Alberdi EM, Weldon JE, Becerra SP. Glycosaminoglycans in human retinoblastoma cells: heparan sulfate, a modulator of the pigment epithelium-derived factor-receptor interactions.
BMC BIOCHEMISTRY 2003;
4:1. [PMID:
12625842 PMCID:
PMC151665 DOI:
10.1186/1471-2091-4-1]
[Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2002] [Accepted: 02/19/2003] [Indexed: 11/10/2022]
Abstract
BACKGROUND
Pigment epithelium-derived factor (PEDF) has binding affinity for cell-surface receptors in retinoblastoma cells and for glycosaminoglycans. We investigated the effects of glycosaminoglycans on PEDF-receptor interactions.
RESULTS
125I-PEDF formed complexes with protease-resistant components of medium conditioned by human retinoblastoma Y-79 cells. Using specific glycosaminoglycan degrading enzymes in spectrophotometric assays and PEDF-affinity chromatography, we detected heparin and heparan sulfate-like glycosaminoglycans in the Y-79 conditioned media, which had binding affinity for PEDF. The Y-79 conditioned media significantly enhanced the binding of 125I-PEDF to Y-79 cell-surface receptors. However, enzymatic and chemical depletion of sulfated glycosaminoglycans from the Y-79 cell cultures by heparitinase and chlorate treatments decreased the degree of 125I-PEDF binding to cell-surface receptors.
CONCLUSIONS
These data indicate that retinoblastoma cells secrete heparin/heparan sulfate with binding affinity for PEDF, which may be important in efficient cell-surface receptor binding.
Collapse