1
|
Fedorova VV, Tsitrina A, Halimani N, Kotelevtsev YV. 4-Methylumbelliferone, an Inhibitor of Hyaluronan Synthase, Prevents the Development of Oncological, Inflammatory, Degenerative, and Autoimmune Diseases. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:1-18. [PMID: 40058970 DOI: 10.1134/s0006297924603459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/24/2024] [Accepted: 12/08/2024] [Indexed: 05/13/2025]
Abstract
Hyaluronic acid (HA) is the main structure-forming polymer of the extracellular matrix. HA metabolism plays an important role in intercellular interaction in healthy organism and in various pathologies. HA is synthesized by hyaluronan synthase (HAS); mammals have three highly homologous isoforms of this enzyme: HAS1, HAS2, and HAS3. No highly specific competitive inhibitors of HASs have been described so far. 4-Methylumbelliferone (4-MU), a natural coumarin compound, is commonly used to inhibit HA synthesis in vivo and in cell cultures. The review is focused on the molecular mechanisms underlying the therapeutic effects of 4-MU and discusses results of 4-MU application in tissue cultures and animal disease models, as well as in first clinical trials of this compound. It was found that along with receptors and transcription factors, one of the pharmacological targets of 4-MU is HAS2, which is most common isoform of HAS. Moreover, it is inhibition of HA synthesis that underlies the pharmacological effects of 4-MU in oncological, autoimmune, degenerative, and hypercompensated regenerative processes (fibrosis, scar formation). New clinical drugs based on specific HAS2 inhibitors will be the first-in-class compounds to treat a wide range of diseases.
Collapse
Affiliation(s)
| | | | - Noreen Halimani
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | | |
Collapse
|
2
|
Hashamdar S, Moghaddam NH, Ebrahimnasab S, Momeny M, Ramezani F. Synthesis of a PVA-GO drug delivery system for sustained release of 4-methyl umbelliferon. Drug Dev Ind Pharm 2024; 50:1021-1030. [PMID: 39629825 DOI: 10.1080/03639045.2024.2436530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION 4-methyl umbelliferon (4MU) is a coumarin with anti-inflammatory, anti-thrombotic, enzyme-inhibiting, and antioxidant properties. Despite the benefits of the compound, it is eliminated very quickly from the blood circulation through the liver, kidney, and digestive system due to its hydrophobic properties. In this study we proposed to improve the durability of 4MU by binding of 4MU to poly vinyl alcohol (PVA) and graphene oxide (GO). METHODS The PVA-4MU-GO complex was synthesized and characterized. Release of 4MU from the complex was investigated. H9C2 cells viability was investigated and the entry of complex to the cell was analyzed using flow cytometry. RESULT UV-Vis and FTIR studies confirmed the interaction of 4MU with PVA and GO. SEM measurement also revealed a particle size around 101 nm for PVA-4MU-GO complexes. The obtained results confirmed the assembly of PVA-4MU-GO. A continuous drug release for 8 d (160 h) was achieved. Cytotoxic studies on H9C2 cell showed that PVA-4MU-GO complex is dependent to the concentration of GO and also the relation of 4MU to GO. Sustained release and penetration of PVA-4MU-GO complex into the H9C2 cell were observed. CONCLUSION PVA-4MU-GO complex is recommended as an alternative for 4MU. Synthesis the complex of PVA-4MU-GO, verifying the correct binding, showing the in vitro release of the 4MU, as well as checking its toxicity and its gradual entry into the H9C2 cell, were performed in this study.
Collapse
Affiliation(s)
- Somayeh Hashamdar
- Physics Department, Amirkabir University of Technology, Tehran, Iran
| | - Niloofar Haeri Moghaddam
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Majid Momeny
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fatemeh Ramezani
- Physiology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Pibuel MA, Poodts D, Molinari Y, Díaz M, Amoia S, Byrne A, Hajos S, Lompardía S, Franco P. The importance of RHAMM in the normal brain and gliomas: physiological and pathological roles. Br J Cancer 2023; 128:12-20. [PMID: 36207608 PMCID: PMC9814267 DOI: 10.1038/s41416-022-01999-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 01/27/2023] Open
Abstract
Although the literature about the functions of hyaluronan and the CD44 receptor in the brain and brain tumours is extensive, the role of the receptor for hyaluronan-mediated motility (RHAMM) in neural stem cells and gliomas remain poorly explored. RHAMM is considered a multifunctional receptor which performs various biological functions in several normal tissues and plays a significant role in cancer development and progression. RHAMM was first identified for its ability to bind to hyaluronate, the extracellular matrix component associated with cell motility control. Nevertheless, additional functions of this protein imply the interaction with different partners or cell structures to regulate other biological processes, such as mitotic-spindle assembly, gene expression regulation, cell-cycle control and proliferation. In this review, we summarise the role of RHAMM in normal brain development and the adult brain, focusing on the neural stem and progenitor cells, and discuss the current knowledge on RHAMM involvement in glioblastoma progression, the most aggressive glioma of the central nervous system. Understanding the implications of RHAMM in the brain could be useful to design new therapeutic approaches to improve the prognosis and quality of life of glioblastoma patients.
Collapse
Affiliation(s)
- Matías A Pibuel
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Microbiología, Inmunología y Biotecnología; Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Capital Federal (1113), Buenos Aires, Argentina.
| | - Daniela Poodts
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Microbiología, Inmunología y Biotecnología; Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Yamila Molinari
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Química Biológica. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Mariángeles Díaz
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Capital Federal (1113), Buenos Aires, Argentina
| | - Sofía Amoia
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Microbiología, Inmunología y Biotecnología; Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Agustín Byrne
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Química Biológica. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Silvia Hajos
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Microbiología, Inmunología y Biotecnología; Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Silvina Lompardía
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Microbiología, Inmunología y Biotecnología; Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Paula Franco
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Química Biológica. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| |
Collapse
|
4
|
Faisal SM, Comba A, Varela ML, Argento AE, Brumley E, Abel C, Castro MG, Lowenstein PR. The complex interactions between the cellular and non-cellular components of the brain tumor microenvironmental landscape and their therapeutic implications. Front Oncol 2022; 12:1005069. [PMID: 36276147 PMCID: PMC9583158 DOI: 10.3389/fonc.2022.1005069] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma (GBM), an aggressive high-grade glial tumor, is resistant to therapy and has a poor prognosis due to its universal recurrence rate. GBM cells interact with the non-cellular components in the tumor microenvironment (TME), facilitating their rapid growth, evolution, and invasion into the normal brain. Herein we discuss the complexity of the interactions between the cellular and non-cellular components of the TME and advances in the field as a whole. While the stroma of non-central nervous system (CNS) tissues is abundant in fibrillary collagens, laminins, and fibronectin, the normal brain extracellular matrix (ECM) predominantly includes proteoglycans, glycoproteins, and glycosaminoglycans, with fibrillary components typically found only in association with the vasculature. However, recent studies have found that in GBMs, the microenvironment evolves into a more complex array of components, with upregulated collagen gene expression and aligned fibrillary ECM networks. The interactions of glioma cells with the ECM and the degradation of matrix barriers are crucial for both single-cell and collective invasion into neighboring brain tissue. ECM-regulated mechanisms also contribute to immune exclusion, resulting in a major challenge to immunotherapy delivery and efficacy. Glioma cells chemically and physically control the function of their environment, co-opting complex signaling networks for their own benefit, resulting in radio- and chemo-resistance, tumor recurrence, and cancer progression. Targeting these interactions is an attractive strategy for overcoming therapy resistance, and we will discuss recent advances in preclinical studies, current clinical trials, and potential future clinical applications. In this review, we also provide a comprehensive discussion of the complexities of the interconnected cellular and non-cellular components of the microenvironmental landscape of brain tumors to guide the development of safe and effective therapeutic strategies against brain cancer.
Collapse
Affiliation(s)
- Syed M. Faisal
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria L. Varela
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna E. Argento
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Emily Brumley
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Clifford Abel
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Pedro R. Lowenstein,
| |
Collapse
|
5
|
Lakra N, Matore BW, Banjare P, Singh R, Singh J, Roy PP. Pharmacophore based virtual screening of cholinesterase inhibitors: search of new potential drug candidates as antialzheimer agents. In Silico Pharmacol 2022; 10:18. [PMID: 36187087 PMCID: PMC9521886 DOI: 10.1007/s40203-022-00133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a distinctive medical condition characterized by loss of memory, orientation, and cognitive impairments, which is an exceptionally universal form of neurodegenerative disease. The statistical data suggested that it is the 3rd major cause of death in older persons. Butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) inhibitors play a vital role in the treatment of AD. Coumarins, natural derivatives, are reported as cholinesterase inhibitors and emerges as a promising scaffold for design of ligands targeting enzymes and pathological alterations related to AD. In this regard, the 3D QSAR pharmacophore models were developed for coumarin scaffold containing BChE and AChE inhibitors. Several 3D QSAR pharmacophore models were developed with FAST, BEST, and CEASER methods, and finally, statistically robust models (based on correlation coefficient, cost value, and RMSE value) were selected for further analysis for both targets. The important features ((HBA 1, HBA 2, HY, RA (BChE) HBA 1, HBA 2, HY, PI, (AChE)) were identified for good inhibitory activity of coumarin derivatives. Finally, the selected models were applied to various database compounds to find potential BChE and AChE inhibitors, and we found 13 for BChE and 1 potent compound for AChE with an estimated activity of IC50 < 10 µM. Further, the Lipinski filters, and ADMET analysis supports the selected compounds to become a drug candidate. These selected BChE and AChE inhibitors can be used in the treatment of AD. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-022-00133-1.
Collapse
Affiliation(s)
- Nisha Lakra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Balaji Wamanrao Matore
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Purusottam Banjare
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Rekha Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Jagadish Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Partha Pratim Roy
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| |
Collapse
|
6
|
Khoonkari M, Liang D, Kamperman M, Kruyt FAE, van Rijn P. Physics of Brain Cancer: Multiscale Alterations of Glioblastoma Cells under Extracellular Matrix Stiffening. Pharmaceutics 2022; 14:pharmaceutics14051031. [PMID: 35631616 PMCID: PMC9145282 DOI: 10.3390/pharmaceutics14051031] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
The biology and physics underlying glioblastoma is not yet completely understood, resulting in the limited efficacy of current clinical therapy. Recent studies have indicated the importance of mechanical stress on the development and malignancy of cancer. Various types of mechanical stress activate adaptive tumor cell responses that include alterations in the extracellular matrix (ECM) which have an impact on tumor malignancy. In this review, we describe and discuss the current knowledge of the effects of ECM alterations and mechanical stress on GBM aggressiveness. Gradual changes in the brain ECM have been connected to the biological and physical alterations of GBM cells. For example, increased expression of several ECM components such as glycosaminoglycans (GAGs), hyaluronic acid (HA), proteoglycans and fibrous proteins result in stiffening of the brain ECM, which alters inter- and intracellular signaling activity. Several mechanosensing signaling pathways have been identified that orchestrate adaptive responses, such as Hippo/YAP, CD44, and actin skeleton signaling, which remodel the cytoskeleton and affect cellular properties such as cell–cell/ECM interactions, growth, and migration/invasion of GBM cells. In vitro, hydrogels are used as a model to mimic the stiffening of the brain ECM and reconstruct its mechanics, which we also discuss. Overall, we provide an overview of the tumor microenvironmental landscape of GBM with a focus on ECM stiffening and its associated adaptive cellular signaling pathways and their possible therapeutic exploitation.
Collapse
Affiliation(s)
- Mohammad Khoonkari
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Dong Liang
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
| | - Marleen Kamperman
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Frank A. E. Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
- Correspondence: (F.A.E.K.); (P.v.R.)
| | - Patrick van Rijn
- Department of Biomedical Engineering-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Correspondence: (F.A.E.K.); (P.v.R.)
| |
Collapse
|
7
|
Icardi A, Lompardia SL, Papademetrio DL, Rosales P, Díaz M, Pibuel MA, Alaniz L, Alvarez E. Hyaluronan in the Extracellular Matrix of Hematological and Solid Tumors. Its Biological Effects. BIOLOGY OF EXTRACELLULAR MATRIX 2022:161-196. [DOI: 10.1007/978-3-030-99708-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Vitale DL, Icardi A, Rosales P, Spinelli FM, Sevic I, Alaniz LD. Targeting the Tumor Extracellular Matrix by the Natural Molecule 4-Methylumbelliferone: A Complementary and Alternative Cancer Therapeutic Strategy. Front Oncol 2021; 11:710061. [PMID: 34676159 PMCID: PMC8524446 DOI: 10.3389/fonc.2021.710061] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/10/2021] [Indexed: 12/22/2022] Open
Abstract
In antineoplastic therapy, one of the challenges is to adjust the treatment to the needs of each patient and reduce the toxicity caused by conventional antitumor strategies. It has been demonstrated that natural products with antitumoral properties are less toxic than chemotherapy and radiotherapy. Also, using already developed drugs allows developing substantially less costly methods for the discovery of new treatments than traditional drug development. Candidate molecules proposed for drug repositioning include 4-methylumbelliferone (4-MU), an orally available dietetic product, derivative of coumarin and mainly found in the plant family Umbelliferae or Apiaceae. 4-MU specifically inhibits the synthesis of glycosaminoglycan hyaluronan (HA), which is its main mechanism of action. This agent reduces the availability of HA substrates and inhibits the activity of different HA synthases. However, an effect independent of HA synthesis has also been observed. 4-MU acts as an inhibitor of tumor growth in different types of cancer. Particularly, 4-MU acts on the proliferation, migration and invasion abilities of tumor cells and inhibits the progression of cancer stem cells and the development of drug resistance. In addition, the effect of 4-MU impacts not only on tumor cells, but also on other components of the tumor microenvironment. Specifically, 4-MU can potentially act on immune, fibroblast and endothelial cells, and pro-tumor processes such as angiogenesis. Most of these effects are consistent with the altered functions of HA during tumor progression and can be interrupted by the action of 4-MU. While the potential advantage of 4-MU as an adjunct in cancer therapy could improve therapeutic efficacy and reduce toxicities of other antitumoral agents, the greatest challenge is the lack of scientific evidence to support its approval. Therefore, crucial human clinical studies have yet to be done to respond to this need. Here, we discuss and review the possible applications of 4-MU as an adjunct in conventional antineoplastic therapies, to achieve greater therapeutic success. We also describe the main proposed mechanisms of action that promote an increase in the efficacy of conventional antineoplastic strategies in different types of cancer and prospects that promote 4-MU repositioning and application in cancer therapy.
Collapse
Affiliation(s)
- Daiana L Vitale
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| | - Antonella Icardi
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| | - Paolo Rosales
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| | - Fiorella M Spinelli
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Inserm, Centre National de la Recherche Scientifique (CNRS), Université de Nantes, Nantes, France
| | - Ina Sevic
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| | - Laura D Alaniz
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| |
Collapse
|
9
|
Pibuel MA, Poodts D, Díaz M, Molinari YA, Franco PG, Hajos SE, Lompardía SL. Antitumor effect of 4MU on glioblastoma cells is mediated by senescence induction and CD44, RHAMM and p-ERK modulation. Cell Death Discov 2021; 7:280. [PMID: 34628469 PMCID: PMC8502173 DOI: 10.1038/s41420-021-00672-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
The extracellular matrix plays a key role in cancer progression. Hyaluronan, the main glycosaminoglycan of the extracellular matrix, has been related to several tumor processes. Hyaluronan acts through the interaction with cell membrane receptors as CD44 and RHAMM and triggers signaling pathways as MEK/ERK. 4-methylumbelliferone (4MU), a well-known hyaluronan synthesis inhibitor, is a promising alternative for cancer therapy. 4MU is a coumarin derivative without adverse effects that has been studied in several tumors. However, little is known about its use in glioblastoma (GBM), the most malignant primary brain tumor in adults. Glioblastoma is characterized by fast growth, migration and tissue invasiveness, and a poor median survival of the patients after treatment. Several reports linked glioblastoma progression with HA levels and even with CD44 and RHAMM expression, as well as MEK/ERK activation. Previously, we showed on a murine GBM cell line that HA enhances GBM migration, while 4MU markedly inhibits it. In this work we showed for the first time, that 4MU decreases cell migration and induces senescence in U251 and LN229 human GBM cell lines. Furthermore, we observed that HA promotes GBM cell migration on both cell lines and that such effects depend on CD44 and RHAMM, as well as MEK/ERK signaling pathway. Interestingly, we observed that the exogenous HA failed to counteract the effects of 4MU, indicating that 4MU effects are independent of HA synthesis inhibition. We found that 4MU decreases total CD44 and RHAMM membrane expression, which could explain the effect of 4MU on cell migration. Furthermore, we observed that 4MU increases the levels of RHAMM inside the cell while decreases the nucleus/cytoplasm relation of p-ERK, associated with 4MU effects on cell proliferation and senescence induction. Overall, 4MU should be considered as a promising therapeutic alternative to improve the outcome of patients with GBM.
Collapse
Grants
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°0289 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP N°053 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- UBACYT 20020170100454BA Universidad de Buenos Aires (University of Buenos Aires)
- UBACYT 20020170100454BA Universidad de Buenos Aires (University of Buenos Aires)
- UBACYT 20020170100454BA Universidad de Buenos Aires (University of Buenos Aires)
- UBACYT 20020170100454BA Universidad de Buenos Aires (University of Buenos Aires)
- UBACYT 20020170100454BA Universidad de Buenos Aires (University of Buenos Aires)
- UBACYT 20020170100454BA Universidad de Buenos Aires (University of Buenos Aires)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017- 2971 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
Collapse
Affiliation(s)
- Matías Arturo Pibuel
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Capital Federal, Argentina.
| | - Daniela Poodts
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Mariángeles Díaz
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Yamila Azul Molinari
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET; Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Paula Gabriela Franco
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET; Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvia Elvira Hajos
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvina Laura Lompardía
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Capital Federal, Argentina
| |
Collapse
|
10
|
Koltai T, Reshkin SJ, Carvalho TMA, Cardone RA. Targeting the Stromal Pro-Tumoral Hyaluronan-CD44 Pathway in Pancreatic Cancer. Int J Mol Sci 2021; 22:3953. [PMID: 33921242 PMCID: PMC8069142 DOI: 10.3390/ijms22083953] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies. Present-day treatments have not shown real improvements in reducing the high mortality rate and the short survival of the disease. The average survival is less than 5% after 5 years. New innovative treatments are necessary to curtail the situation. The very dense pancreatic cancer stroma is a barrier that impedes the access of chemotherapeutic drugs and at the same time establishes a pro-proliferative symbiosis with the tumor, thus targeting the stroma has been suggested by many authors. No ideal drug or drug combination for this targeting has been found as yet. With this goal in mind, here we have explored a different complementary treatment based on abundant previous publications on repurposed drugs. The cell surface protein CD44 is the main receptor for hyaluronan binding. Many malignant tumors show over-expression/over-activity of both. This is particularly significant in pancreatic cancer. The independent inhibition of hyaluronan-producing cells, hyaluronan synthesis, and/or CD44 expression, has been found to decrease the tumor cell's proliferation, motility, invasion, and metastatic abilities. Targeting the hyaluronan-CD44 pathway seems to have been bypassed by conventional mainstream oncological practice. There are existing drugs that decrease the activity/expression of hyaluronan and CD44: 4-methylumbelliferone and bromelain respectively. Some drugs inhibit hyaluronan-producing cells such as pirfenidone. The association of these three drugs has never been tested either in the laboratory or in the clinical setting. We present a hypothesis, sustained by hard experimental evidence, suggesting that the simultaneous use of these nontoxic drugs can achieve synergistic or added effects in reducing invasion and metastatic potential, in PDAC. A non-toxic, low-cost scheme for inhibiting this pathway may offer an additional weapon for treating pancreatic cancer.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| | - Rosa A. Cardone
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| |
Collapse
|
11
|
Pibuel MA, Poodts D, Díaz M, Hajos SE, Lompardía SL. The scrambled story between hyaluronan and glioblastoma. J Biol Chem 2021; 296:100549. [PMID: 33744285 PMCID: PMC8050860 DOI: 10.1016/j.jbc.2021.100549] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in cancer biology are revealing the importance of the cancer cell microenvironment on tumorigenesis and cancer progression. Hyaluronan (HA), the main glycosaminoglycan in the extracellular matrix, has been associated with the progression of glioblastoma (GBM), the most frequent and lethal primary tumor in the central nervous system, for several decades. However, the mechanisms by which HA impacts GBM properties and processes have been difficult to elucidate. In this review, we provide a comprehensive assessment of the current knowledge on HA's effects on GBM biology, introducing its primary receptors CD44 and RHAMM and the plethora of relevant downstream signaling pathways that can scramble efforts to directly link HA activity to biological outcomes. We consider the complexities of studying an extracellular polymer and the different strategies used to try to capture its function, including 2D and 3D in vitro studies, patient samples, and in vivo models. Given that HA affects not only migration and invasion, but also cell proliferation, adherence, and chemoresistance, we highlight the potential role of HA as a therapeutic target. Finally, we review the different existing approaches to diminish its protumor effects, such as the use of 4-methylumbelliferone, HA oligomers, and hyaluronidases and encourage further research along these lines in order to improve the survival and quality of life of GBM patients.
Collapse
Affiliation(s)
- Matías Arturo Pibuel
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina.
| | - Daniela Poodts
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Mariángeles Díaz
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvia Elvira Hajos
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvina Laura Lompardía
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina.
| |
Collapse
|