1
|
Biyabani A, Ghorbani F, Koushki M, Nedaei K, Hemmati M, Mahdei Nasir Mahalleh N, Ghadimi D. Quercetin and calorie restriction improve leptin/adiponectin balance through reducing high-fat diet-induced oxidative stress in male BALB/c mice. Biochem Biophys Res Commun 2025; 742:151073. [PMID: 39637705 DOI: 10.1016/j.bbrc.2024.151073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Throughout the recent decades, obesity has become a serious health problem that raises the risk of several diseases, including cancer, diabetes, hypertension, heart disease, neurological musculoskeletal disorders, and Non-alcoholic fatty liver disease. Some strategies, such as dietary interventions, calorie restriction (CR), and the use of antioxidant compounds, have been proposed to improve quality of life in relation to obesity. The goal of this study was to characterize the effects of CR and quercetin (QUER) on obesity-induced oxidative stress (OS). Thirty 8-week-old male BALB/c mice were divided into 5 groups of six mice each: normal diet, high-fat diet (HFD), HFD + CR, HFD + QUER (15 mg kg-1, IP), and HFD + QUER + CR. CR was applied as two fasting days with an interval of two days in a week. Catalase (CAT), Paraxonase 1 (PON1) and adiponectin (APN) were decreased in the HFD group, while the combination of QUER and CR increased these parameters. Treatment with QUER and CR improved Alanine transaminase and Alkaline Phosphatase enzyme activity and also the amount of leptin and insulin. Moreover, combined QUER and CR also reduced triacylglycerol (TAG), total cholesterol and TAG droplets in hepatocytes. Decreased OS was associated with the higher expression of NAD(P)H Quinone Oxidoreductase 1(NQO1) and reduced hepatic vacuoles in QUER and CR-HFD treated groups. In conclusion, these findings suggest that the combination of QUER and CR might exert protective impacts on obesity through alleviating OS and the regulation of metabolism.
Collapse
Affiliation(s)
- Arezou Biyabani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fereshte Ghorbani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehdi Koushki
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Keivan Nedaei
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mina Hemmati
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Nima Mahdei Nasir Mahalleh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Darya Ghadimi
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Lee WS, Ham W, Kim J. Roles of NAD(P)H:quinone Oxidoreductase 1 in Diverse Diseases. Life (Basel) 2021; 11:life11121301. [PMID: 34947831 PMCID: PMC8703842 DOI: 10.3390/life11121301] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/07/2023] Open
Abstract
NAD(P)H:quinone oxidoreductase (NQO) is an antioxidant flavoprotein that catalyzes the reduction of highly reactive quinone metabolites by employing NAD(P)H as an electron donor. There are two NQO enzymes—NQO1 and NQO2—in mammalian systems. In particular, NQO1 exerts many biological activities, including antioxidant activities, anti-inflammatory effects, and interactions with tumor suppressors. Moreover, several recent studies have revealed the promising roles of NQO1 in protecting against cardiovascular damage and related diseases, such as dyslipidemia, atherosclerosis, insulin resistance, and metabolic syndrome. In this review, we discuss recent developments in the molecular regulation and biochemical properties of NQO1, and describe the potential beneficial roles of NQO1 in diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
- Correspondence: (W.-S.L.); (J.K.); Tel.: +82-2-6299-1419 (W.-S.L.); +82-2-6299-1397 (J.K.)
| | - Woojin Ham
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
- Correspondence: (W.-S.L.); (J.K.); Tel.: +82-2-6299-1419 (W.-S.L.); +82-2-6299-1397 (J.K.)
| |
Collapse
|
3
|
Li Y, Dong J, Xiao H, Wang B, Chen Z, Zhang S, Jin Y, Li Y, Fan S, Cui M. Caloric restriction alleviates radiation injuries in a sex-dependent fashion. FASEB J 2021; 35:e21787. [PMID: 34320242 DOI: 10.1096/fj.202100351rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Safe and effective regimens are still needed given the risk of radiation toxicity from iatrogenic irradiation. The gut microbiota plays an important role in radiation damage. Diet has emerged as a key determinant of the intestinal microbiome signature and function. In this report, we investigated whether a 30% caloric restriction (CR) diet may ameliorate radiation enteritis and hematopoietic toxicity. Experimental mice were either fed ad libitum (AL) or subjected to CR preconditioning for 10 days and then exposed to total body irradiation (TBI) or total abdominal irradiation (TAI). Gross examinations showed that short-term CR pretreatment restored hematogenic organs and improved the intestinal architecture in both male and female mice. Intriguingly, CR preconditioning mitigated radiation-induced systemic and enteric inflammation in female mice, while gut barrier function improved in irradiated males. 16S rRNA high-throughput sequencing showed that the frequency of pro-inflammatory microbes, including Helicobacter and Desulfovibrionaceae, was reduced in female mice after 10 days of CR preconditioning, while an enrichment of short-chain fatty acid (SCFA)-producing bacteria, such as Faecalibaculum, Clostridiales, and Lactobacillus, was observed in males. Using fecal microbiota transplantation (FMT) or antibiotic administration to alter the gut microbiota counteracted the short-term CR-elicited radiation tolerance of both male and female mice, further indicating that the radioprotection of a 30% CR diet depends on altering the gut microbiota. Together, our findings provide new insights into CR in clinical applications and indicate that a short-term CR diet prior to radiation modulates sex-specific gut microbiota configurations, protecting male and female mice against the side effects caused by radiation challenge.
Collapse
Affiliation(s)
- Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huiwen Xiao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhiyuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shuqin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuxiao Jin
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
4
|
Alidadi M, Banach M, Guest PC, Bo S, Jamialahmadi T, Sahebkar A. The effect of caloric restriction and fasting on cancer. Semin Cancer Biol 2021; 73:30-44. [PMID: 32977005 DOI: 10.1016/j.semcancer.2020.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
Abstract
Cancer is one of the most frequent causes of worldwide death and morbidity and is a major public health problem. Although, there are several widely used treatment methods including chemo-, immune- and radiotherapies, these mostly lack sufficient efficiency and induce toxicities in normal surrounding tissues. Thus, finding new approaches to mitigate side effects and potentially accelerate treatment is paramount. In line with this, increasing preclinical evidence indicates that caloric restriction (CR) and fasting might have anticancer effects by reducing tumor progression, enhancing death of cancer cells, and elevating the effectiveness and tolerability of chemo- and radiotherapies. Nonetheless, clinical studies assessing the potential of CR and fasting in cancer are scarce and inconsistent, and more investigations are still required to clarify their effect in different aspects of cancer treatment. In this review, we have summarized the findings of preclinical and clinical studies of CR and fasting with respect to efficacy and on the adverse effects of standard cancer treatments.
Collapse
Affiliation(s)
- Mona Alidadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Simona Bo
- Department of Medical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Torino, Italy
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Acosta-Rodríguez VA, Rijo-Ferreira F, Green CB, Takahashi JS. Importance of circadian timing for aging and longevity. Nat Commun 2021; 12:2862. [PMID: 34001884 PMCID: PMC8129076 DOI: 10.1038/s41467-021-22922-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Dietary restriction (DR) decreases body weight, improves health, and extends lifespan. DR can be achieved by controlling how much and/or when food is provided, as well as by adjusting nutritional composition. Because these factors are often combined during DR, it is unclear which are necessary for beneficial effects. Several drugs have been utilized that target nutrient-sensing gene pathways, many of which change expression throughout the day, suggesting that the timing of drug administration is critical. Here, we discuss how dietary and pharmacological interventions promote a healthy lifespan by influencing energy intake and circadian rhythms. Circadian clocks link physiologic processes to environmental conditions and a mismatch between internal and external rhythms has negative effects on organismal health. In this review, the authors discuss the interactions between circadian clocks and dietary interventions targeted to promote healthy aging.
Collapse
Affiliation(s)
- Victoria A Acosta-Rodríguez
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carla B Green
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Yan LJ. NADH/NAD + Redox Imbalance and Diabetic Kidney Disease. Biomolecules 2021; 11:biom11050730. [PMID: 34068842 PMCID: PMC8153586 DOI: 10.3390/biom11050730] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is a common and severe complication of diabetes mellitus. If left untreated, DKD can advance to end stage renal disease that requires either dialysis or kidney replacement. While numerous mechanisms underlie the pathogenesis of DKD, oxidative stress driven by NADH/NAD+ redox imbalance and mitochondrial dysfunction have been thought to be the major pathophysiological mechanism of DKD. In this review, the pathways that increase NADH generation and those that decrease NAD+ levels are overviewed. This is followed by discussion of the consequences of NADH/NAD+ redox imbalance including disruption of mitochondrial homeostasis and function. Approaches that can be applied to counteract DKD are then discussed, which include mitochondria-targeted antioxidants and mimetics of superoxide dismutase, caloric restriction, plant/herbal extracts or their isolated compounds. Finally, the review ends by pointing out that future studies are needed to dissect the role of each pathway involved in NADH-NAD+ metabolism so that novel strategies to restore NADH/NAD+ redox balance in the diabetic kidney could be designed to combat DKD.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
7
|
Ross D, Siegel D. The diverse functionality of NQO1 and its roles in redox control. Redox Biol 2021; 41:101950. [PMID: 33774477 PMCID: PMC8027776 DOI: 10.1016/j.redox.2021.101950] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
In this review, we summarize the multiple functions of NQO1, its established roles in redox processes and potential roles in redox control that are currently emerging. NQO1 has attracted interest due to its roles in cell defense and marked inducibility during cellular stress. Exogenous substrates for NQO1 include many xenobiotic quinones. Since NQO1 is highly expressed in many solid tumors, including via upregulation of Nrf2, the design of compounds activated by NQO1 and NQO1-targeted drug delivery have been active areas of research. Endogenous substrates have also been proposed and of relevance to redox stress are ubiquinone and vitamin E quinone, components of the plasma membrane redox system. Established roles for NQO1 include a superoxide reductase activity, NAD+ generation, interaction with proteins and their stabilization against proteasomal degradation, binding and regulation of mRNA translation and binding to microtubules including the mitotic spindles. We also summarize potential roles for NQO1 in regulation of glucose and insulin metabolism with relevance to diabetes and the metabolic syndrome, in Alzheimer's disease and in aging. The conformation and molecular interactions of NQO1 can be modulated by changes in the pyridine nucleotide redox balance suggesting that NQO1 may function as a redox-dependent molecular switch.
Collapse
Affiliation(s)
- David Ross
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - David Siegel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
8
|
Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD + metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol 2021; 22:119-141. [PMID: 33353981 PMCID: PMC7963035 DOI: 10.1038/s41580-020-00313-x] [Citation(s) in RCA: 771] [Impact Index Per Article: 192.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a coenzyme for redox reactions, making it central to energy metabolism. NAD+ is also an essential cofactor for non-redox NAD+-dependent enzymes, including sirtuins, CD38 and poly(ADP-ribose) polymerases. NAD+ can directly and indirectly influence many key cellular functions, including metabolic pathways, DNA repair, chromatin remodelling, cellular senescence and immune cell function. These cellular processes and functions are critical for maintaining tissue and metabolic homeostasis and for healthy ageing. Remarkably, ageing is accompanied by a gradual decline in tissue and cellular NAD+ levels in multiple model organisms, including rodents and humans. This decline in NAD+ levels is linked causally to numerous ageing-associated diseases, including cognitive decline, cancer, metabolic disease, sarcopenia and frailty. Many of these ageing-associated diseases can be slowed down and even reversed by restoring NAD+ levels. Therefore, targeting NAD+ metabolism has emerged as a potential therapeutic approach to ameliorate ageing-related disease, and extend the human healthspan and lifespan. However, much remains to be learnt about how NAD+ influences human health and ageing biology. This includes a deeper understanding of the molecular mechanisms that regulate NAD+ levels, how to effectively restore NAD+ levels during ageing, whether doing so is safe and whether NAD+ repletion will have beneficial effects in ageing humans.
Collapse
Affiliation(s)
- Anthony J Covarrubias
- Buck Institute for Research on Aging, Novato, CA, USA
- UCSF Department of Medicine, San Francisco, CA, USA
| | | | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA.
- UCSF Department of Medicine, San Francisco, CA, USA.
| |
Collapse
|
9
|
Smolková K, Mikó E, Kovács T, Leguina-Ruzzi A, Sipos A, Bai P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxid Redox Signal 2020; 33:966-997. [PMID: 31989830 PMCID: PMC7533893 DOI: 10.1089/ars.2020.8024] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Nuclear factor erythroid 2 (NFE2)-related factor 2 (NFE2L2, or NRF2) is a transcription factor predominantly affecting the expression of antioxidant genes. NRF2 plays a significant role in the control of redox balance, which is crucial in cancer cells. NRF2 activation regulates numerous cancer hallmarks, including metabolism, cancer stem cell characteristics, tumor aggressiveness, invasion, and metastasis formation. We review the molecular characteristics of the NRF2 pathway and discuss its interactions with the cancer hallmarks previously listed. Recent Advances: The noncanonical activation of NRF2 was recently discovered, and members of this pathway are involved in carcinogenesis. Further, cancer-related changes (e.g., metabolic flexibility) that support cancer progression were found to be redox- and NRF2 dependent. Critical Issues: NRF2 undergoes Janus-faced behavior in cancers. The pro- or antineoplastic effects of NRF2 are context dependent and essentially based on the specific molecular characteristics of the cancer in question. Therefore, systematic investigation of NRF2 signaling is necessary to clarify its role in cancer etiology. The biggest challenge in the NRF2 field is to determine which cancers can be targeted for better clinical outcomes. Further, large-scale genomic and transcriptomic studies are missing to correlate the clinical outcome with the activity of the NRF2 system. Future Directions: To exploit NRF2 in a clinical setting in the future, the druggable members of the NRF2 pathway should be identified. In addition, it will be important to study how the modulation of the NRF2 system interferes with cytostatic drugs and their combinations.
Collapse
Affiliation(s)
- Katarína Smolková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alberto Leguina-Ruzzi
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary.,Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Abstract
Despite great advances in treatment, cancer remains a leading cause of death worldwide. Diet can greatly impact health, while caloric restriction and fasting have putative benefits for disease prevention and longevity. Strong epidemiological associations exist between obesity and cancer, whereas healthy diets can reduce cancer risk. However, less is known about how diet might impact cancer once it has been diagnosed and particularly how diet can impact cancer treatment. In the present review, we discuss the links between obesity, diet, and cancer. We explore potential mechanisms by which diet can improve cancer outcomes, including through hormonal, metabolic, and immune/inflammatory effects, and present the limited clinical research that has been published in this arena. Though data are sparse, diet intervention may reduce toxicity, improve chemotherapy efficacy, and lower the risk of long-term complications in cancer patients. Thus, it is important that we understand and expand the science of this important but complex adjunctive cancer treatment strategy.
Collapse
Affiliation(s)
- Steven D Mittelman
- Division of Pediatric Endocrinology, University of California, Los Angeles (UCLA), Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA;
| |
Collapse
|
11
|
Caloric restriction attenuates C57BL/6 J mouse lung injury and extra-pulmonary toxicity induced by real ambient particulate matter exposure. Part Fibre Toxicol 2020; 17:22. [PMID: 32503629 PMCID: PMC7275546 DOI: 10.1186/s12989-020-00354-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Background Caloric restriction (CR) is known to improve health and extend lifespan in human beings. The effects of CR on adverse health outcomes in response to particulate matter (PM) exposure and the underlying mechanisms have yet to be defined. Results Male C57BL/6 J mice were fed with a CR diet or ad libitum (AL) and exposed to PM for 4 weeks in a real-ambient PM exposure system located at Shijiazhuang, China, with a daily mean concentration (95.77 μg/m3) of PM2.5. Compared to AL-fed mice, CR-fed mice showed attenuated PM-induced pulmonary injury and extra-pulmonary toxicity characterized by reduction in oxidative stress, DNA damage and inflammation. RNA sequence analysis revealed that several pulmonary pathways that were involved in production of reactive oxygen species (ROS), cytokine production, and inflammatory cell activation were inactivated, while those mediating antioxidant generation and DNA repair were activated in CR-fed mice upon PM exposure. In addition, transcriptome analysis of murine livers revealed that CR led to induction of xenobiotic metabolism and detoxification pathways, corroborated by increased levels of urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) and decreased cytotoxicity measured in an ex vivo assay. Conclusion These novel results demonstrate, for the first time, that CR in mice confers resistance against pulmonary injuries and extra-pulmonary toxicity induced by PM exposure. CR led to activation of xenobiotic metabolism and enhanced detoxification of PM-bound chemicals. These findings provide evidence that dietary intervention may afford therapeutic means to reduce the health risk associated with PM exposure.
Collapse
|
12
|
Pomatto LCD, Dill T, Carboneau B, Levan S, Kato J, Mercken EM, Pearson KJ, Bernier M, de Cabo R. Deletion of Nrf2 shortens lifespan in C57BL6/J male mice but does not alter the health and survival benefits of caloric restriction. Free Radic Biol Med 2020; 152:650-658. [PMID: 31953150 PMCID: PMC7382945 DOI: 10.1016/j.freeradbiomed.2020.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 12/18/2022]
Abstract
Caloric restriction (CR) is the leading non-pharmaceutical dietary intervention to improve health- and lifespan in most model organisms. A wide array of cellular pathways is induced in response to CR and CR-mimetics, including the transcriptional activator Nuclear factor erythroid-2-related factor 2 (Nrf2), which is essential in the upregulation of multiple stress-responsive and mitochondrial enzymes. Nrf2 is necessary in tumor protection but is not essential for the lifespan extending properties of CR in outbred mice. Here, we sought to study Nrf2-knockout (KO) mice and littermate controls in male C57BL6/J, an inbred mouse strain. Deletion of Nrf2 resulted in shortened lifespan compared to littermate controls only under ad libitum conditions. CR-mediated lifespan extension and physical performance improvements did not require Nrf2. Metabolic and protein homeostasis and activation of tissue-specific cytoprotective proteins were dependent on Nrf2 expression. These results highlight an important contribution of Nrf2 for normal lifespan and stress response.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA; National Institute on General Medical Sciences, National Institute of Health, Bethesda, MD, 20892, USA
| | - Theresa Dill
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Bethany Carboneau
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Sophia Levan
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Jonathan Kato
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Evi M Mercken
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Kevin J Pearson
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
13
|
Yessenkyzy A, Saliev T, Zhanaliyeva M, Masoud AR, Umbayev B, Sergazy S, Krivykh E, Gulyayev A, Nurgozhin T. Polyphenols as Caloric-Restriction Mimetics and Autophagy Inducers in Aging Research. Nutrients 2020; 12:E1344. [PMID: 32397145 PMCID: PMC7285205 DOI: 10.3390/nu12051344] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
It has been thought that caloric restriction favors longevity and healthy aging where autophagy plays a vital role. However, autophagy decreases during aging and that can lead to the development of aging-associated diseases such as cancer, diabetes, neurodegeneration, etc. It was shown that autophagy can be induced by mechanical or chemical stress. In this regard, various pharmacological compounds were proposed, including natural polyphenols. Apart from the ability to induce autophagy, polyphenols, such as resveratrol, are capable of modulating the expression of pro- and anti-apoptotic factors, neutralizing free radical species, affecting mitochondrial functions, chelating redox-active transition metal ions, and preventing protein aggregation. Moreover, polyphenols have advantages compared to chemical inducers of autophagy due to their intrinsic natural bio-compatibility and safety. In this context, polyphenols can be considered as a potential therapeutic tool for healthy aging either as a part of a diet or as separate compounds (supplements). This review discusses the epigenetic aspect and the underlying molecular mechanism of polyphenols as an anti-aging remedy. In addition, the recent advances of studies on NAD-dependent deacetylase sirtuin-1 (SIRT1) regulation of autophagy, the role of senescence-associated secretory phenotype (SASP) in cells senescence and their regulation by polyphenols have been highlighted as well. Apart from that, the review also revised the latest information on how polyphenols can help to improve mitochondrial function and modulate apoptosis (programmed cell death).
Collapse
Affiliation(s)
- Assylzhan Yessenkyzy
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| | - Timur Saliev
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| | - Marina Zhanaliyeva
- Department of Human Anatomy, NSC “Medical University of Astana”, Nur-Sultan 010000, Kazakhstan;
| | - Abdul-Razak Masoud
- Department of Biological Sciences, Louisiana Tech University, Ruston, LA 71270, USA;
| | - Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Shynggys Sergazy
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Elena Krivykh
- Khanty-Mansiysk State Medical Academy, Tyumen Region, Khanty-Mansiysk Autonomous Okrug—Ugra, Khanty-Mansiysk 125438, Russia;
| | - Alexander Gulyayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Talgat Nurgozhin
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| |
Collapse
|
14
|
Castejón M, Plaza A, Martinez-Romero J, Fernandez-Marcos PJ, de Cabo R, Diaz-Ruiz A. Energy Restriction and Colorectal Cancer: A Call for Additional Research. Nutrients 2020; 12:E114. [PMID: 31906264 PMCID: PMC7019819 DOI: 10.3390/nu12010114] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
: Colorectal cancer has the second highest cancer-related mortality rate, with an estimated 881,000 deaths worldwide in 2018. The urgent need to reduce the incidence and mortality rate requires innovative strategies to improve prevention, early diagnosis, prognostic biomarkers, and treatment effectiveness. Caloric restriction (CR) is known as the most robust nutritional intervention that extends lifespan and delays the progression of age-related diseases, with remarkable results for cancer protection. Other forms of energy restriction, such as periodic fasting, intermittent fasting, or fasting-mimicking diets, with or without reduction of total calorie intake, recapitulate the effects of chronic CR and confer a wide range of beneficial effects towards health and survival, including anti-cancer properties. In this review, the known molecular, cellular, and organismal effects of energy restriction in oncology will be discussed. Energy-restriction-based strategies implemented in colorectal models and clinical trials will be also revised. While energy restriction constitutes a promising intervention for the prevention and treatment of several malignant neoplasms, further investigations are essential to dissect the interplay between fundamental aspects of energy intake, such as feeding patterns, fasting length, or diet composition, with all of them influencing health and disease or cancer effects. Currently, effectiveness, safety, and practicability of different forms of fasting to fight cancer, particularly colorectal cancer, should still be contemplated with caution.
Collapse
Affiliation(s)
- Maria Castejón
- Nutritional Interventions Group, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, E-28049 Madrid, Spain; (M.C.); (R.d.C.)
| | - Adrian Plaza
- Bioactive Products and Metabolic Syndrome Group-BIOPROMET, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, E-28049 Madrid, Spain; (A.P.); (P.J.F.-M.)
| | - Jorge Martinez-Romero
- Molecular Oncology and Nutritional Genomics of Cancer Group, Precision Nutrition and Cancer Program, Institute IMDEA Food (CEI, UAM/CSIC), Crta. de Canto Blanco nº 8, E-28049 Madrid, Spain;
| | - Pablo Jose Fernandez-Marcos
- Bioactive Products and Metabolic Syndrome Group-BIOPROMET, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, E-28049 Madrid, Spain; (A.P.); (P.J.F.-M.)
| | - Rafael de Cabo
- Nutritional Interventions Group, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, E-28049 Madrid, Spain; (M.C.); (R.d.C.)
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Alberto Diaz-Ruiz
- Nutritional Interventions Group, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, E-28049 Madrid, Spain; (M.C.); (R.d.C.)
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|