1
|
Stubbe FX, Ponsard P, Steiner FA, Hermand D. SSUP-72/PINN-1 coordinates RNA-polymerase II 3' pausing and developmental gene expression in C. elegans. Nat Commun 2025; 16:2624. [PMID: 40097442 PMCID: PMC11914089 DOI: 10.1038/s41467-025-57847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
During exit from Caenorhabditis elegans (C. elegans) L1 developmental arrest, a network of growth- and developmental genes is activated, many of which are organized into operons where transcriptional termination is uncoupled from mRNA 3'-end processing. CDK-12-mediated Pol II CTD S2 phosphorylation enhances SL2 trans-splicing at downstream operonic genes, preventing premature termination and ensuring proper gene expression for developmental progression. Using a genetic screen, we identified the SSUP-72/PINN-1 module as a suppressor of defects induced by CDK-12 inhibition. Loss of SSUP-72/PINN-1 bypasses the requirement for CDK-12 in post-embryonic development. Genome-wide analyses reveal that SSUP-72, a CTD S5P phosphatase, affects Pol II 3' pausing and regulates intra-operon termination. Our findings establish SSUP-72/PINN-1 as a key regulator of Pol II dynamics, coordinating operonic gene expression and growth during C. elegans post-embryonic development.
Collapse
Affiliation(s)
| | | | - Florian A Steiner
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Damien Hermand
- URPHYM-GEMO, The University of Namur, Namur, Belgium.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Abdi Ghavidel A, Jajarmi V, Bandehpour M, Kazemi B. Polycistronic Expression of Multi-Subunit Complexes in the Eukaryotic Environment: A Narrative Review. IRANIAN JOURNAL OF PARASITOLOGY 2022; 17:286-295. [PMID: 36466018 PMCID: PMC9682371 DOI: 10.18502/ijpa.v17i3.10618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/15/2022] [Indexed: 06/17/2023]
Abstract
Protein complexes are involved in many vital biological processes. Therefore, researchers need these protein complexes for biochemical and biophysical studies. Several methods exist for expressing multi-subunit proteins in eukaryotic cells, such as 2A sequences, IRES, or intein. Nevertheless, each of these elements has several disadvantages that limit their usage. In this article, we suggest a new system for expressing multi-subunit proteins, which have several advantages over existing methods meanwhile it, lacks most of their disadvantages. Leishmania is a unicellular eukaryote and member of the Trypanosomatidae family. In the expression system of Leishmania, pre-long RNAs that contain several protein sequences transcribe. Then these long RNAs separate into mature mRNAs in the process named trans splicing. For producing multi-subunit protein, Leishmania transformed with a vector containing the sequences of all subunits. Therefore, those subunits translate and form the complex under eukaryotic cell conditions. The sequence of each protein must separate by the spatial sequence needed for trans splicing. Based on a Leishmania expression pattern, not only is it possible to produce the complexes with the correct structures and post-translational modifications, but also it is possible to overcome previous method problems.
Collapse
Affiliation(s)
- Afshin Abdi Ghavidel
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Hou X, Zhu C, Xu M, Chen X, Sun C, Nashan B, Guang S, Feng X. The SNAPc complex mediates starvation-induced trans-splicing in Caenorhabditis elegans. J Genet Genomics 2022; 49:952-964. [DOI: 10.1016/j.jgg.2022.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
|
4
|
Wenzel MA, Müller B, Pettitt J. SLIDR and SLOPPR: flexible identification of spliced leader trans-splicing and prediction of eukaryotic operons from RNA-Seq data. BMC Bioinformatics 2021; 22:140. [PMID: 33752599 PMCID: PMC7986045 DOI: 10.1186/s12859-021-04009-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/08/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Spliced leader (SL) trans-splicing replaces the 5' end of pre-mRNAs with the spliced leader, an exon derived from a specialised non-coding RNA originating from elsewhere in the genome. This process is essential for resolving polycistronic pre-mRNAs produced by eukaryotic operons into monocistronic transcripts. SL trans-splicing and operons may have independently evolved multiple times throughout Eukarya, yet our understanding of these phenomena is limited to only a few well-characterised organisms, most notably C. elegans and trypanosomes. The primary barrier to systematic discovery and characterisation of SL trans-splicing and operons is the lack of computational tools for exploiting the surge of transcriptomic and genomic resources for a wide range of eukaryotes. RESULTS Here we present two novel pipelines that automate the discovery of SLs and the prediction of operons in eukaryotic genomes from RNA-Seq data. SLIDR assembles putative SLs from 5' read tails present after read alignment to a reference genome or transcriptome, which are then verified by interrogating corresponding SL RNA genes for sequence motifs expected in bona fide SL RNA molecules. SLOPPR identifies RNA-Seq reads that contain a given 5' SL sequence, quantifies genome-wide SL trans-splicing events and predicts operons via distinct patterns of SL trans-splicing events across adjacent genes. We tested both pipelines with organisms known to carry out SL trans-splicing and organise their genes into operons, and demonstrate that (1) SLIDR correctly detects expected SLs and often discovers novel SL variants; (2) SLOPPR correctly identifies functionally specialised SLs, correctly predicts known operons and detects plausible novel operons. CONCLUSIONS SLIDR and SLOPPR are flexible tools that will accelerate research into the evolutionary dynamics of SL trans-splicing and operons throughout Eukarya and improve gene discovery and annotation for a wide range of eukaryotic genomes. Both pipelines are implemented in Bash and R and are built upon readily available software commonly installed on most bioinformatics servers. Biological insight can be gleaned even from sparse, low-coverage datasets, implying that an untapped wealth of information can be retrieved from existing RNA-Seq datasets as well as from novel full-isoform sequencing protocols as they become more widely available.
Collapse
Affiliation(s)
- Marius A Wenzel
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| | - Berndt Müller
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Jonathan Pettitt
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
5
|
Cassart C, Yague-Sanz C, Bauer F, Ponsard P, Stubbe FX, Migeot V, Wery M, Morillon A, Palladino F, Robert V, Hermand D. RNA polymerase II CTD S2P is dispensable for embryogenesis but mediates exit from developmental diapause in C. elegans. SCIENCE ADVANCES 2020; 6:6/50/eabc1450. [PMID: 33298437 PMCID: PMC7725455 DOI: 10.1126/sciadv.abc1450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
Serine 2 phosphorylation (S2P) within the CTD of RNA polymerase II is considered a Cdk9/Cdk12-dependent mark required for 3'-end processing. However, the relevance of CTD S2P in metazoan development is unknown. We show that cdk-12 lesions or a full-length CTD S2A substitution results in an identical phenotype in Caenorhabditis elegans Embryogenesis occurs in the complete absence of S2P, but the hatched larvae arrest development, mimicking the diapause induced when hatching occurs in the absence of food. Genome-wide analyses indicate that when CTD S2P is inhibited, only a subset of growth-related genes is not properly expressed. These genes correspond to SL2 trans-spliced mRNAs located in position 2 and over within operons. We show that CDK-12 is required for maximal occupancy of cleavage stimulatory factor necessary for SL2 trans-splicing. We propose that CTD S2P functions as a gene-specific signaling mark ensuring the nutritional control of the C. elegans developmental program.
Collapse
Affiliation(s)
- C Cassart
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur 5000 Belgium
| | - C Yague-Sanz
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur 5000 Belgium
| | - F Bauer
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur 5000 Belgium
| | - P Ponsard
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur 5000 Belgium
| | - F X Stubbe
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur 5000 Belgium
| | - V Migeot
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur 5000 Belgium
| | - M Wery
- ncRNA, epigenetic and genome fluidity, Institut Curie, PSL Research University, CNRS UMR 3244, Université Pierre et Marie Curie, Paris, France
| | - A Morillon
- ncRNA, epigenetic and genome fluidity, Institut Curie, PSL Research University, CNRS UMR 3244, Université Pierre et Marie Curie, Paris, France
| | - F Palladino
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - V Robert
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - D Hermand
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur 5000 Belgium.
| |
Collapse
|
6
|
Wenzel M, Johnston C, Müller B, Pettitt J, Connolly B. Resolution of polycistronic RNA by SL2 trans-splicing is a widely conserved nematode trait. RNA (NEW YORK, N.Y.) 2020; 26:1891-1904. [PMID: 32887788 PMCID: PMC7668243 DOI: 10.1261/rna.076414.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Spliced leader trans-splicing is essential for the processing and translation of polycistronic RNAs generated by eukaryotic operons. In C. elegans, a specialized spliced leader, SL2, provides the 5' end for uncapped pre-mRNAs derived from polycistronic RNAs. Studies of other nematodes suggested that SL2-type trans-splicing is a relatively recent innovation, confined to Rhabditina, the clade containing C. elegans and its close relatives. Here we conduct a survey of transcriptome-wide spliced leader trans-splicing in Trichinella spiralis, a distant relative of C. elegans with a particularly diverse repertoire of 15 spliced leaders. By systematically comparing the genomic context of trans-splicing events for each spliced leader, we identified a subset of T. spiralis spliced leaders that are specifically used to process polycistronic RNAs-the first examples of SL2-type spliced leaders outside of Rhabditina. These T. spiralis spliced leader RNAs possess a perfectly conserved stem-loop motif previously shown to be essential for SL2-type trans-splicing in C. elegans We show that genes trans-spliced to these SL2-type spliced leaders are organized in operonic fashion, with short intercistronic distances. A subset of T. spiralis operons show conservation of synteny with C. elegans operons. Our work substantially revises our understanding of nematode spliced leader trans-splicing, showing that SL2 trans-splicing is a major mechanism for nematode polycistronic RNA processing, which may have evolved prior to the radiation of the Nematoda. This work has important implications for the improvement of genome annotation pipelines in nematodes and other eukaryotes with operonic gene organization.
Collapse
Affiliation(s)
- Marius Wenzel
- Centre of Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen AB24 3RY, United Kingdom
| | - Christopher Johnston
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Berndt Müller
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Jonathan Pettitt
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Bernadette Connolly
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| |
Collapse
|
7
|
Xu B, Meng Y, Jin Y. RNA structures in alternative splicing and back-splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1626. [PMID: 32929887 DOI: 10.1002/wrna.1626] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022]
Abstract
Alternative splicing greatly expands the transcriptomic and proteomic diversities related to physiological and developmental processes in higher eukaryotes. Splicing of long noncoding RNAs, and back- and trans- splicing further expanded the regulatory repertoire of alternative splicing. RNA structures were shown to play an important role in regulating alternative splicing and back-splicing. Application of novel sequencing technologies made it possible to identify genome-wide RNA structures and interaction networks, which might provide new insights into RNA splicing regulation in vitro to in vivo. The emerging transcription-folding-splicing paradigm is changing our understanding of RNA alternative splicing regulation. Here, we review the insights into the roles and mechanisms of RNA structures in alternative splicing and back-splicing, as well as how disruption of these structures affects alternative splicing and then leads to human diseases. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
8
|
Calvelo J, Juan H, Musto H, Koziol U, Iriarte A. SLFinder, a pipeline for the novel identification of splice-leader sequences: a good enough solution for a complex problem. BMC Bioinformatics 2020; 21:293. [PMID: 32640978 PMCID: PMC7346339 DOI: 10.1186/s12859-020-03610-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spliced Leader trans-splicing is an important mechanism for the maturation of mRNAs in several lineages of eukaryotes, including several groups of parasites of great medical and economic importance. Nevertheless, its study across the tree of life is severely hindered by the problem of identifying the SL sequences that are being trans-spliced. RESULTS In this paper we present SLFinder, a four-step pipeline meant to identify de novo candidate SL sequences making very few assumptions regarding the SL sequence properties. The pipeline takes transcriptomic de novo assemblies and a reference genome as input and allows the user intervention on several points to account for unexpected features of the dataset. The strategy and its implementation were tested on real RNAseq data from species with and without SL Trans-Splicing. CONCLUSIONS SLFinder is capable to identify SL candidates with good precision in a reasonable amount of time. It is especially suitable for species with unknown SL sequences, generating candidate sequences for further refining and experimental validation.
Collapse
Affiliation(s)
- Javier Calvelo
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Hernán Juan
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Héctor Musto
- Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
9
|
Barnes SN, Masonbrink RE, Maier TR, Seetharam A, Sindhu AS, Severin AJ, Baum TJ. Heterodera glycines utilizes promiscuous spliced leaders and demonstrates a unique preference for a species-specific spliced leader over C. elegans SL1. Sci Rep 2019; 9:1356. [PMID: 30718603 PMCID: PMC6362198 DOI: 10.1038/s41598-018-37857-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/13/2018] [Indexed: 12/30/2022] Open
Abstract
Spliced leader trans-splicing (SLTS) plays a part in the maturation of pre-mRNAs in select species across multiple phyla but is particularly prevalent in Nematoda. The role of spliced leaders (SL) within the cell is unclear and an accurate assessment of SL occurrence within an organism is possible only after extensive sequencing data are available, which is not currently the case for many nematode species. SL discovery is further complicated by an absence of SL sequences from high-throughput sequencing results due to incomplete sequencing of the 5'-ends of transcripts during RNA-seq library preparation, known as 5'-bias. Existing datasets and novel methodology were used to identify both conserved SLs and unique hypervariable SLs within Heterodera glycines, the soybean cyst nematode. In H. glycines, twenty-one distinct SL sequences were found on 2,532 unique H. glycines transcripts. The SL sequences identified on the H. glycines transcripts demonstrated a high level of promiscuity, meaning that some transcripts produced as many as nine different individual SL-transcript combinations. Most uniquely, transcriptome analysis revealed that H. glycines is the first nematode to demonstrate a higher SL trans-splicing rate using a species-specific SL over well-conserved Caenorhabditis elegans SL-like sequences.
Collapse
Affiliation(s)
- Stacey N Barnes
- Plant Pathology & Microbiology Department, Iowa State University, Ames, IA, 50011, USA
| | - Rick E Masonbrink
- Office of Biotechnology, Genome Informatics Facility, Iowa State University, Ames, IA, 50011, USA
| | - Thomas R Maier
- Plant Pathology & Microbiology Department, Iowa State University, Ames, IA, 50011, USA
| | - Arun Seetharam
- Office of Biotechnology, Genome Informatics Facility, Iowa State University, Ames, IA, 50011, USA
| | | | - Andrew J Severin
- Office of Biotechnology, Genome Informatics Facility, Iowa State University, Ames, IA, 50011, USA
| | - Thomas J Baum
- Plant Pathology & Microbiology Department, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|