP, antioxidative SOD, CTL, and GST) following three different protocols (transgenerational, neonatal, and lifespan) in Caenorhabditis elegans model system. The relative calculated dose (RCD) and relative calculated half dose (RCHD) of T-BI were compared with those of the control (water). T-BI reduced the health span of worms treated during their whole life and changed biochemical and behavioral patterns due to progenitors' uterine (transgenerational) and neonatal exposures. It was inferred that the effects of T-BI are transgenerational and persistent and can be harmful to non-target species, including humans. In addition, our findings highlight that T-BI contact by progenitors accelerates the establishment of Huntington's disease and causes a cholinergic outbreak in offspring adulthood.
Collapse
Affiliation(s)
- Wagner Antonio Tamagno
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil; Biochemistry and Molecular Biology Laboratory Rosilene Rodrigues Kaizer, Federal Institute of Education, Science and Technology of Rio Grande do Sul, Campus Sertão, ERS 135, Km 25, Eng, Englert, RS, 99170-000, Brazil.
| | - Carla Alves
- Biochemistry and Molecular Biology Laboratory Rosilene Rodrigues Kaizer, Federal Institute of Education, Science and Technology of Rio Grande do Sul, Campus Sertão, ERS 135, Km 25, Eng, Englert, RS, 99170-000, Brazil; Graduate Program in Bioexperimentation, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil.
| | - Aline Pompermaier
- Graduate Program in Bioexperimentation, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil.
| | - Hévilin Corrêa Dos Santos
- Biochemistry and Molecular Biology Laboratory Rosilene Rodrigues Kaizer, Federal Institute of Education, Science and Technology of Rio Grande do Sul, Campus Sertão, ERS 135, Km 25, Eng, Englert, RS, 99170-000, Brazil.
| | - Leonardo José Gil Barcellos
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil; Graduate Program in Bioexperimentation, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil.
| |
Collapse
|
23
|
Bioactive potential and spectroscopical characterization of a novel family of plant pigments betalains derived from dopamine. Food Res Int 2022; 162:111956. [DOI: 10.1016/j.foodres.2022.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/28/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022]
|
24
|
Vasilopoulou MA, Gioran A, Theodoropoulou M, Koutsaviti A, Roussis V, Ioannou E, Chondrogianni N. Healthspan improvement and anti-aggregation effects induced by a marine-derived structural proteasome activator. Redox Biol 2022; 56:102462. [PMID: 36095970 PMCID: PMC9482115 DOI: 10.1016/j.redox.2022.102462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 11/15/2022] Open
Abstract
Proteasome activation has been shown to promote cellular and organismal healthspan and to protect against aggregation-related conditions, such as Alzheimer's disease (AD). Various natural compounds have been described for their proteasome activating properties but scarce data exist on marine metabolites that often possess unique chemical structures, exhibiting pronounced bioactivities with novel mechanisms of action. In this study, we have identified for the first time a marine structural proteasome activator, namely (1R,3E,6R,7Z,11S,12S)-dolabella-3,7,18-trien-6,17-olide (DBTO). DBTO activates the 20S proteasome complex in cell-free assays but also in cellulo. Continuous supplementation of human primary fibroblasts with DBTO throughout their cellular lifespan confers an improved healthspan while ameliorated health status is also observed in wild type (wt) Caenorhabditis elegans (C. elegans) nematodes supplemented with DBTO. Furthermore, treatment of various AD nematode models, as well as of human cells of neuronal origin challenged with exogenously added Aβ peptide, with DBTO results in enhanced protection against Aβ-induced proteotoxicity. In total, our results reveal the first structural proteasome activator derived from the marine ecosystem and highlight its potential as a compound that might be used for healthspan maintenance and preventive strategies against proteinopathies, such as AD. (1R,3E,6R,7Z,11S,12S)-dolabella-3,7,18-trien-6,17-olide (DBTO) is a structural proteasome activator. DBTO is the first identified marine structural proteasome activator. DBTO positively modulates cellular healthspan and organismal health status. DBTO confers protection against Aβ-induced proteotoxicity.
Collapse
|
25
|
Kaulich E, Carroll T, Ackley BD, Tang YQ, Hardege I, Nehrke K, Schafer WR, Walker DS. Distinct roles for two Caenorhabditis elegans acid-sensing ion channels in an ultradian clock. eLife 2022; 11:e75837. [PMID: 35666106 PMCID: PMC9374441 DOI: 10.7554/elife.75837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Biological clocks are fundamental to an organism's health, controlling periodicity of behaviour and metabolism. Here, we identify two acid-sensing ion channels, with very different proton sensing properties, and describe their role in an ultradian clock, the defecation motor program (DMP) of the nematode Caenorhabditis elegans. An ACD-5-containing channel, on the apical membrane of the intestinal epithelium, is essential for maintenance of luminal acidity, and thus the rhythmic oscillations in lumen pH. In contrast, the second channel, composed of FLR-1, ACD-3 and/or DEL-5, located on the basolateral membrane, controls the intracellular Ca2+ wave and forms a core component of the master oscillator that controls the timing and rhythmicity of the DMP. flr-1 and acd-3/del-5 mutants show severe developmental and metabolic defects. We thus directly link the proton-sensing properties of these channels to their physiological roles in pH regulation and Ca2+ signalling, the generation of an ultradian oscillator, and its metabolic consequences.
Collapse
Affiliation(s)
- Eva Kaulich
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Trae Carroll
- Department of Pathology and Lab Medicine, University of Rochester Medical CenterRochesterUnited States
| | - Brian D Ackley
- Department of Molecular Biosciences, University of KansasLawrenceUnited States
| | - Yi-Quan Tang
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Iris Hardege
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester Medical CenterRochesterUnited States
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Department of Biology, KU LeuvenLeuvenBelgium
| | - Denise S Walker
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
26
|
Wang Z, Zheng P, Chen X, Xie Y, Weston-Green K, Solowij N, Chew YL, Huang XF. Cannabidiol induces autophagy and improves neuronal health associated with SIRT1 mediated longevity. GeroScience 2022; 44:1505-1524. [PMID: 35445360 PMCID: PMC9213613 DOI: 10.1007/s11357-022-00559-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
Autophagy is a catabolic process to eliminate defective cellular molecules via lysosome-mediated degradation. Dysfunctional autophagy is associated with accelerated aging, whereas stimulation of autophagy could have potent anti-aging effects. We report that cannabidiol (CBD), a natural compound from Cannabis sativa, extends lifespan and rescues age-associated physiological declines in C. elegans. CBD promoted autophagic flux in nerve-ring neurons visualized by a tandem-tagged LGG-1 reporter during aging in C. elegans. Similarly, CBD activated autophagic flux in hippocampal and SH-SY5Y neurons. Furthermore, CBD-mediated lifespan extension was dependent on autophagy genes (bec-1, vps-34, and sqst-1) confirmed by RNAi knockdown experiments. C. elegans neurons have previously been shown to accumulate aberrant morphologies, such as beading and blebbing, with increasing age. Interestingly, CBD treatment slowed the development of these features in anterior and posterior touch receptor neurons (TRN) during aging. RNAi knockdown experiments indicated that CBD-mediated age-associated morphological changes in TRNs require bec-1 and sqst-1, not vps-34. Further investigation demonstrated that CBD-induced lifespan extension and increased neuronal health require sir-2.1/SIRT1. These findings collectively indicate the anti-aging benefits of CBD treatment, in both in vitro and in vivo models, and its potential to improve neuronal health and longevity.
Collapse
Affiliation(s)
- Zhizhen Wang
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia.,Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Peng Zheng
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Xi Chen
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Yuanyi Xie
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Katrina Weston-Green
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia.,Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.,Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Nadia Solowij
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia.,Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.,School of Psychology, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Yee Lian Chew
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Flinders Health and Medical Research Institute and College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Xu-Feng Huang
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia. .,Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
27
|
Sinha DB, Pincus ZS. High temporal resolution measurements of movement reveal novel early-life physiological decline in C. elegans. PLoS One 2022; 17:e0257591. [PMID: 35108272 PMCID: PMC8809618 DOI: 10.1371/journal.pone.0257591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/16/2022] [Indexed: 11/19/2022] Open
Abstract
Age-related physiological changes are most notable and best-studied late in life, while the nature of aging in early- or middle-aged individuals has not been explored as thoroughly. In C. elegans, many studies of movement vs. age generally focus on three distinct phases: sustained, youthful movement; onset of rapidly progressing impairment; and gross immobility. We investigated whether this first period of early-life adult movement is a sustained “healthy” level of high function followed by a discrete “movement catastrophe”—or whether there are early-life changes in movement that precede future physiological declines. To determine how movement varies during early adult life, we followed isolated individuals throughout life with a previously unachieved combination of duration and temporal resolution. By tracking individuals across the first six days of adulthood, we observed declines in movement starting as early as the first two days of adult life, as well as high interindividual variability in total daily movement. These findings suggest that movement is a highly dynamic behavior early in life, and that factors driving movement decline may begin acting as early as the first day of adulthood. Using simulation studies based on acquired data, we suggest that too-infrequent sampling in common movement assays limits observation of early-adult changes in motility, and we propose feasible strategies and a framework for designing assays with increased sensitivity for early movement declines.
Collapse
Affiliation(s)
- Drew Benjamin Sinha
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Departments from Genetics and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zachary Scott Pincus
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Departments from Genetics and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: ,
| |
Collapse
|
28
|
Multiview motion tracking based on a cartesian robot to monitor Caenorhabditis elegans in standard Petri dishes. Sci Rep 2022; 12:1767. [PMID: 35110654 PMCID: PMC8810772 DOI: 10.1038/s41598-022-05823-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Data from manual healthspan assays of the nematode Caenorhabditis elegans (C. elegans) can be complex to quantify. The first attempts to quantify motor performance were done manually, using the so-called thrashing or body bends assay. Some laboratories have automated these approaches using methods that help substantially to quantify these characteristic movements in small well plates. Even so, it is sometimes difficult to find differences in motor behaviour between strains, and/or between treated vs untreated worms. For this reason, we present here a new automated method that increases the resolution flexibility, in order to capture more movement details in large standard Petri dishes, in such way that those movements are less restricted. This method is based on a Cartesian robot, which enables high-resolution images capture in standard Petri dishes. Several cameras mounted strategically on the robot and working with different fields of view, capture the required C. elegans visual information. We have performed a locomotion-based healthspan experiment with several mutant strains, and we have been able to detect statistically significant differences between two strains that show very similar movement patterns.
Collapse
|
29
|
Anti-aging effects of chlorpropamide depend on mitochondrial complex-II and the production of mitochondrial reactive oxygen species. Acta Pharm Sin B 2022; 12:665-677. [PMID: 35256938 PMCID: PMC8897034 DOI: 10.1016/j.apsb.2021.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Sulfonylureas are widely used oral anti-diabetic drugs. However, its long-term usage effects on patients’ lifespan remain controversial, with no reports of influence on animal longevity. Hence, the anti-aging effects of chlorpropamide along with glimepiride, glibenclamide, and tolbutamide were studied with special emphasis on the interaction of chlorpropamide with mitochondrial ATP-sensitive K+ (mitoK-ATP) channels and mitochondrial complex II. Chlorpropamide delayed aging in Caenorhabditis elegans, human lung fibroblast MRC-5 cells and reduced doxorubicin-induced senescence in both MRC-5 cells and mice. In addition, the mitochondrial membrane potential and ATP levels were significantly increased in chlorpropamide-treated worms, which is consistent with the function of its reported targets, mitoK-ATP channels. Increased levels of mitochondrial reactive oxygen species (mtROS) were observed in chlorpropamide-treated worms. Moreover, the lifespan extension by chlorpropamide required complex II and increased mtROS levels, indicating that chlorpropamide acts on complex II directly or indirectly via mitoK-ATP to increase the production of mtROS as a pro-longevity signal. This study provides mechanistic insight into the anti-aging effects of sulfonylureas in C. elegans.
Collapse
|
30
|
Hughes S, Kolsters N, van de Klashorst D, Kreuter E, Berger Büter K. An extract of Rosaceae, Solanaceae and Zingiberaceae increases health span and mobility in Caenorhabditis elegans. BMC Nutr 2022; 8:5. [PMID: 35027085 PMCID: PMC8756710 DOI: 10.1186/s40795-022-00498-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Background Members of the Rosaceae, Solanaceae and Zingiberaceae families which include fruits such as cherries, tomatoes and ginger are known to have health promoting effects. There is growing interest in consuming these “functional foods” as a means to increase health and healthy ageing. However, many studies explore the effect of these foods in isolation, not as a blend of multiple functional foods. Methods In this study, an extract containing the dried berries, fruits, and roots of members of these families was prepared, which we called Bioact®180. The nematode Caenorhabditis elegans was used to evaluate the effects of Bioact®180 on lifespan and health endpoints, including muscle and mitochondria structure and locomotion. Results Exposure to the 1000 µg/mL of Bioact®180 extract, containing 4% total phenols, were healthier, as observed by an increase in mean lifespan with and small but significant increase in maximal lifespan. Nematodes exposed to Bioact®180 displayed better mobility in mid-life stages as well as enhanced mitochondrial morphology, which was more comparable to younger animals, suggesting that these worms are protected to some degree from sarcopenia. Conclusions Together, our findings reveal that Bioact®180, a blend of fruits and roots from Rosaceae, Solanaceae and Zingiberaceae family members has anti-aging effects. Bioact®180 promotes health and lifespan extension in C. elegans, corresponding to functional improvements in mobility.
Collapse
Affiliation(s)
- Samantha Hughes
- BioCentre, HAN University of Applied Sciences, 6525EM, Nijmegen, Netherlands.,Department of Environment and Health, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, Netherlands
| | - Nikki Kolsters
- BioCentre, HAN University of Applied Sciences, 6525EM, Nijmegen, Netherlands
| | | | - Emanuel Kreuter
- Bioactive Botanicals Swiss AG, Emeligarten 6, 8592, Uttwil, Switzerland
| | - Karin Berger Büter
- Bioactive Botanicals Swiss AG, Emeligarten 6, 8592, Uttwil, Switzerland.
| |
Collapse
|
31
|
Phosphoglycolate phosphatase homologs act as glycerol-3-phosphate phosphatase to control stress and healthspan in C. elegans. Nat Commun 2022; 13:177. [PMID: 35017476 PMCID: PMC8752807 DOI: 10.1038/s41467-021-27803-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 12/07/2021] [Indexed: 01/06/2023] Open
Abstract
Metabolic stress due to nutrient excess and lipid accumulation is at the root of many age-associated disorders and the identification of therapeutic targets that mimic the beneficial effects of calorie restriction has clinical importance. Here, using C. elegans as a model organism, we study the roles of a recently discovered enzyme at the heart of metabolism in mammalian cells, glycerol-3-phosphate phosphatase (G3PP) (gene name Pgp) that hydrolyzes glucose-derived glycerol-3-phosphate to glycerol. We identify three Pgp homologues in C. elegans (pgph) and demonstrate in vivo that their protein products have G3PP activity, essential for glycerol synthesis. We demonstrate that PGPH/G3PP regulates the adaptation to various stresses, in particular hyperosmolarity and glucotoxicity. Enhanced G3PP activity reduces fat accumulation, promotes healthy aging and acts as a calorie restriction mimetic at normal food intake without altering fertility. Thus, PGP/G3PP can be considered as a target for age-related metabolic disorders.
Collapse
|
32
|
Parween N, Jabeen A, Prasad B. Eugenol Elicits Prolongevity by Increasing Resistance to Oxidative Stress in C. elegans. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:841-853. [PMID: 34629046 DOI: 10.2174/1871527320666211008150347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/29/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022]
Abstract
AIM To analyze the efficacy of eugenol on longevity by assessing its antioxidant effect using Caenorhabditis elegans as an animal model. BACKGROUND Eugenol is a major polyphenolic component of Ocimum sanctum (Tulsi) which attributes wide pharmacological activities and can serve as a biomarker. However, the possible effect of eugenol on longevity in Caenorhabditis elegans has not been reported. OBJECTIVE The objective of this investigation was to provide first scientific based results about effect of eugenol on longevity, slowing down of paralysis in Alzheimer's model and mechanism behind it in Caenorhabditis elegans animal model system. METHODS The phenolic components of methanolic extract of Ocimum sanctum was analyzed by RP-HPLC. Worms were exposed to different concentrations of extract and one of its components -eugenol. Lifespan, health span, survival in CL4176 Alzheimer's model and molecular mechanism were analyzed. RESULTS Extract of Ocimum sanctumand eugenol increased lifespan and provided indemnity against pro-oxidants. It also significantly improved healthy ageing and slowed the progression of neurodegeneration in CL4176 Alzheimer's model of worm by increasing survival against prooxidants and slowing down the paralysis. Longevity effect was independent of the DAF-16 as observed by using DAF-16::GFP and daf-16 null mutant strains. These results implicate eugenol as a potent therapeutic compound which may curtail ageing and age related disorders like- Alzheimer's disease. CONCLUSION The present work demonstrated eugenol as a potential anti-ageing compound which may curtail ageing, improve heath span by enhancing resistance to oxidative stress and exerts its effect independent of DAF-16 pathway. So, it can be assumed that eugenol can be beneficial to humans as well, albeit further research is necessary before declaring it for human consumption.
Collapse
Affiliation(s)
- Nikhat Parween
- Department of Biochemistry, Patna University, Patna-800005. India
| | - Amber Jabeen
- Microbial & Molecular Genetics Lab., Department of Botany, Patna University, Patna-800005. India
| | - Birendra Prasad
- Microbial & Molecular Genetics Lab., Department of Botany, Patna University, Patna-800005. India
| |
Collapse
|
33
|
Tian J, Geiss C, Zarse K, Madreiter-Sokolowski CT, Ristow M. Green tea catechins EGCG and ECG enhance the fitness and lifespan of Caenorhabditis elegans by complex I inhibition. Aging (Albany NY) 2021; 13:22629-22648. [PMID: 34607977 PMCID: PMC8544342 DOI: 10.18632/aging.203597] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Green tea catechins are associated with a delay in aging. We have designed the current study to investigate the impact and to unveil the target of the most abundant green tea catechins, epigallocatechin gallate (EGCG) and epicatechin gallate (ECG). Experiments were performed in Caenorhabditis elegans to analyze cellular metabolism, ROS homeostasis, stress resistance, physical exercise capacity, health- and lifespan, and the underlying signaling pathways. Besides, we examined the impact of EGCG and ECG in isolated murine mitochondria. A concentration of 2.5 μM EGCG and ECG enhanced health- and lifespan as well as stress resistance in C. elegans. Catechins hampered mitochondrial respiration in C. elegans after 6–12 h and the activity of complex I in isolated rodent mitochondria. The impaired mitochondrial respiration was accompanied by a transient drop in ATP production and a temporary increase in ROS levels in C. elegans. After 24 h, mitochondrial respiration and ATP levels got restored, and ROS levels even dropped below control conditions. The lifespan increases induced by EGCG and ECG were dependent on AAK-2/AMPK and SIR-2.1/SIRT1, as well as on PMK-1/p38 MAPK, SKN-1/NRF2, and DAF-16/FOXO. Long-term effects included significantly diminished fat content and enhanced SOD and CAT activities, required for the positive impact of catechins on lifespan. In summary, complex I inhibition by EGCG and ECG induced a transient drop in cellular ATP levels and a temporary ROS burst, resulting in SKN-1 and DAF-16 activation. Through adaptative responses, catechins reduced fat content, enhanced ROS defense, and improved healthspan in the long term.
Collapse
Affiliation(s)
- Jing Tian
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University Jena, Jena 07743, Germany.,MOE Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Caroline Geiss
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Kim Zarse
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University Jena, Jena 07743, Germany.,Laboratory of Energy Metabolism, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Corina T Madreiter-Sokolowski
- Laboratory of Energy Metabolism, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland.,Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria
| | - Michael Ristow
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University Jena, Jena 07743, Germany.,Laboratory of Energy Metabolism, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| |
Collapse
|
34
|
Marchal L, Hamsanathan S, Karthikappallil R, Han S, Shinglot H, Gurkar AU. Analysis of representative mutants for key DNA repair pathways on healthspan in Caenorhabditis elegans. Mech Ageing Dev 2021; 200:111573. [PMID: 34562508 DOI: 10.1016/j.mad.2021.111573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022]
Abstract
Although the link between DNA damage and aging is well accepted, the role of different DNA repair proteins on functional/physiological aging is not well-defined. Here, using Caenorhabditis elegans, we systematically examined the effect of three DNA repair genes involved in key genome stability pathways. We assayed multiple health proxies including molecular, functional and resilience measures to define healthspan. Loss of XPF-1/ERCC-1, a protein involved in nucleotide excision repair (NER), homologous recombination (HR) and interstrand crosslink (ICL) repair, showed the highest impairment of functional and stress resilience measures along with a shortened lifespan. brc-1 mutants, with a well-defined role in HR and ICL are short-lived and highly sensitive to acute stressors, specifically oxidative stress. In contrast, ICL mutant, fcd-2 did not impact lifespan or most healthspan measures. Our efforts also uncover that DNA repair mutants show high sensitivity to oxidative stress with age, suggesting that this measure could act as a primary proxy for healthspan. Together, these data suggest that impairment of multiple DNA repair genes can drive functional/physiological aging. Further studies to examine specific DNA repair genes in a tissue specific manner will help dissect the importance and mechanistic role of these repair systems in biological aging.
Collapse
Affiliation(s)
- Lucile Marchal
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA
| | - Shruthi Hamsanathan
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA
| | - Roshan Karthikappallil
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA; Medical Sciences Division, University of Oxford, Oxford, UK
| | - Suhao Han
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA
| | - Himaly Shinglot
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA
| | - Aditi U Gurkar
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA; Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Kaufmann Medical Building Suite 500, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Centre, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
35
|
Wu X, Zhu T, Zhang H, Lu L, He X, Liu C, Fan SJ. Identification of odor biomarkers in irradiation injury urine based on headspace SPME-GC-MS. Int J Radiat Biol 2021; 97:1597-1605. [PMID: 34402727 DOI: 10.1080/09553002.2021.1969050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE The threat of population exposure to ionizing radiation is increasing rapidly worldwide. Such exposure, especially at high-dose, is known to cause acute radiation syndrome (ARS). Hence, it is necessary to develop specific and sensitive biomarkers to accurately diagnose radiation injury and evaluate medical countermeasures. MATERIALS AND METHODS Caenorhabditis elegans (C. elegans), a model organism with a fine and sound olfactory system, was used to examine the odor of urine samples collected from irradiation-injured rats, and compared with those from un-irradiated control rats to investigate the 'special odor' of radiation injury. Subsequently, headspace SPME-GC-MS was applied for non-targeted metabolomic analysis of volatile organic compounds (VOCs) in urine, with the aim to discover changes of small molecule metabolites and identify odor biomarkers of irradiation injury. RESULTS C. elegans showed significant attraction to the urine of total body irradiation (TBI) rats compared with control rats, indicating that irradiation injury can emit 'special odor' and the metabolites in urine VOCs were changed. Using metabolomics based on headspace SPME-GC-MS for metabolic profiles analysis, we screened 63 differentially expressed metabolites. Among them, 10 metabolites including p-Cresol with excellent diagnostic ability were identified as odor biomarkers according to receiver operating characteristic (ROC) curve analysis. CONCLUSIONS This study confirmed the 'special odor' induced by irradiation injury, and identified biomarkers through urine VOCs analysis for the first time, which can provide a novel approach and insight to evaluate irradiation injury noninvasively, accurately and conveniently.[Figure: see text].
Collapse
Affiliation(s)
- Xin Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Tong Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Hongbing Zhang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, PR China
| | - Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Xin He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Changxiao Liu
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, PR China
| | - Sai-Jun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| |
Collapse
|
36
|
Sladowska M, Turek M, Kim MJ, Drabikowski K, Mussulini BHM, Mohanraj K, Serwa RA, Topf U, Chacinska A. Proteasome activity contributes to pro-survival response upon mild mitochondrial stress in Caenorhabditis elegans. PLoS Biol 2021; 19:e3001302. [PMID: 34252079 PMCID: PMC8274918 DOI: 10.1371/journal.pbio.3001302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Defects in mitochondrial function activate compensatory responses in the cell. Mitochondrial stress that is caused by unfolded proteins inside the organelle induces a transcriptional response (termed the "mitochondrial unfolded protein response" [UPRmt]) that is mediated by activating transcription factor associated with stress 1 (ATFS-1). The UPRmt increases mitochondrial protein quality control. Mitochondrial dysfunction frequently causes defects in the import of proteins, resulting in the accumulation of mitochondrial proteins outside the organelle. In yeast, cells respond to mistargeted mitochondrial proteins by increasing activity of the proteasome in the cytosol (termed the "unfolded protein response activated by mistargeting of proteins" [UPRam]). The presence and relevance of this response in higher eukaryotes is unclear. Here, we demonstrate that defects in mitochondrial protein import in Caenorhabditis elegans lead to proteasome activation and life span extension. Both proteasome activation and life span prolongation partially depend on ATFS-1, despite its lack of influence on proteasomal gene transcription. Importantly, life span prolongation depends on the fully assembled proteasome. Our data provide a link between mitochondrial dysfunction and proteasomal activity and demonstrate its direct relevance to mechanisms that promote longevity.
Collapse
Affiliation(s)
- Maria Sladowska
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Michał Turek
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Min-Ji Kim
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Krzysztof Drabikowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Karthik Mohanraj
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
| | - Remigiusz A. Serwa
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ulrike Topf
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Chacinska
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- IMol Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
37
|
Taylor SKB, Minhas MH, Tong J, Selvaganapathy PR, Mishra RK, Gupta BP. C. elegans electrotaxis behavior is modulated by heat shock response and unfolded protein response signaling pathways. Sci Rep 2021; 11:3115. [PMID: 33542359 PMCID: PMC7862228 DOI: 10.1038/s41598-021-82466-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
The nematode C. elegans is a leading model to investigate the mechanisms of stress-induced behavioral changes coupled with biochemical mechanisms. Our group has previously characterized C. elegans behavior using a microfluidic-based electrotaxis device, and showed that worms display directional motion in the presence of a mild electric field. In this study, we describe the effects of various forms of genetic and environmental stress on the electrotactic movement of animals. Using exposure to chemicals, such as paraquat and tunicamycin, as well as mitochondrial and endoplasmic reticulum (ER) unfolded protein response (UPR) mutants, we demonstrate that chronic stress causes abnormal movement. Additionally, we report that pqe-1 (human RNA exonuclease 1 homolog) is necessary for the maintenance of multiple stress response signaling and electrotaxis behavior of animals. Further, exposure of C. elegans to several environmental stress-inducing conditions revealed that while chronic heat and dietary restriction caused electrotaxis speed deficits due to prolonged stress, daily exercise had a beneficial effect on the animals, likely due to improved muscle health and transient activation of UPR. Overall, these data demonstrate that the electrotaxis behavior of worms is susceptible to cytosolic, mitochondrial, and ER stress, and that multiple stress response pathways contribute to its preservation in the face of stressful stimuli.
Collapse
Affiliation(s)
- Shane K. B. Taylor
- grid.25073.330000 0004 1936 8227Department of Biology, McMaster University, Hamilton, ON Canada
| | - Muhammad H. Minhas
- grid.25073.330000 0004 1936 8227Department of Biology, McMaster University, Hamilton, ON Canada
| | - Justin Tong
- grid.25073.330000 0004 1936 8227Department of Biology, McMaster University, Hamilton, ON Canada
| | - P. Ravi Selvaganapathy
- grid.25073.330000 0004 1936 8227Department of Mechanical Engineering, McMaster University, Hamilton, ON Canada
| | - Ram K. Mishra
- grid.25073.330000 0004 1936 8227Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON Canada
| | - Bhagwati P. Gupta
- grid.25073.330000 0004 1936 8227Department of Biology, McMaster University, Hamilton, ON Canada
| |
Collapse
|
38
|
Nakano Y, Moriuchi M, Fukushima Y, Hayashi K, Suico MA, Kai H, Koutaki G, Shuto T. Intrapopulation analysis of longitudinal lifespan in Caenorhabditis elegans identifies W09D10.4 as a novel AMPK-associated healthspan shortening factor. J Pharmacol Sci 2020; 145:241-252. [PMID: 33602504 DOI: 10.1016/j.jphs.2020.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 11/27/2022] Open
Abstract
Caenorhabditis elegans is a model organism widely used for longevity studies. Current advances have been made in the methods that allow automated monitoring of C. elegans behavior. However, ordinary manual assays as well as automated methods have yet to achieve qualitative whole-life analysis of C. elegans longevity based on intrapopulation variation. Here, we utilized live-cell analysis system to determine the parameters of nematode lifespans. Image-based superposition method enabled to determine not only frailty in worms, but also to measure individual and longitudinal lifespan, healthspan, and frailspan. Notably, k-means clustering via principal component analysis revealed four clusters with distinct longevity patterns in wild-type C. elegans. Physiological relevance of clustering was confirmed by assays with pharmacological and/or genetic manipulation of AMP-activated protein kinase (AMPK), a crucial regulator of healthspan. Finally, we focused on W09D10.4 among the possible regulators extracted by integrative expression analysis with existing data sets. Importantly, W09D10.4 knockdown increased the high-healthspan populations only in the presence of AMPK, suggesting that W09D10.4 is a novel AMPK-associated healthspan shortening factor in C. elegans. Overall, the study establishes a novel platform of longitudinal lifespan in C. elegans, which is user-friendly, and may be a useful pharmacological tool to identify healthspan modulatory factors.
Collapse
Affiliation(s)
- Yoshio Nakano
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Global Oriented) Program", 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Masataka Moriuchi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Global Oriented) Program", 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yutaro Fukushima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Global Oriented) Program", 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Kyotaro Hayashi
- Department of Electrical and Computer Engineering, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Go Koutaki
- Department of Electrical and Computer Engineering, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
39
|
Heissenberger C, Rollins JA, Krammer TL, Nagelreiter F, Stocker I, Wacheul L, Shpylovyi A, Tav K, Snow S, Grillari J, Rogers AN, Lafontaine DLJ, Schosserer M. The ribosomal RNA m 5C methyltransferase NSUN-1 modulates healthspan and oogenesis in Caenorhabditis elegans. eLife 2020; 9:56205. [PMID: 33289480 PMCID: PMC7746234 DOI: 10.7554/elife.56205] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Our knowledge about the repertoire of ribosomal RNA modifications and the enzymes responsible for installing them is constantly expanding. Previously, we reported that NSUN-5 is responsible for depositing m5C at position C2381 on the 26S rRNA in Caenorhabditis elegans. Here, we show that NSUN-1 is writing the second known 26S rRNA m5C at position C2982. Depletion of nsun-1 or nsun-5 improved thermotolerance and slightly increased locomotion at midlife, however, only soma-specific knockdown of nsun-1 extended lifespan. Moreover, soma-specific knockdown of nsun-1 reduced body size and impaired fecundity, suggesting non-cell-autonomous effects. While ribosome biogenesis and global protein synthesis were unaffected by nsun-1 depletion, translation of specific mRNAs was remodeled leading to reduced production of collagens, loss of structural integrity of the cuticle, and impaired barrier function. We conclude that loss of a single enzyme required for rRNA methylation has profound and highly specific effects on organismal development and physiology.
Collapse
Affiliation(s)
- Clemens Heissenberger
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | | | - Teresa L Krammer
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Fabian Nagelreiter
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Isabella Stocker
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - Anton Shpylovyi
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Koray Tav
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Santina Snow
- MDI Biological Laboratory, Bar Harbor, United States
| | - Johannes Grillari
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria.,Ludwig Boltzmann Institute of Experimental and Clinical Traumatology, Vienna, Austria
| | - Aric N Rogers
- MDI Biological Laboratory, Bar Harbor, United States
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - Markus Schosserer
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria.,MDI Biological Laboratory, Bar Harbor, United States
| |
Collapse
|
40
|
Bulterijs S, Braeckman BP. Phenotypic Screening in C. elegans as a Tool for the Discovery of New Geroprotective Drugs. Pharmaceuticals (Basel) 2020; 13:E164. [PMID: 32722365 PMCID: PMC7463874 DOI: 10.3390/ph13080164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023] Open
Abstract
Population aging is one of the largest challenges of the 21st century. As more people live to advanced ages, the prevalence of age-related diseases and disabilities will increase placing an ever larger burden on our healthcare system. A potential solution to this conundrum is to develop treatments that prevent, delay or reduce the severity of age-related diseases by decreasing the rate of the aging process. This ambition has been accomplished in model organisms through dietary, genetic and pharmacological interventions. The pharmacological approaches hold the greatest opportunity for successful translation to the clinic. The discovery of such pharmacological interventions in aging requires high-throughput screening strategies. However, the majority of screens performed for geroprotective drugs in C. elegans so far are rather low throughput. Therefore, the development of high-throughput screening strategies is of utmost importance.
Collapse
Affiliation(s)
- Sven Bulterijs
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Bart P. Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
41
|
Healthspan pathway maps in C. elegans and humans highlight transcription, proliferation/biosynthesis and lipids. Aging (Albany NY) 2020; 12:12534-12581. [PMID: 32634117 PMCID: PMC7377848 DOI: 10.18632/aging.103514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
The molecular basis of aging and of aging-associated diseases is being unraveled at an increasing pace. An extended healthspan, and not merely an extension of lifespan, has become the aim of medical practice. Here, we define health based on the absence of diseases and dysfunctions. Based on an extensive review of the literature, in particular for humans and C. elegans, we compile a list of features of health and of the genes associated with them. These genes may or may not be associated with survival/lifespan. In turn, survival/lifespan genes that are not known to be directly associated with health are not considered. Clusters of these genes based on molecular interaction data give rise to maps of healthspan pathways for humans and for C. elegans. Overlaying healthspan-related gene expression data onto the healthspan pathway maps, we observe the downregulation of (pro-inflammatory) Notch signaling in humans and of proliferation in C. elegans. We identify transcription, proliferation/biosynthesis and lipids as a common theme on the annotation level, and proliferation-related kinases on the gene/protein level. Our literature-based data corpus, including visualization, should be seen as a pilot investigation of the molecular underpinnings of health in two different species. Web address: http://pathways.h2020awe.eu.
Collapse
|
42
|
An automated platform to monitor long-term behavior and healthspan in Caenorhabditis elegans under precise environmental control. Commun Biol 2020; 3:297. [PMID: 32523044 PMCID: PMC7287092 DOI: 10.1038/s42003-020-1013-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/15/2020] [Indexed: 11/23/2022] Open
Abstract
Health and longevity in all organisms are strongly influenced by the environment. To fully understand how environmental factors interact with genetic and stochastic factors to modulate the aging process, it is crucial to precisely control environmental conditions for long-term studies. In the commonly used model organism Caenorhabditis elegans, existing assays for healthspan and lifespan have inherent limitations, making it difficult to perform large-scale longitudinal aging studies under precise environmental control. To address these constraints, we developed the Health and Lifespan Testing Hub (HeALTH), an automated, microfluidic-based system for robust longitudinal behavioral monitoring. Our system provides long-term (i.e. entire lifespan) spatiotemporal environmental control. We demonstrate healthspan and lifespan studies under a variety of genetic and environmental perturbations while observing how individuality plays a role in the aging process. This system is generalizable beyond aging research, particularly for short- or long-term behavioral assays, and could be adapted for other model systems. Kim N. Le, Mei Zhan et al. develop an automated microfluidic-based system, HeALTH, which provides spatiotemporal environmental control and allows for long-term behavioral monitoring. Using Caenorhabditis elegans they demonstrate the robustness of this platform for health and lifespan studies, and highlight its adaptability to other model systems.
Collapse
|
43
|
Wilson KA, Beck JN, Nelson CS, Hilsabeck TA, Promislow D, Brem RB, Kapahi P. GWAS for Lifespan and Decline in Climbing Ability in Flies upon Dietary Restriction Reveal decima as a Mediator of Insulin-like Peptide Production. Curr Biol 2020; 30:2749-2760.e3. [PMID: 32502405 DOI: 10.1016/j.cub.2020.05.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/17/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
Dietary restriction (DR) is the most robust means to extend lifespan and delay age-related diseases across species. An underlying assumption in the aging field is that DR enhances both lifespan and physical activity through similar mechanisms, but this has not been rigorously tested in different genetic backgrounds. Furthermore, nutrient response genes responsible for lifespan extension or age-related decline in functionality remain underexplored in natural populations. To address this, we measured nutrient-dependent changes in lifespan and age-related decline in climbing ability in the Drosophila Genetic Reference Panel fly strains. On average, DR extended lifespan and delayed decline in climbing ability, but there was a lack of correlation between these traits across individual strains, suggesting that distinct genetic factors modulate these traits independently and that genotype determines response to diet. Only 50% of strains showed positive response to DR for both lifespan and climbing ability, 14% showed a negative response for one trait but not both, and 35% showed no change in one or both traits. Through GWAS, we uncovered a number of genes previously not known to be diet responsive nor to influence lifespan or climbing ability. We validated decima as a gene that alters lifespan and daedalus as one that influences age-related decline in climbing ability. We found that decima influences insulin-like peptide transcription in the GABA receptor neurons downstream of short neuropeptide F precursor (sNPF) signaling. Modulating these genes produced independent effects on lifespan and physical activity decline, which suggests that these age-related traits can be regulated through distinct mechanisms.
Collapse
Affiliation(s)
- Kenneth A Wilson
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA
| | - Jennifer N Beck
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA 94143, USA
| | | | - Tyler A Hilsabeck
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA
| | - Daniel Promislow
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA; Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720, USA.
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA; Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA 94143, USA.
| |
Collapse
|
44
|
WormBot, an open-source robotics platform for survival and behavior analysis in C. elegans. GeroScience 2019; 41:961-973. [PMID: 31728898 PMCID: PMC6925079 DOI: 10.1007/s11357-019-00124-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/14/2019] [Indexed: 02/01/2023] Open
Abstract
Caenorhabditis elegans is a popular organism for aging research owing to its highly conserved molecular pathways, short lifespan, small size, and extensive genetic and reverse genetic resources. Here we describe the WormBot, an open-source robotic image capture platform capable of conducting 144 parallel C. elegans survival and behavioral phenotyping experiments. The WormBot uses standard 12-well tissue culture plates suitable for solid agar media and is built from commercially available robotics hardware. The WormBot is controlled by a web-based interface allowing control and monitoring of experiments from any internet connected device. The standard WormBot hardware features the ability to take both time-lapse bright field images and real-time video micrographs, allowing investigators to measure lifespan, as well as heathspan metrics as worms age. The open-source nature of the hardware and software will allow for users to extend the platform and implement new software and hardware features. This extensibility, coupled with the low cost and simplicity of the system, allows the automation of C. elegans survival analysis even in small laboratory settings with modest budgets.
Collapse
|
45
|
Sanz-Puig M, Arana-Lozano A, Pina-Pérez MC, Fernández P, Martínez A, Rodrigo D. Occurrence of Salmonella typhimurium resistance under sublethal/repeated exposure to cauliflower infusion and infection effects on Caernohabditis elegans host test organism. FOOD SCI TECHNOL INT 2019; 26:151-159. [PMID: 31544526 DOI: 10.1177/1082013219873500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Resistant bacteria to antimicrobials are increasingly emerging in medical, food industry and livestock environments. The present research work assesses the capability of Salmonella enterica var Typhimurium to become adapted under the exposure to a natural cauliflower antimicrobial by-product infusion in consecutive repeated exposure cycles. Caenorhabditis elegans was proposed as in vivo host-test organism to compare possible changes in the virulent pattern of the different rounds treated S. enterica var Typhimurium and untreated bacterial cells. According to the obtained results, S. enterica var Typhimurium was able to generate resistance against a repeated exposure to cauliflower by-product infusion 5% (w/v), increasing the resistance with the number of exposed repetitions. Meanwhile, at the first exposure, cauliflower by-product infusion was effective in reducing S. enterica var Typhimurium (≈1 log10 cycle), and S. enterica var Typhimurium became resistant to this natural antimicrobial after the second and third treatment-round and was able to grow (≈1 log10 cycle). In spite of the increased resistance observed for repeatedly treated bacteria, the present study reveals no changes on C. elegans infection effects between resistant and untreated S. enterica var Typhimurium, according to phenotypic parameters evaluation (lifespan duration and egg-laying).
Collapse
Affiliation(s)
- Maria Sanz-Puig
- Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), València, Spain
| | - Alejandra Arana-Lozano
- Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), València, Spain
| | | | - Pablo Fernández
- Unidad Asociada al CSIC, Universidad Politécnica de Cartagena, Murcia, Spain
| | - Antonio Martínez
- Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), València, Spain
| | - Dolores Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), València, Spain
| |
Collapse
|
46
|
Rollins JA, Shaffer D, Snow SS, Kapahi P, Rogers AN. Dietary restriction induces posttranscriptional regulation of longevity genes. Life Sci Alliance 2019; 2:2/4/e201800281. [PMID: 31253655 PMCID: PMC6600014 DOI: 10.26508/lsa.201800281] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Dietary restriction (DR) increases life span through adaptive changes in gene expression. To understand more about these changes, we analyzed the transcriptome and translatome of Caenorhabditis elegans subjected to DR. Transcription of muscle regulatory and structural genes increased, whereas increased expression of amino acid metabolism and neuropeptide signaling genes was controlled at the level of translation. Evaluation of posttranscriptional regulation identified putative roles for RNA-binding proteins, RNA editing, miRNA, alternative splicing, and nonsense-mediated decay in response to nutrient limitation. Using RNA interference, we discovered several differentially expressed genes that regulate life span. We also found a compensatory role for translational regulation, which offsets dampened expression of a large subset of transcriptionally down-regulated genes. Furthermore, 3' UTR editing and intron retention increase under DR and correlate with diminished translation, whereas trans-spliced genes are refractory to reduced translation efficiency compared with messages with the native 5' UTR. Finally, we find that smg-6 and smg-7, which are genes governing selection and turnover of nonsense-mediated decay targets, are required for increased life span under DR.
Collapse
Affiliation(s)
- Jarod A Rollins
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Dan Shaffer
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Santina S Snow
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Aric N Rogers
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| |
Collapse
|
47
|
Admasu TD, Chaithanya Batchu K, Barardo D, Ng LF, Lam VYM, Xiao L, Cazenave-Gassiot A, Wenk MR, Tolwinski NS, Gruber J. Drug Synergy Slows Aging and Improves Healthspan through IGF and SREBP Lipid Signaling. Dev Cell 2018; 47:67-79.e5. [DOI: 10.1016/j.devcel.2018.09.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/18/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
|
48
|
Pomatto LCD, Davies KJA. Adaptive homeostasis and the free radical theory of ageing. Free Radic Biol Med 2018; 124:420-430. [PMID: 29960100 PMCID: PMC6098721 DOI: 10.1016/j.freeradbiomed.2018.06.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
Abstract
The Free Radical Theory of Ageing, was first proposed by Denham Harman in the mid-1950's, based largely on work conducted by Rebeca Gerschman and Daniel Gilbert. At its core, the Free Radical Theory of Ageing posits that free radical and related oxidants, from the environment and internal metabolism, cause damage to cellular constituents that, over time, result in an accumulation of structural and functional problems. Several variations on the original concept have been advanced over the past six decades, including the suggestion of a central role for mitochondria-derived reactive species, and the proposal of an age-related decline in the effectiveness of protein, lipid, and DNA repair systems. Such innovations have helped the Free Radical Theory of Aging to achieve widespread popularity. Nevertheless, an ever-growing number of apparent 'exceptions' to the Theory have seriously undermined its acceptance. In part, we suggest, this has resulted from a rather simplistic experimental approach of knocking-out, knocking-down, knocking-in, or overexpressing antioxidant-related genes to determine effects on lifespan. In some cases such experiments have yielded results that appear to support the Free Radical Theory of Aging, but there are just as many published papers that appear to contradict the Theory. We suggest that free radicals and related oxidants are but one subset of stressors with which all life forms must cope over their lifespans. Adaptive Homeostasis is the mechanism by which organisms dynamically expand or contract the homeostatic range of stress defense and repair systems, employing a veritable armory of signal transduction pathways (such as the Keap1-Nrf2 system) to generate a complex profile of inducible and enzymatic protection that best fits the particular need. Viewed as a component of Adaptive Homeostasis, the Free Radical Theory of Aging appears both viable and robust.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 00089-0191, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 00089-0191, USA; Molecular and Computational Biology Program of the Department of Biological Sciences, Dornsife College of Letters, Arts, and sciences, the University of Southern California, Los Angeles, CA 90089-0191, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Eckley DM, Coletta CE, Orlov NV, Wilson MA, Iser W, Bastian P, Lehrmann E, Zhang Y, Becker KG, Goldberg IG. Transcriptome States Reflect Imaging of Aging States. J Gerontol A Biol Sci Med Sci 2018; 73:893-901. [PMID: 29216338 DOI: 10.1093/gerona/glx236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 11/22/2017] [Indexed: 01/09/2023] Open
Abstract
In this study, we describe a morphological biomarker that detects multiple discrete subpopulations (or "age-states") at several chronological ages in a population of nematodes (Caenorhabditis elegans). We determined the frequencies of three healthy adult states and the timing of the transitions between them across the lifespan. We used short-lived and long-lived strains to confirm the general applicability of the state classifier and to monitor state progression. This exploration revealed healthy and unhealthy states, the former being favored in long-lived strains and the latter showing delayed onset. Short-lived strains rapidly transitioned through the putative healthy state. We previously found that age-matched animals in different age-states have distinct transcriptome profiles. We isolated animals at the beginning and end of each identified state and performed microarray analysis (principal component analysis, relative sample to sample distance measurements, and gene set enrichment analysis). In some comparisons, chronologically identical individuals were farther apart than morphologically identical individuals isolated on different days. The age-state biomarker allowed assessment of aging in a novel manner, complementary to chronological age progression. We found hsp70 and some small heat shock protein genes are expressed later in adulthood, consistent with the proteostasis collapse model.
Collapse
Affiliation(s)
- D Mark Eckley
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Christopher E Coletta
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Nikita V Orlov
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Mark A Wilson
- Laboratory of Neuroscience, Biomedical Research Center, Baltimore, Maryland
| | - Wendy Iser
- Laboratory of Neuroscience, Biomedical Research Center, Baltimore, Maryland
| | - Paul Bastian
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Yonqing Zhang
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Kevin G Becker
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Ilya G Goldberg
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland.,Mindshare Medical, Inc., Baltimore, Maryland
| |
Collapse
|