1
|
Burnap SA, Calvaresi V, Cabrera G, Pousa S, Limonta M, Ramos Y, González LJ, Harvey DJ, Struwe WB. Structural and Functional Glycosylation of the Abdala COVID-19 Vaccine. Glycobiology 2025; 35:cwaf001. [PMID: 39799562 PMCID: PMC11758712 DOI: 10.1093/glycob/cwaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/02/2025] [Accepted: 01/20/2025] [Indexed: 01/15/2025] Open
Abstract
Abdala is a COVID-19 vaccine produced in Pichia pastoris and is based on the receptor-binding domain (RBD) of the SARS-CoV-2 spike. Abdala is currently approved for use in multiple countries with clinical trials confirming its safety and efficacy in preventing severe illness and death. Although P. pastoris is used as an expression system for protein-based vaccines, yeast glycosylation remains largely uncharacterised across immunogens. Here, we characterise N-glycan structures and their site of attachment on Abdala and show how yeast-specific glycosylation decreases binding to the ACE2 receptor and a receptor-binding motif (RBM) targeting antibody compared to the equivalent mammalian-derived RBD. Reduced receptor and antibody binding is attributed to changes in conformational dynamics resulting from N-glycosylation. These data highlight the critical importance of glycosylation in vaccine design and demonstrate how individual glycans can influence host interactions and immune recognition via protein structural dynamics.
Collapse
Affiliation(s)
- Sean A Burnap
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Valeria Calvaresi
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Gleysin Cabrera
- Center for Genetic Engineering and Biotechnology, Avenida 31 e/ 158 y 190. Cubanacán. Playa. Havana, 11600, Cuba
| | - Satomy Pousa
- Center for Genetic Engineering and Biotechnology, Avenida 31 e/ 158 y 190. Cubanacán. Playa. Havana, 11600, Cuba
| | - Miladys Limonta
- Center for Genetic Engineering and Biotechnology, Avenida 31 e/ 158 y 190. Cubanacán. Playa. Havana, 11600, Cuba
| | - Yassel Ramos
- Center for Genetic Engineering and Biotechnology, Avenida 31 e/ 158 y 190. Cubanacán. Playa. Havana, 11600, Cuba
| | - Luis Javier González
- Center for Genetic Engineering and Biotechnology, Avenida 31 e/ 158 y 190. Cubanacán. Playa. Havana, 11600, Cuba
| | - David J Harvey
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Weston B Struwe
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
2
|
Paiardi G, Ferraz M, Rusnati M, Wade RC. The accomplices: Heparan sulfates and N-glycans foster SARS-CoV-2 spike:ACE2 receptor binding and virus priming. Proc Natl Acad Sci U S A 2024; 121:e2404892121. [PMID: 39401361 PMCID: PMC11513917 DOI: 10.1073/pnas.2404892121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/23/2024] [Indexed: 10/18/2024] Open
Abstract
Although it is well established that the SARS-CoV-2 spike glycoprotein binds to the host cell ACE2 receptor to initiate infection, far less is known about the tissue tropism and host cell susceptibility to the virus. Differential expression across different cell types of heparan sulfate (HS) proteoglycans, with variably sulfated glycosaminoglycans (GAGs), and their synergistic interactions with host and viral N-glycans may contribute to tissue tropism and host cell susceptibility. Nevertheless, their contribution remains unclear since HS and N-glycans evade experimental characterization. We, therefore, carried out microsecond-long all-atom molecular dynamics simulations, followed by random acceleration molecular dynamics simulations, of the fully glycosylated spike:ACE2 complex with and without highly sulfated GAG chains bound. By considering the model GAGs as surrogates for the highly sulfated HS expressed in lung cells, we identified key cell entry mechanisms of spike SARS-CoV-2. We find that HS promotes structural and energetic stabilization of the active conformation of the spike receptor-binding domain (RBD) and reorientation of ACE2 toward the N-terminal domain in the same spike subunit as the RBD. Spike and ACE2 N-glycans exert synergistic effects, promoting better packing, strengthening the protein:protein interaction, and prolonging the residence time of the complex. ACE2 and HS binding trigger rearrangement of the S2' functional protease cleavage site through allosteric interdomain communication. These results thus show that HS has a multifaceted role in facilitating SARS-CoV-2 infection, and they provide a mechanistic basis for the development of GAG derivatives with anti-SARS-CoV-2 potential.
Collapse
Affiliation(s)
- Giulia Paiardi
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg69118, Germany
- Heidelberg University, Heidelberg69117, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg69120, Germany
| | - Matheus Ferraz
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg69118, Germany
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE50740-465, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE50740-560, Brazil
| | - Marco Rusnati
- Macromolecular Interaction Analysis Unit, Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, Brescia25123, Italy
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg69118, Germany
- Heidelberg University, Heidelberg69117, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg69120, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg69120, Germany
| |
Collapse
|
3
|
Blazhynska M, Lagardère L, Liu C, Adjoua O, Ren P, Piquemal JP. Water-glycan interactions drive the SARS-CoV-2 spike dynamics: insights into glycan-gate control and camouflage mechanisms. Chem Sci 2024:d4sc04364b. [PMID: 39220162 PMCID: PMC11359970 DOI: 10.1039/d4sc04364b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
To develop therapeutic strategies against COVID-19, we introduce a high-resolution all-atom polarizable model capturing many-body effects of protein, glycan, solvent, and membrane components in SARS-CoV-2 spike protein open and closed states. Employing μs-long molecular dynamics simulations powered by high-performance cloud-computing and unsupervised density-driven adaptive sampling, we investigated the differences in bulk-solvent-glycan and protein-solvent-glycan interfaces between these states. We unraveled a sophisticated solvent-glycan polarization interaction network involving the N165/N343 glycan-gate patterns that provide structural support for the open state and identified key water molecules that could potentially be targeted to destabilize this configuration. In the closed state, the reduced solvent polarization diminishes the overall N165/N343 dipoles, yet internal interactions and a reorganized sugar coat stabilize this state. Despite variations, our glycan-solvent accessibility analysis reveals the glycan shield capability to conserve constant interactions with the solvent, effectively camouflaging the virus from immune detection in both states. The presented insights advance our comprehension of viral pathogenesis at an atomic level, offering potential to combat COVID-19.
Collapse
Affiliation(s)
- Marharyta Blazhynska
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS 75005 Paris France
| | - Louis Lagardère
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS 75005 Paris France
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin Texas 78712 USA
- Qubit Pharmaceuticals 75014 Paris France
| | - Olivier Adjoua
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS 75005 Paris France
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin Texas 78712 USA
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS 75005 Paris France
| |
Collapse
|
4
|
Haynes CA, Keppel TR, Mekonnen B, Osman SH, Zhou Y, Woolfitt AR, Baudys J, Barr JR, Wang D. Inclusion of deuterated glycopeptides provides increased sequence coverage in hydrogen/deuterium exchange mass spectrometry analysis of SARS-CoV-2 spike glycoprotein. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9690. [PMID: 38355883 PMCID: PMC10871554 DOI: 10.1002/rcm.9690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 02/16/2024]
Abstract
RATIONALE Hydrogen/deuterium exchange mass spectrometry (HDX-MS) can provide precise analysis of a protein's conformational dynamics across varied states, such as heat-denatured versus native protein structures, localizing regions that are specifically affected by such conditional changes. Maximizing protein sequence coverage provides high confidence that regions of interest were located by HDX-MS, but one challenge for complete sequence coverage is N-glycosylation sites. The deuteration of peptides post-translationally modified by asparagine-bound glycans (glycopeptides) has not always been identified in previous reports of HDX-MS analyses, causing significant sequence coverage gaps in heavily glycosylated proteins and uncertainty in structural dynamics in many regions throughout a glycoprotein. METHODS We detected deuterated glycopeptides with a Tribrid Orbitrap Eclipse mass spectrometer performing data-dependent acquisition. An MS scan was used to identify precursor ions; if high-energy collision-induced dissociation MS/MS of the precursor indicated oxonium ions diagnostic for complex glycans, then electron transfer low-energy collision-induced dissociation MS/MS scans of the precursor identified the modified asparagine residue and the glycan's mass. As in traditional HDX-MS, the identified glycopeptides were then analyzed at the MS level in samples labeled with D2 O. RESULTS We report HDX-MS analysis of the SARS-CoV-2 spike protein ectodomain in its trimeric prefusion form, which has 22 predicted N-glycosylation sites per monomer, with and without heat treatment. We identified glycopeptides and calculated their average isotopic mass shifts from deuteration. Inclusion of the deuterated glycopeptides increased sequence coverage of spike ectodomain from 76% to 84%, demonstrated that glycopeptides had been deuterated, and improved confidence in results localizing structural rearrangements. CONCLUSION Inclusion of deuterated glycopeptides improves the analysis of the conformational dynamics of glycoproteins such as viral surface antigens and cellular receptors.
Collapse
Affiliation(s)
- Christopher A Haynes
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Theodore R Keppel
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Betlehem Mekonnen
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sarah H Osman
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yu Zhou
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Adrian R Woolfitt
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jakub Baudys
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John R Barr
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dongxia Wang
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Ábrahám E, Bajusz C, Marton A, Borics A, Mdluli T, Pardi N, Lipinszki Z. Expression and purification of the receptor-binding domain of SARS-CoV-2 spike protein in mammalian cells for immunological assays. FEBS Open Bio 2024; 14:380-389. [PMID: 38129177 PMCID: PMC10909970 DOI: 10.1002/2211-5463.13754] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
The receptor-binding domain (RBD) of the spike glycoprotein of SARS-CoV-2 virus mediates the interaction with the host cell and is required for virus internalization. It is, therefore, the primary target of neutralizing antibodies. The receptor-binding domain soon became the major target for COVID-19 research and the development of diagnostic tools and new-generation vaccines. Here, we provide a detailed protocol for high-yield expression and one-step affinity purification of recombinant RBD from transiently transfected Expi293F cells. Expi293F mammalian cells can be grown to extremely high densities in a specially formulated serum-free medium in suspension cultures, which makes them an excellent tool for secreted protein production. The highly purified RBD is glycosylated, structurally intact, and forms homomeric complexes. With this quick and easy method, we are able to produce large quantities of RBD (80 mg·L-1 culture) that we have successfully used in immunological assays to examine antibody titers and seroconversion after mRNA-based vaccination of mice.
Collapse
Affiliation(s)
- Edit Ábrahám
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of BiochemistryHUN‐REN Biological Research CentreSzegedHungary
- National Laboratory for Biotechnology, Institute of GeneticsHUN‐REN Biological Research CentreSzegedHungary
| | - Csaba Bajusz
- National Laboratory for Biotechnology, Institute of GeneticsHUN‐REN Biological Research CentreSzegedHungary
| | - Annamária Marton
- National Laboratory for Biotechnology, Institute of GeneticsHUN‐REN Biological Research CentreSzegedHungary
| | - Attila Borics
- Laboratory of Chemical Biology, Institute of BiochemistryHUN‐REN Biological Research CentreSzegedHungary
| | - Thandiswa Mdluli
- Department of MicrobiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Norbert Pardi
- Department of MicrobiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Zoltán Lipinszki
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of BiochemistryHUN‐REN Biological Research CentreSzegedHungary
- National Laboratory for Biotechnology, Institute of GeneticsHUN‐REN Biological Research CentreSzegedHungary
| |
Collapse
|
6
|
Zhao XC, Ju B, Xiu NN, Sun XY, Meng FJ. When inflammatory stressors dramatically change, disease phenotypes may transform between autoimmune hematopoietic failure and myeloid neoplasms. Front Immunol 2024; 15:1339971. [PMID: 38426096 PMCID: PMC10902444 DOI: 10.3389/fimmu.2024.1339971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Aplastic anemia (AA) and hypoplastic myelodysplastic syndrome are paradigms of autoimmune hematopoietic failure (AHF). Myelodysplastic syndrome and acute myeloid leukemia are unequivocal myeloid neoplasms (MNs). Currently, AA is also known to be a clonal hematological disease. Genetic aberrations typically observed in MNs are detected in approximately one-third of AA patients. In AA patients harboring MN-related genetic aberrations, a poor response to immunosuppressive therapy (IST) and an increased risk of transformation to MNs occurring either naturally or after IST are predicted. Approximately 10%-15% of patients with severe AA transform the disease phenotype to MNs following IST, and in some patients, leukemic transformation emerges during or shortly after IST. Phenotypic transformations between AHF and MNs can occur reciprocally. A fraction of advanced MN patients experience an aplastic crisis during which leukemic blasts are repressed. The switch that shapes the disease phenotype is a change in the strength of extramedullary inflammation. Both AHF and MNs have an immune-active bone marrow (BM) environment (BME). In AHF patients, an inflamed BME can be evoked by infiltrated immune cells targeting neoplastic molecules, which contributes to the BM-specific autoimmune impairment. Autoimmune responses in AHF may represent an antileukemic mechanism, and inflammatory stressors strengthen antileukemic immunity, at least in a significant proportion of patients who have MN-related genetic aberrations. During active inflammatory episodes, normal and leukemic hematopoieses are suppressed, which leads to the occurrence of aplastic cytopenia and leukemic cell regression. The successful treatment of underlying infections mitigates inflammatory stress-related antileukemic activities and promotes the penetration of leukemic hematopoiesis. The effect of IST is similar to that of treating underlying infections. Investigating inflammatory stress-powered antileukemic immunity is highly important in theoretical studies and clinical practice, especially given the wide application of immune-activating agents and immune checkpoint inhibitors in the treatment of hematological neoplasms.
Collapse
Affiliation(s)
- Xi-Chen Zhao
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Bo Ju
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Nuan-Nuan Xiu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Xiao-Yun Sun
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Fan-Jun Meng
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Wang X, Shi L, Wang Y, Chen J, Yang Z, Liu C, Liu X, Li Y, Zhang C, Sun A, Yan H, Sun H. Effects of the glycosylation of the receptor binding domain (RBD dimer)-based Covid-19 vaccine (ZF2001) on its humoral immunogenicity and immunoreactivity. Int J Biol Macromol 2023; 253:126874. [PMID: 37709229 DOI: 10.1016/j.ijbiomac.2023.126874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/25/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
The SARS-CoV-2 spike protein receptor-binding domain (RBD), which is a key target for the development of SARS-CoV-2 neutralizing antibodies and vaccines, mediates the binding of the host receptor angiotensin-converting enzyme 2 (ACE2). However, the high heterogeneity of RBD glycoforms may lead to an incomplete neutralization effect and impact the immunogenicity of RBD-based vaccines (Ye et al., 2021). Here, our data suggested that the glycosylation significantly affected the humoral immunogenicity and immunoreactivity of the RBD-dimer-based Covid-19 vaccine (ZF2001) (Yang et al., 2021). Several deglycosylated types of ZF2001 (with sialic acid removed (ZF2001-ΔSA), sialic acid & O-glycans removed (ZF2001-ΔSA&O), N-glycans removed (ZF2001-ΔN), N- & O-glycans removed (ZF2001-ΔN&O)) were obtained by treatment with glycosidases. The binding affinity between deglycosylated types of ZF2001 and ACE2 was slightly weakened and that between deglycosylated types of ZF2001 and several monoclonal antibodies (mAbs) were also changed compared with ZF2001. The results of pseudovirus neutralization assay and binding affinity assay of all ZF2001 types revealed that the antigens with complex glycosylation had better humoral immunogenicity and immunoreactivity. Molecular dynamics simulation indicated that the more complex glycosylation of RBD corresponded to more hydrogen bonds formed between helper T-cell epitopes of RBD and major histocompatibility complex II (MHC-II). In summary, these results demonstrated that the glycosylation of RBD affects antigen presentation, humoral immunogenicity and immunoreactivity, which may be an important consideration for vaccine design and production technology.
Collapse
Affiliation(s)
- Xueqing Wang
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Lulu Shi
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Yirong Wang
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Jia Chen
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Zelan Yang
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Chenglong Liu
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Xiaomei Liu
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Yang Li
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Can Zhang
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Anhui Sun
- Anhui Zhifei Longcom Biopharmaceutical, Hefei, China
| | - Huan Yan
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China.
| | - Hui Sun
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China; Hubei Province key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, 430072, Hubei Province, China.
| |
Collapse
|
8
|
Kofsky JM, Babulic JL, Boddington ME, De León González FV, Capicciotti CJ. Glycosyltransferases as versatile tools to study the biology of glycans. Glycobiology 2023; 33:888-910. [PMID: 37956415 DOI: 10.1093/glycob/cwad092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
All cells are decorated with complex carbohydrate structures called glycans that serve as ligands for glycan-binding proteins (GBPs) to mediate a wide range of biological processes. Understanding the specific functions of glycans is key to advancing an understanding of human health and disease. However, the lack of convenient and accessible tools to study glycan-based interactions has been a defining challenge in glycobiology. Thus, the development of chemical and biochemical strategies to address these limitations has been a rapidly growing area of research. In this review, we describe the use of glycosyltransferases (GTs) as versatile tools to facilitate a greater understanding of the biological roles of glycans. We highlight key examples of how GTs have streamlined the preparation of well-defined complex glycan structures through chemoenzymatic synthesis, with an emphasis on synthetic strategies allowing for site- and branch-specific display of glyco-epitopes. We also describe how GTs have facilitated expansion of glyco-engineering strategies, on both glycoproteins and cell surfaces. Coupled with advancements in bioorthogonal chemistry, GTs have enabled selective glyco-epitope editing of glycoproteins and cells, selective glycan subclass labeling, and the introduction of novel biomolecule functionalities onto cells, including defined oligosaccharides, antibodies, and other proteins. Collectively, these approaches have contributed great insight into the fundamental biological roles of glycans and are enabling their application in drug development and cellular therapies, leaving the field poised for rapid expansion.
Collapse
Affiliation(s)
- Joshua M Kofsky
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Jonathan L Babulic
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
| | - Marie E Boddington
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
| | | | - Chantelle J Capicciotti
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
- Department of Surgery, Queen's University, 76 Stuart Street, Kingston, ON K7L 2V7, Canada
| |
Collapse
|
9
|
Ruocco V, Vavra U, König-Beihammer J, Bolaños−Martínez OC, Kallolimath S, Maresch D, Grünwald-Gruber C, Strasser R. Impact of mutations on the plant-based production of recombinant SARS-CoV-2 RBDs. FRONTIERS IN PLANT SCIENCE 2023; 14:1275228. [PMID: 37868317 PMCID: PMC10588190 DOI: 10.3389/fpls.2023.1275228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
Subunit vaccines based on recombinant viral antigens are valuable interventions to fight existing and evolving viruses and can be produced at large-scale in plant-based expression systems. The recombinant viral antigens are often derived from glycosylated envelope proteins of the virus and glycosylation plays an important role for the immunogenicity by shielding protein epitopes. The receptor-binding domain (RBD) of the SARS-CoV-2 spike is a principal target for vaccine development and has been produced in plants, but the yields of recombinant RBD variants were low and the role of the N-glycosylation in RBD from different SARS-CoV-2 variants of concern is less studied. Here, we investigated the expression and glycosylation of six different RBD variants transiently expressed in leaves of Nicotiana benthamiana. All of the purified RBD variants were functional in terms of receptor binding and displayed almost full N-glycan occupancy at both glycosylation sites with predominately complex N-glycans. Despite the high structural sequence conservation of the RBD variants, we detected a variation in yield which can be attributed to lower expression and differences in unintentional proteolytic processing of the C-terminal polyhistidine tag used for purification. Glycoengineering towards a human-type complex N-glycan profile with core α1,6-fucose, showed that the reactivity of the neutralizing antibody S309 differs depending on the N-glycan profile and the RBD variant.
Collapse
Affiliation(s)
- Valentina Ruocco
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julia König-Beihammer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Omayra C. Bolaños−Martínez
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Somanath Kallolimath
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
10
|
Samanta P, Mishra SK, Pomin VH, Doerksen RJ. Docking and Molecular Dynamics Simulations Clarify Binding Sites for Interactions of Novel Marine Sulfated Glycans with SARS-CoV-2 Spike Glycoprotein. Molecules 2023; 28:6413. [PMID: 37687244 PMCID: PMC10490367 DOI: 10.3390/molecules28176413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The entry of SARS-CoV-2 into the host cell is mediated by its S-glycoprotein (SGP). Sulfated glycans bind to the SGP receptor-binding domain (RBD), which forms a ternary complex with its receptor angiotensin converting enzyme 2. Here, we have conducted a thorough and systematic computational study of the binding of four oligosaccharide building blocks from novel marine sulfated glycans (isolated from Pentacta pygmaea and Isostichopus badionotus) to the non-glycosylated and glycosylated RBD. Blind docking studies using three docking programs identified five potential cryptic binding sites. Extensive site-targeted docking and molecular dynamics simulations using two force fields confirmed only two binding sites (Sites 1 and 5) for these novel, highly charged sulfated glycans, which were also confirmed by previously published reports. This work showed the structural features and key interactions driving ligand binding. A previous study predicted Site 2 to be a potential binding site, which was not observed here. The use of several molecular modeling approaches gave a comprehensive assessment. The detailed comparative study utilizing multiple modeling approaches is the first of its kind for novel glycan-SGP interaction characterization. This study provided insights into the key structural features of these novel glycans as they are considered for development as potential therapeutics.
Collapse
Affiliation(s)
- Priyanka Samanta
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA; (P.S.); (S.K.M.); (V.H.P.)
| | - Sushil K. Mishra
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA; (P.S.); (S.K.M.); (V.H.P.)
| | - Vitor H. Pomin
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA; (P.S.); (S.K.M.); (V.H.P.)
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA
| | - Robert J. Doerksen
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA; (P.S.); (S.K.M.); (V.H.P.)
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA
| |
Collapse
|