1
|
Unay J, Kint N, Viollier PH. Evolution of paralogous multicomponent systems for site-specific O-sialylation of flagellin in Gram-negative and Gram-positive bacteria. Curr Biol 2024; 34:2932-2947.e7. [PMID: 38897200 DOI: 10.1016/j.cub.2024.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Many bacteria glycosylate flagellin on serine or threonine residues using pseudaminic acid (Pse) or other sialic acid-like donor sugars. Successful reconstitution of Pse-dependent sialylation by the conserved Maf-type flagellin glycosyltransferase (fGT) may require (a) missing component(s). Here, we characterize both Maf paralogs in the Gram-negative bacterium Shewanella oneidensis MR-1 and reconstitute Pse-dependent glycosylation in heterologous hosts. Remarkably, we uncovered distinct acceptor determinants and target specificities for each Maf. Whereas Maf-1 uses its C-terminal tetratricopeptide repeat (TPR) domain to confer flagellin acceptor and O-glycosylation specificity, Maf-2 requires the newly identified conserved specificity factor, glycosylation factor for Maf (GlfM), to form a ternary complex with flagellin. GlfM orthologs are co-encoded with Maf-2 in Gram-negative and Gram-positive bacteria and require an invariant aspartate in their four-helix bundle to function with Maf-2. Thus, convergent fGT evolution underlies distinct flagellin-binding modes in tripartite versus bipartite systems and, consequently, distinct O-glycosylation preferences of acceptor serine residues with Pse.
Collapse
Affiliation(s)
- Jovelyn Unay
- Department of Microbiology & Molecular Medicine and Geneva Center for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Kint
- Department of Microbiology & Molecular Medicine and Geneva Center for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, 75006 Paris, France
| | - Patrick H Viollier
- Department of Microbiology & Molecular Medicine and Geneva Center for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
2
|
Janhvi S, Saini S, Singh V, Sharma T, Rao A. ProGlycProt V3.0: updated insights into prokaryotic glycoproteins and their glycosyltransferases. Glycobiology 2024; 34:cwad103. [PMID: 38153163 DOI: 10.1093/glycob/cwad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/15/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023] Open
Abstract
ProGlycProt is a comprehensive database of experimentally validated information about protein glycosylation in prokaryotes, including the glycoproteins, glycosyltransferases, and their accessory enzymes. The first release of ProGlycProt featured experimentally validated information on glycoproteins only. For the second release in 2019, the size and scope of the database were expanded twofold, and experimental data on cognate glycosyltransferases and their accessory proteins was incorporated. The growing research and technology interest in microbial glycoproteins and their enzymes is evident from the steady rise in academic publications and patents in this area. Accordingly, the third update comprises a new section on patents related to glycosylation methods, novel glycosyltransferases, and technologies developed therefrom. The structure gallery is reorganized, wherein the number and quality of the models are upgraded with the help of AlphaFold2. Over the years, the influx of experimental proteomics data into public repositories like PRIDE has surged. Harnessing this legacy data for in-silico glycoprotein identification is a smart approach. Version 3.0 adds 45 N-glycoprotein entries annotated from MS datasets available on PRIDE and reviewed by independent research groups. With a 67% rise in entries corresponding to 119 genera of prokaryotes, the ProGlycProt continues to be the exclusive database of experimentally validated comprehensive information about protein glycosylation in prokaryotes.
Collapse
Affiliation(s)
- Shreya Janhvi
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Shikha Saini
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Vaidhvi Singh
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Tarun Sharma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Alka Rao
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
3
|
Zhang NZ, Zhao LF, Zhang Q, Fang H, Song WL, Li WZ, Ge YS, Gao P. Core fucosylation and its roles in gastrointestinal glycoimmunology. World J Gastrointest Oncol 2023; 15:1119-1134. [PMID: 37546555 PMCID: PMC10401475 DOI: 10.4251/wjgo.v15.i7.1119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/28/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
Glycosylation is a common post-translational modification in eukaryotic cells. It is involved in the production of many biologically active glycoproteins and the regulation of protein structure and function. Core fucosylation plays a vital role in the immune response. Most immune system molecules are core fucosylated glycoproteins such as complements, cluster differentiation antigens, immunoglobulins, cytokines, major histocompatibility complex molecules, adhesion molecules, and immune molecule synthesis-related transcription factors. These core fucosylated glycoproteins play important roles in antigen recognition and clearance, cell adhesion, lymphocyte activation, apoptosis, signal transduction, and endocytosis. Core fucosylation is dominated by fucosyltransferase 8 (Fut8), which catalyzes the addition of α-1,6-fucose to the innermost GlcNAc residue of N-glycans. Fut8 is involved in humoral, cellular, and mucosal immunity. Tumor immunology is associated with aberrant core fucosylation. Here, we summarize the roles and potential modulatory mechanisms of Fut8 in various immune processes of the gastrointestinal system.
Collapse
Affiliation(s)
- Nian-Zhu Zhang
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Li-Fen Zhao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Qian Zhang
- Department of Cell Therapy, Shanghai Tianze Yuntai Biomedical Co., Ltd., Shanghai 200100, China
| | - Hui Fang
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-0005, Ibaraki, Japan
| | - Wan-Li Song
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Zhe Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu-Song Ge
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Peng Gao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| |
Collapse
|
4
|
Kint N, Dubois T, Viollier PH. Stereoisomer-specific reprogramming of a bacterial flagellin sialyltransferase. EMBO J 2023; 42:e112880. [PMID: 36636824 PMCID: PMC9975948 DOI: 10.15252/embj.2022112880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
Glycosylation of surface structures diversifies cells chemically and physically. Nucleotide-activated sialic acids commonly serve as glycosyl donors, particularly pseudaminic acid (Pse) and its stereoisomer legionaminic acid (Leg), which decorate eubacterial and archaeal surface layers or protein appendages. FlmG, a recently identified protein sialyltransferase, O-glycosylates flagellins, the subunits of the flagellar filament. We show that flagellin glycosylation and motility in Caulobacter crescentus and Brevundimonas subvibrioides is conferred by functionally insulated Pse and Leg biosynthesis pathways, respectively, and by specialized FlmG orthologs. We established a genetic glyco-profiling platform for the classification of Pse or Leg biosynthesis pathways, discovered a signature determinant of eubacterial and archaeal Leg biosynthesis, and validated it by reconstitution experiments in a heterologous host. Finally, by rewiring FlmG glycosylation using chimeras, we defined two modular determinants that govern flagellin glycosyltransferase specificity: a glycosyltransferase domain that either donates Leg or Pse and a specialized flagellin-binding domain that identifies the acceptor.
Collapse
Affiliation(s)
- Nicolas Kint
- Department of Microbiology & Molecular Medicine and Geneva Center for Inflammation Research (GCIR), Faculty of MedicineUniversity of GenevaGenèveSwitzerland
| | - Thomas Dubois
- University of Lille, CNRS, INRAE, Centrale Lille, UMR 8207‐UMET‐Unité Matériaux et TransformationsLilleFrance
| | - Patrick H Viollier
- Department of Microbiology & Molecular Medicine and Geneva Center for Inflammation Research (GCIR), Faculty of MedicineUniversity of GenevaGenèveSwitzerland
| |
Collapse
|
5
|
Subtle Longitudinal Alterations in Env Sequence Potentiate Differences in Sensitivity to Broadly Neutralizing Antibodies following Acute HIV-1 Subtype C Infection. J Virol 2022; 96:e0127022. [PMID: 36453881 PMCID: PMC9769376 DOI: 10.1128/jvi.01270-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) for HIV-1 prevention or cure strategies must inhibit transmitted/founder and reservoir viruses. Establishing sensitivity of circulating viruses to bNAbs and genetic patterns affecting neutralization variability may guide rational bNAbs selection for clinical development. We analyzed 326 single env genomes from nine individuals followed longitudinally following acute HIV-1 infection, with samples collected at ~1 week after the first detection of plasma viremia; 300 to 1,709 days postinfection but prior to initiating antiretroviral therapy (ART) (median = 724 days); and ~1 year post ART initiation. Sequences were assessed for phylogenetic relatedness, potential N- and O-linked glycosylation, and variable loop lengths (V1 to V5). A total of 43 env amplicons (median = 3 per patient per time point) were cloned into an expression vector and the TZM-bl assay was used to assess the neutralization profiles of 15 bNAbs targeting the CD4 binding site, V1/V2 region, V3 supersite, MPER, gp120/gp41 interface, and fusion peptide. At 1 μg/mL, the neutralization breadths were as follows: VRC07-LS and N6.LS (100%), VRC01 (86%), PGT151 (81%), 10-1074 and PGT121 (80%), and less than 70% for 10E8, 3BNC117, CAP256.VRC26, 4E10, PGDM1400, and N123-VRC34.01. Features associated with low sensitivity to V1/V2 and V3 bNAbs were higher potential glycosylation sites and/or relatively longer V1 and V4 domains, including known "signature" mutations. The study shows significant variability in the breadth and potency of bNAbs against circulating HIV-1 subtype C envelopes. VRC07-LS, N6.LS, VRC01, PGT151, 10-1074, and PGT121 display broad activity against subtype C variants, and major determinants of sensitivity to most bNAbs were within the V1/V4 domains. IMPORTANCE Broadly neutralizing antibodies (bNAbs) have potential clinical utility in HIV-1 prevention and cure strategies. However, bNAbs target diverse epitopes on the HIV-1 envelope and the virus may evolve to evade immune responses. It is therefore important to identify antibodies with broad activity in high prevalence settings, as well as the genetic patterns that may lead to neutralization escape. We investigated 15 bNAbs with diverse biophysical properties that target six epitopes of the HIV-1 Env glycoprotein for their ability to inhibit viruses that initiated infection, viruses circulating in plasma at chronic infection before antiretroviral treatment (ART), or viruses that were archived in the reservoir during ART in subtype C infected individuals in South Africa, a high burden country. We identify the antibodies most likely to be effective for clinical use in this setting and describe mutational patterns associated with neutralization escape from these antibodies.
Collapse
|
6
|
Doostkam A, Malekmakan L, Hosseinpour A, Janfeshan S, Roozbeh J, Masjedi F. Sialic acid: an attractive biomarker with promising biomedical applications. ASIAN BIOMED 2022; 16:153-167. [PMID: 37551166 PMCID: PMC10321195 DOI: 10.2478/abm-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This broad, narrative review highlights the roles of sialic acids as acidic sugars found on cellular membranes. The role of sialic acids in cellular communication and development has been well established. Recently, attention has turned to the fundamental role of sialic acids in many diseases, including viral infections, cardiovascular diseases, neurological disorders, diabetic nephropathy, and malignancies. Sialic acid may be a target for developing new drugs to treat various cancers and inflammatory processes. We recommend the routine measurement of serum sialic acid as a sensitive inflammatory marker in various diseases.
Collapse
Affiliation(s)
- Aida Doostkam
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Leila Malekmakan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Alireza Hosseinpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz7134853185, Iran
| | - Sahar Janfeshan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| |
Collapse
|
7
|
Kint N, Unay J, Viollier PH. Specificity and modularity of flagellin nonulosonic acid glycosyltransferases. Trends Microbiol 2021; 30:109-111. [PMID: 34782242 DOI: 10.1016/j.tim.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022]
Abstract
Many bacterial flagella are specifically O-glycosylated with nonulosonic acids, including the sialic acid derivatives, pseudaminic acid or legionaminic acid. Unlike protein glycosyltransferases that are extracytoplasmic, flagellin glycosyltransferases (fGTs) act cytoplasmically with unknown donor or acceptor specificities. The recent reconstitution of fGT-based glycosylation in heterologous hosts enables analyses underpinning such specificity.
Collapse
Affiliation(s)
- Nicolas Kint
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jovelyn Unay
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
8
|
Ardissone S, Kint N, Viollier PH. Specificity in glycosylation of multiple flagellins by the modular and cell cycle regulated glycosyltransferase FlmG. eLife 2020; 9:e60488. [PMID: 33108275 PMCID: PMC7591256 DOI: 10.7554/elife.60488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
How specificity is programmed into post-translational modification of proteins by glycosylation is poorly understood, especially for O-linked glycosylation systems. Here we reconstitute and dissect the substrate specificity underpinning the cytoplasmic O-glycosylation pathway that modifies all six flagellins, five structural and one regulatory paralog, in Caulobacter crescentus, a monopolarly flagellated alpha-proteobacterium. We characterize the biosynthetic pathway for the sialic acid-like sugar pseudaminic acid and show its requirement for flagellation, flagellin modification and efficient export. The cognate NeuB enzyme that condenses phosphoenolpyruvate with a hexose into pseudaminic acid is functionally interchangeable with other pseudaminic acid synthases. The previously unknown and cell cycle-regulated FlmG protein, a defining member of a new class of cytoplasmic O-glycosyltransferases, is required and sufficient for flagellin modification. The substrate specificity of FlmG is conferred by its N-terminal flagellin-binding domain. FlmG accumulates before the FlaF secretion chaperone, potentially timing flagellin modification, export, and assembly during the cell division cycle.
Collapse
Affiliation(s)
- Silvia Ardissone
- Department of Microbiology & Molecular Medicine, Faculty of Medicine / CMU, University of GenevaGenèveSwitzerland
| | - Nicolas Kint
- Department of Microbiology & Molecular Medicine, Faculty of Medicine / CMU, University of GenevaGenèveSwitzerland
| | - Patrick H Viollier
- Department of Microbiology & Molecular Medicine, Faculty of Medicine / CMU, University of GenevaGenèveSwitzerland
| |
Collapse
|