1
|
Glycosphingolipid-Protein Interaction in Signal Transduction. Int J Mol Sci 2016; 17:ijms17101732. [PMID: 27754465 PMCID: PMC5085762 DOI: 10.3390/ijms17101732] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022] Open
Abstract
Glycosphingolipids (GSLs) are a class of ceramide-based glycolipids essential for embryo development in mammals. The synthesis of specific GSLs depends on the expression of distinctive sets of GSL synthesizing enzymes that is tightly regulated during development. Several reports have described how cell surface receptors can be kept in a resting state or activate alternative signalling events as a consequence of their interaction with GSLs. Specific GSLs, indeed, interface with specific protein domains that are found in signalling molecules and which act as GSL sensors to modify signalling responses. The regulation exerted by GSLs on signal transduction is orthogonal to the ligand–receptor axis, as it usually does not directly interfere with the ligand binding to receptors. Due to their properties of adjustable production and orthogonal action on receptors, GSLs add a new dimension to the control of the signalling in development. GSLs can, indeed, dynamically influence progenitor cell response to morphogenetic stimuli, resulting in alternative differentiation fates. Here, we review the available literature on GSL–protein interactions and their effects on cell signalling and development.
Collapse
|
2
|
Son HK, Park I, Kim JY, Kim DK, Illeperuma RP, Bae JY, Lee DY, Oh ES, Jung DW, Williams DR, Kim J. A distinct role for interleukin-6 as a major mediator of cellular adjustment to an altered culture condition. J Cell Biochem 2016; 116:2552-62. [PMID: 25939389 PMCID: PMC4832257 DOI: 10.1002/jcb.25200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 12/22/2022]
Abstract
Tissue microenvironment adjusts biological properties of different cells by modulating signaling pathways and cell to cell interactions. This study showed that epithelial–mesenchymal transition (EMT)/ mesenchymal–epithelial transition (MET) can be modulated by altering culture conditions. HPV E6/E7‐transfected immortalized oral keratinocytes (IHOK) cultured in different media displayed reversible EMT/MET accompanied by changes in cell phenotype, proliferation, gene expression at transcriptional, and translational level, and migratory and invasive activities. Cholera toxin, a major supplement to culture medium, was responsible for inducing the morphological and biological changes of IHOK. Cholera toxin per se induced EMT by triggering the secretion of interleukin 6 (IL‐6) from IHOK. We found IL‐6 to be a central molecule that modulates the reversibility of EMT based not only on the mRNA level but also on the level of secretion. Taken together, our results demonstrate that IL‐6, a cytokine whose transcription is activated by alterations in culture conditions, is a key molecule for regulating reversible EMT/MET. This study will contribute to understand one way of cellular adjustment for surviving in unfamiliar conditions. J. Cell. Biochem. 116: 2552–2562, 2015. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hwa-Kyung Son
- Department of Dental Hygiene, Division of Health science, Yeungnam University College, Daegu, Korea.,Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| | - Iha Park
- Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
| | - Jue Young Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| | - Do Kyeong Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| | - Rasika P Illeperuma
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, Sri Lanka
| | - Jung Yoon Bae
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| | - Doo Young Lee
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| | - Eun-Sang Oh
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500-712, Korea
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500-712, Korea
| | - Darren R Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500-712, Korea
| | - Jin Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| |
Collapse
|
3
|
D'Angelo G, Capasso S, Sticco L, Russo D. Glycosphingolipids: synthesis and functions. FEBS J 2013; 280:6338-53. [PMID: 24165035 DOI: 10.1111/febs.12559] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022]
Abstract
Glycosphingolipids (GSLs) comprise a heterogeneous group of membrane lipids formed by a ceramide backbone covalently linked to a glycan moiety. Hundreds of different glycans can be linked to tens of different ceramide molecules, giving rise to an astonishing variety of structurally different compounds, each of which has the potential for a specific biological function. GSLs have been suggested to modulate membrane-protein function and to contribute to cell-cell communication. Although GSLs are dispensable for cellular life, they are indeed collectively required for the development of multicellular organisms, and are thus considered to be key molecules in 'cell sociology'. Consequently, the GSL make-up of individual cells is highly dynamic and is strictly linked to the cellular developmental and environmental state. In the present review, we discuss some of the available knowledge, open questions and future perspectives relating to the study of GSL biology.
Collapse
Affiliation(s)
- Giovanni D'Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | | | | | | |
Collapse
|
4
|
Abstract
Cell entry of rotaviruses is a complex process, which involves sequential interactions with several cell surface molecules. Among the molecules implicated are gangliosides, glycosphingolipids with one or more sialic acid (SA) residues. The role of gangliosides in rotavirus cell entry was studied by silencing the expression of two key enzymes involved in their biosynthesis--the UDP-glucose:ceramide glucosyltransferase (UGCG), which transfers a glucose molecule to ceramide to produce glucosylceramide GlcCer, and the lactosyl ceramide-α-2,3-sialyl transferase 5 (GM3-s), which adds the first SA to lactoceramide-producing ganglioside GM3. Silencing the expression of both enzymes resulted in decreased ganglioside levels (as judged by GM1a detection). Four rotavirus strains tested (human Wa, simian RRV, porcine TFR-41, and bovine UK) showed a decreased infectivity in cells with impaired ganglioside synthesis; however, their replication after bypassing the entry step was not affected, confirming the importance of gangliosides for cell entry of the viruses. Interestingly, viral binding to the cell surface was not affected in cells with inhibited ganglioside synthesis, but the infectivity of all strains tested was inhibited by preincubation of gangliosides with virus prior to infection. These data suggest that rotaviruses can attach to cell surface in the absence of gangliosides but require them for productive cell entry, confirming their functional role during rotavirus cell entry.
Collapse
|
5
|
Jung JU, Ko K, Lee DH, Ko K, Chang KT, Choo YK. The roles of glycosphingolipids in the proliferation and neural differentiation of mouse embryonic stem cells. Exp Mol Med 2010; 41:935-45. [PMID: 19745600 DOI: 10.3858/emm.2009.41.12.099] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glycosphingolipids including gangliosides play important regulatory roles in cell proliferation and differentiation. UDP-glucose:ceramide glucosyltransferase (Ugcg) catalyze the initial step in glycosphingolipids biosynthesis pathway. In this study, Ugcg expression was reduced to approximately 80% by short hairpin RNAs (shRNAs) to evaluate the roles of glycosphingolipids in proliferation and neural differentiation of mouse embryonic stem cells (mESCs). HPTLC/immunofluorescence analyses of shRNA- transfected mESCs revealed that treatment with Ugcg-shRNA decreased expression of major gangliosides, GM3 and GD3. Furthermore, MTT and Western blot/immunofluorescence analyses demonstrated that inhibition of the Ugcg expression in mESCs resulted in decrease of cell proliferation (P<0.05) and decrease of activation of the ERK1/2 (P<0.05), respectively. To further investigate the role of glycosphingolipids in neural differentiation, the embryoid bodies formed from Ugcg-shRNA transfected mESCs were differentiated into neural cells by treatment with retinoic acid. We found that inhibition of Ugcg expression did not affect embryoid body (EB) differentiation, as judged by morphological comparison and expression of early neural precursor cell marker, nestin, in differentiated EBs. However, RT-PCR/immunofluorescence analyses showed that expression of microtubule-associated protein 2 (MAP-2) for neurons and glial fibrillary acidic protein (GFAP) for glial cells was decreased in neural cells differentiated from the shRNA-transfected mESCs. These results suggest that glycosphingolipids are involved in the proliferation of mESCs through ERK1/2 activation, and that glycosphingolipids play roles in differentiation of neural precursor cells derived from mESCs.
Collapse
Affiliation(s)
- Ji-Ung Jung
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 570-749, Korea
| | | | | | | | | | | |
Collapse
|
6
|
Li Y, Lu HM, Li G, Yan GM. Glycogen synthase kinase-3beta regulates astrocytic differentiation of U87-MG human glioblastoma cells. Acta Pharmacol Sin 2010; 31:355-60. [PMID: 20154711 DOI: 10.1038/aps.2010.10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM To evaluate the role of glycogen synthase kinase-3beta (GSK-3beta) in the induced differentiation of human glioblastoma cells. METHODS Cell proliferation was determined by bromodeoxyuridine (BrdU) incorporation assay. The protein level of p-GSK-3beta, GSK-3beta, glial fibrillary acidic protein (GFAP) and proliferating cell nuclear antigen (PCNA) were determined using Western blots. The overexpression of mutant GSK-3beta was analyzed by immunocytochemistry. RESULTS The biotoxin cholera toxin is capable of inducing differentiation of U87-MG human glioblastoma cells, which is characterized by morphological changes to astrocytic phenotype, increase in differentiation marker protein GFAP and decrease in proliferation. GSK-3beta activation is induced during this differentiation. Small interfering RNA against GSK-3beta suppresses the induced-differentiation in U87-MG cells. Conversely, overexpression of a constitutively active form of human GSK-3beta (pcDNA3-GSK-3beta-S9A) mutant leads to differentiation of U87-MG cells. CONCLUSION Our findings suggest that GSK-3beta plays an important role in astrocytic differentiation of human glioblastoma cells and may be a novel therapeutic target in the malignant tumor.
Collapse
|
7
|
Yamazaki Y, Horibata Y, Nagatsuka Y, Hirabayashi Y, Hashikawa T. Fucoganglioside alpha-fucosyl(alpha-galactosyl)-GM1: a novel member of lipid membrane microdomain components involved in PC12 cell neuritogenesis. Biochem J 2007; 407:31-40. [PMID: 17608628 PMCID: PMC2267403 DOI: 10.1042/bj20070090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to search for novel components of lipid membrane microdomains involved in neural signalling pathways, mAbs (monoclonal antibodies) were raised against the detergent-insoluble membrane fraction of PC12 (pheochromocytoma) cells. Among the 22 hybrid clones, mAb PR#1 specifically detected a fucoganglioside Fuc(Gal)-GM1 [a-fucosyl(a-galactosyl)-GM1], a ganglioside homologous with GM1a (II3NeuAc,GgOse4Cer), as a novel member of microdomain components with biological functions. In the presence of mAb PR#1 in the culture medium, the outgrowth of neurites was induced in PC12 cells in a dose-dependent manner, with no effects on cell proliferation, suggesting that Fuc(Gal)-GM1 is preferentially involved in PC12 cell neuritogenesis. Effects through Fuc(Gal)-GM1 were different from those through GM1a during differentiation, e.g. under PR#1 treatment on Fuc(Gal)-GM1, round cell bodies with thinner cell processes were induced, whereas treatment with CTB (cholera toxin B subunit), a specific probe for GM1a, produced flattened cell bodies with thicker pro-cesses. Molecular analysis demonstrated that the PR#1-Fuc(Gal)-GM1 pathway was associated with Fyn and Yes of the Src family of kinases, although Src itself was not involved. No association was found with TrkA (tropomyosin receptor kinase A) and ERKs (extracellular-signal-regulated kinases), which are responsible for GM1a-induced differentiation. From these findings, it is suggested that a fucoganglioside Fuc(Gal)-GM1 provides a functional platform distinct from that of GM1a for signal transduction in PC12 cell differentiation.
Collapse
Affiliation(s)
- Yasuhiro Yamazaki
- *Laboratory for Neural Architecture, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Yasuhiro Horibata
- †Hirabayashi Research Unit, Neural Circuit Research Group, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Yasuko Nagatsuka
- †Hirabayashi Research Unit, Neural Circuit Research Group, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Yoshio Hirabayashi
- †Hirabayashi Research Unit, Neural Circuit Research Group, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Tsutomu Hashikawa
- *Laboratory for Neural Architecture, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
8
|
Li Y, Yin W, Wang X, Zhu W, Huang Y, Yan G. Cholera toxin induces malignant glioma cell differentiation via the PKA/CREB pathway. Proc Natl Acad Sci U S A 2007; 104:13438-43. [PMID: 17679696 PMCID: PMC1940034 DOI: 10.1073/pnas.0701990104] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Malignant gliomas are one of the leading causes of cancer deaths worldwide, but chemoprevention strategies for them are few and poorly investigated. Here, we show that cholera toxin, the traditional biotoxin and well known inducer of accumulation of cellular cAMP, is capable of inducing differentiation on malignant gliomas in vitro with rat C6 and primary cultured human glioma cells. Cholera toxin-induced differentiation was characterized by typical morphological changes, increased expression of glial fibrillary acid protein, decreased expression of Ki-67, inhibition of cellular proliferation, and accumulation of cells in the G(1) phase of the cell cycle. Cholera toxin also triggered a significant reduction in the G(1) cell-cycle regulatory proteins cyclin D1 and Cdk2 along with an overexpression of cell-cycle inhibitory proteins p21(Cip1) and p27(Kip1). Abrogation of cAMP-dependent protein kinase A activity by protein kinase A inhibitor or silencing of cAMP-responsive element binding proteins by RNA interference resulted in suppressed differentiation. These findings imply the attractiveness of cholera toxin as a drug candidate for further development of differentiation therapy. Furthermore, activation of the protein kinase A/cAMP-responsive element binding protein pathway may be a key and requisite factor in glioma differentiation.
Collapse
Affiliation(s)
- Yan Li
- Departments of *Pharmacology and
| | - Wei Yin
- Departments of *Pharmacology and
| | - Xia Wang
- Departments of *Pharmacology and
| | | | | | - Guangmei Yan
- Departments of *Pharmacology and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Woronowicz A, Amith SR, Davis VW, Jayanth P, De Vusser K, Laroy W, Contreras R, Meakin SO, Szewczuk MR. Trypanosome trans-sialidase mediates neuroprotection against oxidative stress, serum/glucose deprivation, and hypoxia-induced neurite retraction in Trk-expressing PC12 cells. Glycobiology 2007; 17:725-34. [PMID: 17389653 DOI: 10.1093/glycob/cwm034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Trypanosome trans-sialidase (TS) is a sialic acid-transferring enzyme and a novel ligand of tyrosine kinase (TrkA) receptors but not of neurotrophin receptor p75NTR. Here, we show that TS targets TrkB receptors on TrkB-expressing pheochromocytoma PC12 cells and colocalizes with TrkB receptor internalization and phosphorylation (pTrkB). Wild-type TS but not the catalytically inactive mutant TSDeltaAsp98-Glu induces pTrkB and mediates cell survival responses against death caused by oxidative stress in TrkA- and TrkB-expressing cells like those seen with nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). These same effects are not observed in Trk deficient PC12(nnr5) cells, but are re-established in PC12(nnr5) cells stably transfected with TrkA or TrkB, are partially blocked by inhibitors of tyrosine kinase (K-252a), mitogen-activated protein/mitogen-activated kinase (PD98059) and completely blocked by LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K). Both TrkA- and TrkB-expressing cells pretreated with TS or their natural ligands are protected against cell death caused by serum/glucose deprivation or from hypoxia-induced neurite retraction. The cell survival effects of NGF and BDNF against oxidative stress are significantly inhibited by the neuraminidase inhibitor, Tamiflu. Together, these observations suggest that trypanosome TS mimics neurotrophic factors in cell survival responses against oxidative stress, hypoxia-induced neurite retraction and serum/glucose deprivation.
Collapse
Affiliation(s)
- Alicja Woronowicz
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L3N6
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Woronowicz A, Amith SR, De Vusser K, Laroy W, Contreras R, Basta S, Szewczuk MR. Dependence of neurotrophic factor activation of Trk tyrosine kinase receptors on cellular sialidase. Glycobiology 2006; 17:10-24. [PMID: 16971381 DOI: 10.1093/glycob/cwl049] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A direct link between receptor glycosylation and activation following natural ligand interaction has not been observed. Here, we discover a membrane sialidase-controlling mechanism that depends on ligand binding to its receptor to induce enzyme activity which targets and desialylates the receptor and, consequently, causes the induction of receptor dimerization and activation. We also identify a specific sialyl alpha-2,3-linked beta-galactosyl sugar residue of TrkA tyrosine kinase receptor, which is rapidly targeted and hydrolyzed by the sialidase. Trk-expressing cells and primary cortical neurons following stimulation with specific neurotrophic growth factors express a vigorous membrane sialidase activity. Neuraminidase inhibitors, Tamiflu, BCX1812, and BCX1827, block sialidase activity induced by nerve growth factor (NGF) in TrkA-PC12 cells and by brain-derived neurotrophic factor (BDNF) in primary cortical neurons. In contrast, the neuraminidase inhibitor, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, specific for plasma membrane ganglioside Neu3 and Neu2 sialidases has no inhibitory effect on NGF-induced pTrkA. The GM1 ganglioside specific cholera toxin subunit B applied to TrkA-PC12 cells has no inhibitory effect on NGF-induced sialidase activity. Neurite outgrowths induced by NGF-treated TrkA-PC12 and BDNF-treated PC12(nnr5) stably transfected with TrkB receptors (TrkB-nnr5) cells are significantly inhibited by Tamiflu. Our results establish a novel mode of regulation of receptor activation by its natural ligand and define a new function for cellular sialidases.
Collapse
Affiliation(s)
- Alicja Woronowicz
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
We first examined the involvement of the complex sphingolipids in cell-substratum adhesion using GM-95, a mutant cell line deficient in glycosphingolipids (GSLs) due to the lack of ceramide glucosyltransferase activity. We determined the adhesion of the mutant cells and stable transfectants expressing GSLs, which were established by transfection of GlcT-1 cDNA into GM-95 cells under neutral sphingomyelinase (sm) treatment. We confirmed that complex sphingolipids play critical roles in cell-substratum adhesion, and the presence of either GSLs or SM is sufficient for the adhesion. We also investigated intracellular signaling (glycosignaling) mediated by endogenous GM1a involved in the neuronal differentiation of PC12 cells using the cholera toxin B subunit (CTB) that specifically binds to ganglioside GM1a. Treatment with CTB induced neuron-like differentiation of PC12 cells. Biochemical analyses demonstrated that the tyrosine phosphorylation induced by CTB was responsible for neuron-like differentiation of PC12 cells and that the MEK-ERK cascade is a part of the biological signals mediated by endogenous ganglioside GM1a on PC12 cells. We further demonstrated that glycosignaling is mediated through a high-affinity ligand, PSGL-1, for P-selection on neutrophils. In this case, engagement of PSGL-1 on the cell surface strongly induced tyrosine phosphorylation of several cellular proteins including ERKs and activated a canonical MAP kinase pathway. Tyrosine phosphorylation induced by engagement of PSGL-1 is responsible for the secretion of interleukin-8 from neutrophils, suggesting that PSGL-1-mediated glycosignals are involved in the progression of the inflammatory response. In this review, we mainly discuss the biological and pathological significance of glycoconjugates in relation to the above issues.
Collapse
Affiliation(s)
- Kazuya I P J Hidari
- Department of Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corp, 52-1 Yada, Shizuoka City 422-8526, Japan.
| |
Collapse
|
12
|
Fang Y, Xie X, Ledeen RW, Wu G. Characterization of cholera toxin B subunit-induced Ca(2+) influx in neuroblastoma cells: evidence for a voltage-independent GM1 ganglioside-associated Ca(2+) channel. J Neurosci Res 2002; 69:669-80. [PMID: 12210833 DOI: 10.1002/jnr.10333] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of endogenous GM1 ganglioside in neurite outgrowth has been studied in N18 and NG108-15 neuroblastoma cells with the GM1-specific ligand cholera toxin B subunit (Ctx B), which stimulates Ca(2+) influx together with neuritogenesis. Our primary goal has been to identify the nature of the calcium channel that is modulated by GM1. An L-type voltage-operated Ca(2+) channel (VOCC) was previously proposed as the mediator of this phenomenon. This investigation, employing fura-2 fluorescent measurements and specific channel blockers and other agents, revealed that GM1 modulates a hitherto unidentified Ca(2+) channel not of the L type. It was opened by Ctx B; was permeable to Ca(2+) and Ba(2+) but not Mn(2+); and was blocked by Ni(2+), Cd(2+), and La(3+). Although most dihydropyridines inhibited Ctx B-induced Ca(2+) influx as well as neurite outgrowth at higher concentrations, they and other VOCC blockers at normally employed concentrations failed to do so, suggesting uninvolvement of VOCC. In addition, Ca(2+) influx induced by Ctx B was not mediated by cGMP-dependent or G-protein-coupled nonselective cation channels, as demonstrated by the cGMP antagonist Rp-cGMPS or the G-protein/receptor uncoupling agent suramin, respectively. Finally, Ca(2+) influx was unlikely to be due to inhibition or reversal of Na(+)-Ca(2+) exchanger via Ctx B induction of Na(+) uptake, insofar as no effect was seen on blocking Na(+) channels, inhibiting Na(+)-K(+)-ATPase, or eliminating extracellular Na(+). The results suggest that this novel channel is gated by interaction with GM1, which, when associated with the channel and bound by appropriate ligand, promotes Ca(2+) influx. This in turn induces signaling for the onset of neuritogenesis.
Collapse
Affiliation(s)
- Yu Fang
- Department of Neurosciences, New Jersey Medical School, UMDNJ, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|