1
|
Zhou H, Clark E, Guan D, Lagarrigue S, Fang L, Cheng H, Tuggle CK, Kapoor M, Wang Y, Giuffra E, Egidy G. Comparative Genomics and Epigenomics of Transcriptional Regulation. Annu Rev Anim Biosci 2025; 13:73-98. [PMID: 39565835 DOI: 10.1146/annurev-animal-111523-102217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Transcriptional regulation in response to diverse physiological cues involves complicated biological processes. Recent initiatives that leverage whole genome sequencing and annotation of regulatory elements significantly contribute to our understanding of transcriptional gene regulation. Advances in the data sets available for comparative genomics and epigenomics can identify evolutionarily constrained regulatory variants and shed light on noncoding elements that influence transcription in different tissues and developmental stages across species. Most epigenomic data, however, are generated from healthy subjects at specific developmental stages. To bridge the genotype-phenotype gap, future research should focus on generating multidimensional epigenomic data under diverse physiological conditions. Farm animal species offer advantages in terms of feasibility, cost, and experimental design for such integrative analyses in comparison to humans. Deep learning modeling and cutting-edge technologies in sequencing and functional screening and validation also provide great promise for better understanding transcriptional regulation in this dynamic field.
Collapse
Affiliation(s)
- Huaijun Zhou
- Department of Animal Science, University of California, Davis, California, USA; , , ,
| | - Emily Clark
- The Roslin Institute, University of Edinburgh, Edinburgh, Midlothian, United Kingdom;
| | - Dailu Guan
- Department of Animal Science, University of California, Davis, California, USA; , , ,
| | | | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark;
| | - Hao Cheng
- Department of Animal Science, University of California, Davis, California, USA; , , ,
| | | | - Muskan Kapoor
- Department of Animal Science, Iowa State University, Ames, Iowa, USA; ,
| | - Ying Wang
- Department of Animal Science, University of California, Davis, California, USA; , , ,
| | | | - Giorgia Egidy
- GABI, AgroParisTech, INRAE, Jouy-en-Josas, France; ,
| |
Collapse
|
2
|
Kapoor M, Ventura ES, Walsh A, Sokolov A, George N, Kumari S, Provart NJ, Cole B, Libault M, Tickle T, Warren WC, Koltes JE, Papatheodorou I, Ware D, Harrison PW, Elsik C, Yordanova G, Burdett T, Tuggle CK. Building a FAIR data ecosystem for incorporating single-cell transcriptomics data into agricultural genome to phenome research. Front Genet 2024; 15:1460351. [PMID: 39678381 PMCID: PMC11638175 DOI: 10.3389/fgene.2024.1460351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction The agriculture genomics community has numerous data submission standards available, but the standards for describing and storing single-cell (SC, e.g., scRNA- seq) data are comparatively underdeveloped. Methods To bridge this gap, we leveraged recent advancements in human genomics infrastructure, such as the integration of the Human Cell Atlas Data Portal with Terra, a secure, scalable, open-source platform for biomedical researchers to access data, run analysis tools, and collaborate. In parallel, the Single Cell Expression Atlas at EMBL-EBI offers a comprehensive data ingestion portal for high-throughput sequencing datasets, including plants, protists, and animals (including humans). Developing data tools connecting these resources would offer significant advantages to the agricultural genomics community. The FAANG data portal at EMBL-EBI emphasizes delivering rich metadata and highly accurate and reliable annotation of farmed animals but is not computationally linked to either of these resources. Results Herein, we describe a pilot-scale project that determines whether the current FAANG metadata standards for livestock can be used to ingest scRNA-seq datasets into Terra in a manner consistent with HCA Data Portal standards. Importantly, rich scRNA-seq metadata can now be brokered through the FAANG data portal using a semi-automated process, thereby avoiding the need for substantial expert curation. We have further extended the functionality of this tool so that validated and ingested SC files within the HCA Data Portal are transferred to Terra for further analysis. In addition, we verified data ingestion into Terra, hosted on Azure, and demonstrated the use of a workflow to analyze the first ingested porcine scRNA-seq dataset. Additionally, we have also developed prototype tools to visualize the output of scRNA-seq analyses on genome browsers to compare gene expression patterns across tissues and cell populations. This JBrowse tool now features distinct tracks, showcasing PBMC scRNA-seq alongside two bulk RNA-seq experiments. Discussion We intend to further build upon these existing tools to construct a scientist-friendly data resource and analytical ecosystem based on Findable, Accessible, Interoperable, and Reusable (FAIR) SC principles to facilitate SC-level genomic analysis through data ingestion, storage, retrieval, re-use, visualization, and comparative annotation across agricultural species.
Collapse
Affiliation(s)
- Muskan Kapoor
- Department of Animal Science, Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, United States
| | - Enrique Sapena Ventura
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Amy Walsh
- Animal Science Research Center, Division of Animal Science and Division of Plant Science and Technology, University of Missouri-Columbia, Columbia, MO, United States
| | - Alexey Sokolov
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Nancy George
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Nicholas J. Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Benjamin Cole
- Lawrence Berkeley National Laboratory, DOE-Joint Genome Institute, Berkeley, CA, United States
| | - Marc Libault
- Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Timothy Tickle
- The Broad Institute of MIT and Harvard, Data Sciences Platform, Cambridge, MA, United States
| | - Wesley C. Warren
- Division of Animal Science, University of Missouri-Columbia, Columbia, MO, United States
| | - James E. Koltes
- Department of Animal Science, Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, United States
| | - Irene Papatheodorou
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- U.S. Department of Agriculture, Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, United States
| | - Peter W. Harrison
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Christine Elsik
- Animal Science Research Center, Division of Animal Science and Division of Plant Science and Technology, University of Missouri-Columbia, Columbia, MO, United States
| | - Galabina Yordanova
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Tony Burdett
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Christopher K. Tuggle
- Department of Animal Science, Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
3
|
Ferrena A, Zheng XY, Jackson K, Hoang B, Morrow BE, Zheng D. scDAPP: a comprehensive single-cell transcriptomics analysis pipeline optimized for cross-group comparison. NAR Genom Bioinform 2024; 6:lqae134. [PMID: 39345754 PMCID: PMC11437360 DOI: 10.1093/nargab/lqae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Single-cell transcriptomics profiling has increasingly been used to evaluate cross-group (or condition) differences in cell population and cell-type gene expression. This often leads to large datasets with complex experimental designs that need advanced comparative analysis. Concurrently, bioinformatics software and analytic approaches also become more diverse and constantly undergo improvement. Thus, there is an increased need for automated and standardized data processing and analysis pipelines, which should be efficient and flexible too. To address these, we develop the single-cell Differential Analysis and Processing Pipeline (scDAPP), a R-based workflow for comparative analysis of single cell (or nucleus) transcriptomic data between two or more groups and at the levels of single cells or 'pseudobulking' samples. The pipeline automates many steps of pre-processing using data-learnt parameters, uses previously benchmarked software, and generates comprehensive intermediate data and final results that are valuable for both beginners and experts of scRNA-seq analysis. Moreover, the analytic reports, augmented by extensive data visualization, increase the transparency of computational analysis and parameter choices, while facilitate users to go seamlessly from raw data to biological interpretation. scDAPP is freely available under the MIT license, with source code, documentation and sample data at the GitHub (https://github.com/bioinfoDZ/scDAPP).
Collapse
Affiliation(s)
- Alexander Ferrena
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xiang Yu Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kevyn Jackson
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Obstetrics and Gynecology, and Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
4
|
Mehta S, Bernt M, Chambers M, Fahrner M, Föll MC, Gruening B, Horro C, Johnson JE, Loux V, Rajczewski AT, Schilling O, Vandenbrouck Y, Gustafsson OJR, Thang WCM, Hyde C, Price G, Jagtap PD, Griffin TJ. A Galaxy of informatics resources for MS-based proteomics. Expert Rev Proteomics 2023; 20:251-266. [PMID: 37787106 DOI: 10.1080/14789450.2023.2265062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023]
Abstract
INTRODUCTION Continuous advances in mass spectrometry (MS) technologies have enabled deeper and more reproducible proteome characterization and a better understanding of biological systems when integrated with other 'omics data. Bioinformatic resources meeting the analysis requirements of increasingly complex MS-based proteomic data and associated multi-omic data are critically needed. These requirements included availability of software that would span diverse types of analyses, scalability for large-scale, compute-intensive applications, and mechanisms to ease adoption of the software. AREAS COVERED The Galaxy ecosystem meets these requirements by offering a multitude of open-source tools for MS-based proteomics analyses and applications, all in an adaptable, scalable, and accessible computing environment. A thriving global community maintains these software and associated training resources to empower researcher-driven analyses. EXPERT OPINION The community-supported Galaxy ecosystem remains a crucial contributor to basic biological and clinical studies using MS-based proteomics. In addition to the current status of Galaxy-based resources, we describe ongoing developments for meeting emerging challenges in MS-based proteomic informatics. We hope this review will catalyze increased use of Galaxy by researchers employing MS-based proteomics and inspire software developers to join the community and implement new tools, workflows, and associated training content that will add further value to this already rich ecosystem.
Collapse
Affiliation(s)
- Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Matthias Bernt
- Helmholtz Centre for Environmental Research - UFZ, Department Computational Biology, Leipzig, Germany
| | | | - Matthias Fahrner
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Christine Föll
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Bjoern Gruening
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Carlos Horro
- Proteomics Unit, Department of Biomedicine, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - James E Johnson
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Valentin Loux
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, Jouy-en-Josas, France
| | - Andrew T Rajczewski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - W C Mike Thang
- Queensland Cyber Infrastructure Foundation (QCIF), Australia
- Institute of Molecular Bioscience, University of Queensland, St Lucia, Australia
| | - Cameron Hyde
- Queensland Cyber Infrastructure Foundation (QCIF), Australia
- Sippy Downs, University of the Sunshine Coast, Australia
| | - Gareth Price
- Queensland Cyber Infrastructure Foundation (QCIF), Australia
- Institute of Molecular Bioscience, University of Queensland, St Lucia, Australia
| | - Pratik D Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Hegde M, Girisa S, Kunnumakkara AB. A compilation of bioinformatic approaches to identify novel downstream targets for the detection and prophylaxis of cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:75-113. [PMID: 36858743 DOI: 10.1016/bs.apcsb.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The paradigm of cancer genomics has been radically changed by the development in next-generation sequencing (NGS) technologies making it possible to envisage individualized treatment based on tumor and stromal cells genome in a clinical setting within a short timeframe. The abundance of data has led to new avenues for studying coordinated alterations that impair biological processes, which in turn has increased the demand for bioinformatic tools for pathway analysis. While most of this work has been concentrated on optimizing certain algorithms to obtain quicker and more accurate results. Large volumes of these existing algorithm-based data are difficult for the biologists and clinicians to access, download and reanalyze them. In the present study, we have listed the bioinformatics algorithms and user-friendly graphical user interface (GUI) tools that enable code-independent analysis of big data without compromising the quality and time. We have also described the advantages and drawbacks of each of these platforms. Additionally, we emphasize the importance of creating new, more user-friendly solutions to provide better access to open data and talk about relevant problems like data sharing and patient privacy.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India.
| |
Collapse
|
6
|
Nielsen CM, Barrett JR, Davis C, Fallon JK, Goh C, Michell AR, Griffin C, Kwok A, Loos C, Darko S, Laboune F, Tekman M, Diouf A, Miura K, Francica JR, Ransier A, Long CA, Silk SE, Payne RO, Minassian AM, Lauffenburger DA, Seder RA, Douek DC, Alter G, Draper SJ. Delayed boosting improves human antigen-specific Ig and B cell responses to the RH5.1/AS01B malaria vaccine. JCI Insight 2023; 8:e163859. [PMID: 36692019 PMCID: PMC9977309 DOI: 10.1172/jci.insight.163859] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/30/2022] [Indexed: 01/24/2023] Open
Abstract
Modifications to vaccine delivery that increase serum antibody longevity are of great interest for maximizing efficacy. We have previously shown that a delayed fractional (DFx) dosing schedule (0-1-6 month) - using AS01B-adjuvanted RH5.1 malaria antigen - substantially improves serum IgG durability as compared with monthly dosing (0-1-2 month; NCT02927145). However, the underlying mechanism and whether there are wider immunological changes with DFx dosing were unclear. Here, PfRH5-specific Ig and B cell responses were analyzed in depth through standardized ELISAs, flow cytometry, systems serology, and single-cell RNA-Seq (scRNA-Seq). Data indicate that DFx dosing increases the magnitude and durability of circulating PfRH5-specific B cells and serum IgG1. At the peak antibody magnitude, DFx dosing was distinguished by a systems serology feature set comprising increased FcRn binding, IgG avidity, and proportion of G2B and G2S2F IgG Fc glycans, alongside decreased IgG3, antibody-dependent complement deposition, and proportion of G1S1F IgG Fc glycan. Concomitantly, scRNA-Seq data show a higher CDR3 percentage of mutation from germline and decreased plasma cell gene expression in circulating PfRH5-specific B cells. Our data, therefore, reveal a profound impact of DFx dosing on the humoral response and suggest plausible mechanisms that could enhance antibody longevity, including improved FcRn binding by serum Ig and a potential shift in the underlying cellular response from circulating short-lived plasma cells to nonperipheral long-lived plasma cells.
Collapse
Affiliation(s)
| | | | - Christine Davis
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
| | - Jonathan K. Fallon
- Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Boston, Massachusetts, USA
| | - Cyndi Goh
- University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Ashlin R. Michell
- Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Boston, Massachusetts, USA
| | - Catherine Griffin
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
| | - Andrew Kwok
- University of Oxford, Oxford, Oxfordshire, United Kingdom
- Wellcome Center for Human Genetics, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Carolin Loos
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
- Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Boston, Massachusetts, USA
| | - Samuel Darko
- Vaccine Research Center, NIAID/NIH, Bethesda, Maryland, USA
| | - Farida Laboune
- Vaccine Research Center, NIAID/NIH, Bethesda, Maryland, USA
| | - Mehmet Tekman
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | | | - Amy Ransier
- Vaccine Research Center, NIAID/NIH, Bethesda, Maryland, USA
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | - Sarah E. Silk
- University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Ruth O. Payne
- University of Oxford, Oxford, Oxfordshire, United Kingdom
| | | | | | | | | | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Boston, Massachusetts, USA
| | | |
Collapse
|
7
|
Fahlgren N, Kapoor M, Yordanova G, Papatheodorou I, Waese J, Cole B, Harrison P, Ware D, Tickle T, Paten B, Burdett T, Elsik CG, Tuggle CK, Provart NJ. Toward a data infrastructure for the Plant Cell Atlas. PLANT PHYSIOLOGY 2023; 191:35-46. [PMID: 36200899 PMCID: PMC9806565 DOI: 10.1093/plphys/kiac468] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
We review how a data infrastructure for the Plant Cell Atlas might be built using existing infrastructure and platforms. The Human Cell Atlas has developed an extensive infrastructure for human and mouse single cell data, while the European Bioinformatics Institute has developed a Single Cell Expression Atlas, that currently houses several plant data sets. We discuss issues related to appropriate ontologies for describing a plant single cell experiment. We imagine how such an infrastructure will enable biologists and data scientists to glean new insights into plant biology in the coming decades, as long as such data are made accessible to the community in an open manner.
Collapse
Affiliation(s)
- Noah Fahlgren
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132, USA
| | - Muskan Kapoor
- Bioinformatics and Computational Biology Program, Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | | | | | - Jamie Waese
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Benjamin Cole
- DOE-Joint Genome Institute, Lawrence Berkeley National Laboratory, 1, Cyclotron Road, Berkeley, California 94720, USA
| | - Peter Harrison
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Doreen Ware
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA
- USDA ARS NAA Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Timothy Tickle
- Data Sciences Platform, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, Baskin School of Engineering, 1156 High Street, Santa Cruz, California 95064, USA
| | - Tony Burdett
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Christine G Elsik
- Division of Animal Sciences/Division of Plant Science & Technology/Institute for Data Science & Informatics, University of Missouri, Columbia, Missouri 65211, USA
| | - Christopher K Tuggle
- Bioinformatics and Computational Biology Program, Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| |
Collapse
|
8
|
Hiltemann S, Rasche H, Gladman S, Hotz HR, Larivière D, Blankenberg D, Jagtap PD, Wollmann T, Bretaudeau A, Goué N, Griffin TJ, Royaux C, Le Bras Y, Mehta S, Syme A, Coppens F, Droesbeke B, Soranzo N, Bacon W, Psomopoulos F, Gallardo-Alba C, Davis J, Föll MC, Fahrner M, Doyle MA, Serrano-Solano B, Fouilloux AC, van Heusden P, Maier W, Clements D, Heyl F, Galaxy Training Network, Grüning B, Batut B. Galaxy Training: A powerful framework for teaching! PLoS Comput Biol 2023; 19:e1010752. [PMID: 36622853 PMCID: PMC9829167 DOI: 10.1371/journal.pcbi.1010752] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
There is an ongoing explosion of scientific datasets being generated, brought on by recent technological advances in many areas of the natural sciences. As a result, the life sciences have become increasingly computational in nature, and bioinformatics has taken on a central role in research studies. However, basic computational skills, data analysis, and stewardship are still rarely taught in life science educational programs, resulting in a skills gap in many of the researchers tasked with analysing these big datasets. In order to address this skills gap and empower researchers to perform their own data analyses, the Galaxy Training Network (GTN) has previously developed the Galaxy Training Platform (https://training.galaxyproject.org), an open access, community-driven framework for the collection of FAIR (Findable, Accessible, Interoperable, Reusable) training materials for data analysis utilizing the user-friendly Galaxy framework as its primary data analysis platform. Since its inception, this training platform has thrived, with the number of tutorials and contributors growing rapidly, and the range of topics extending beyond life sciences to include topics such as climatology, cheminformatics, and machine learning. While initially aimed at supporting researchers directly, the GTN framework has proven to be an invaluable resource for educators as well. We have focused our efforts in recent years on adding increased support for this growing community of instructors. New features have been added to facilitate the use of the materials in a classroom setting, simplifying the contribution flow for new materials, and have added a set of train-the-trainer lessons. Here, we present the latest developments in the GTN project, aimed at facilitating the use of the Galaxy Training materials by educators, and its usage in different learning environments.
Collapse
Affiliation(s)
- Saskia Hiltemann
- Clinical Bioinformatics Group, Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Helena Rasche
- Clinical Bioinformatics Group, Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Academie voor de Technologie van Gezondheid en Milieu, Avans Hogeschool, Breda, the Netherlands
| | - Simon Gladman
- Melbourne Bioinformatics, University of Melbourne, Parkville, Victoria, Australia
| | - Hans-Rudolf Hotz
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Delphine Larivière
- Eberly College of Science, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Daniel Blankenberg
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Pratik D. Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Thomas Wollmann
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg University, Heidelberg, Germany
| | - Anthony Bretaudeau
- IGEPP, INRAE, Institut Agro, Univ Rennes, Rennes, France
- GenOuest Core Facility, Univ Rennes, Inria, CNRS, IRISA, Rennes, France
| | - Nadia Goué
- AuBi, Mesocenter, Clermont Auvergne University, Aubière, France
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Coline Royaux
- PNDB French Biodiversity e-infrastructure, PatriNat, French Museum of Natural History, Concarneau, France
| | - Yvan Le Bras
- PNDB French Biodiversity e-infrastructure, PatriNat, French Museum of Natural History, Concarneau, France
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Anna Syme
- Melbourne Bioinformatics, University of Melbourne, Parkville, Victoria, Australia
| | - Frederik Coppens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Bert Droesbeke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nicola Soranzo
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Wendi Bacon
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Fotis Psomopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Cristóbal Gallardo-Alba
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - John Davis
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Melanie Christine Föll
- Institute for Surgical Pathology, Medical Center—University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts, United States of America
- German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany
| | - Matthias Fahrner
- Institute for Surgical Pathology, Medical Center—University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany
| | - Maria A. Doyle
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Beatriz Serrano-Solano
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- ELIXIR Germany, Institute of Bio- and Geosciences (IBG-5)—Computational Metagenomics, Forschungszentrum Jülich GmbH, Jülich, Germany
- Euro-BioImaging ERIC Bio-Hub, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Peter van Heusden
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Wolfgang Maier
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Dave Clements
- Anaconda Inc, Austin, Texas, United States of America
| | - Florian Heyl
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | - Björn Grüning
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Bérénice Batut
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Davis-Marcisak EF, Deshpande A, Stein-O'Brien GL, Ho WJ, Laheru D, Jaffee EM, Fertig EJ, Kagohara LT. From bench to bedside: Single-cell analysis for cancer immunotherapy. Cancer Cell 2021; 39:1062-1080. [PMID: 34329587 PMCID: PMC8406623 DOI: 10.1016/j.ccell.2021.07.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/16/2021] [Accepted: 07/02/2021] [Indexed: 01/04/2023]
Abstract
Single-cell technologies are emerging as powerful tools for cancer research. These technologies characterize the molecular state of each cell within a tumor, enabling new exploration of tumor heterogeneity, microenvironment cell-type composition, and cell state transitions that affect therapeutic response, particularly in the context of immunotherapy. Analyzing clinical samples has great promise for precision medicine but is technically challenging. Successfully identifying predictors of response requires well-coordinated, multi-disciplinary teams to ensure adequate sample processing for high-quality data generation and computational analysis for data interpretation. Here, we review current approaches to sample processing and computational analysis regarding their application to translational cancer immunotherapy research.
Collapse
Affiliation(s)
- Emily F Davis-Marcisak
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, 550 N Broadway, Suite 1101E, Baltimore, MD 21205, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 485, Baltimore, MD 21287, USA; Convergence Institute, Johns Hopkins University, Baltimore, MD, USA; Bloomberg-Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atul Deshpande
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 485, Baltimore, MD 21287, USA; Convergence Institute, Johns Hopkins University, Baltimore, MD, USA; Bloomberg-Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Genevieve L Stein-O'Brien
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, 550 N Broadway, Suite 1101E, Baltimore, MD 21205, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 485, Baltimore, MD 21287, USA; Convergence Institute, Johns Hopkins University, Baltimore, MD, USA; Bloomberg-Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Won J Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 485, Baltimore, MD 21287, USA; Convergence Institute, Johns Hopkins University, Baltimore, MD, USA; Bloomberg-Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Laheru
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 485, Baltimore, MD 21287, USA; Convergence Institute, Johns Hopkins University, Baltimore, MD, USA; Bloomberg-Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 485, Baltimore, MD 21287, USA; Convergence Institute, Johns Hopkins University, Baltimore, MD, USA; Bloomberg-Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elana J Fertig
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, 550 N Broadway, Suite 1101E, Baltimore, MD 21205, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 485, Baltimore, MD 21287, USA; Convergence Institute, Johns Hopkins University, Baltimore, MD, USA; Bloomberg-Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Luciane T Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 485, Baltimore, MD 21287, USA; Convergence Institute, Johns Hopkins University, Baltimore, MD, USA; Bloomberg-Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
User-friendly, scalable tools and workflows for single-cell RNA-seq analysis. Nat Methods 2021; 18:327-328. [PMID: 33782609 DOI: 10.1038/s41592-021-01102-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|