1
|
Hang Q, Li W, Guo J, Zuo S, Yang Y, Wu C, Yong W, Li C, Gu J, Hou S. Inhibitory effects of β-galactoside α2,6-sialyltransferase 1 on the Hippo pathway in breast cancer cells. J Biol Chem 2025:110266. [PMID: 40409546 DOI: 10.1016/j.jbc.2025.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 05/01/2025] [Accepted: 05/08/2025] [Indexed: 05/25/2025] Open
Abstract
The Hippo signaling pathway is crucial in pathological functions such as tumors. Yes-associated protein (YAP), a well-known downstream effector of the Hippo pathway, has been intensively studied; emerging evidence suggests that multiple cell membrane receptors can regulate the Hippo pathway. However, the mechanistic roles of these upstream pathways remain largely unknown. Here, we identified the β-galactoside α2,6-sialyltransferase 1 (ST6GAL1) catalyzed α2,6-sialylation as a pivotal upstream modulator of Hippo pathway by a glycosyltransferases (GTs) overexpression sub-library screening. Depletion of ST6GAL1 results in increased phosphorylation of LATS1 and YAP, which induces YAP's nuclear localization, transcriptional activity, and multiple biological functions in breast cancer cells, including cell adhesion, spreading, growth, migration, and metastasis. These phenotypes were majorly due to the altered signal transduction of cell surface receptors, as deletion of ST6GAL1 exhibited attenuated GPCR, EGFR, and Integrins response and suppression of dephosphorylation of YAP. Mechanistically, these representative membrane receptors are α2,6-sialylated proteins, and their α2,6-sialylation could be inhibited by β-galactoside α2,3-sialyltransferase 4 (ST3GAL4) via substrate competition. In addition, the α2,6-sialylation is essential for Integrin β1-EGFR/LPAR4 complex formation. Altogether, our findings demonstrate ST6GAL1 is an upstream negative regulator of the Hippo pathway in breast cancer cells, providing a new insight into the regulation between N-glycosylation and Hippo signaling.
Collapse
Affiliation(s)
- Qinglei Hang
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People's Hospital, Affiliated Hospital of Xuzhou Medical University, Suining, Jiangsu 221200, China; Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan.
| | - Wenqian Li
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Jingya Guo
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Shiying Zuo
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Yawen Yang
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Can Wu
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Wen Yong
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Caimin Li
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan.
| | - Sicong Hou
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, China.
| |
Collapse
|
2
|
GC S, Bellis SL, Hjelmeland AB. ST6Gal1: Oncogenic signaling pathways and targets. Front Mol Biosci 2022; 9:962908. [PMID: 36106023 PMCID: PMC9465715 DOI: 10.3389/fmolb.2022.962908] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
The Golgi-sialyltransferase ST6Gal1 (βgalactosidase α2,6 sialyltransferase 1), adds the negatively charged sugar, sialic acid, to the terminal galactose of N-glycosylated proteins. Upregulation of ST6Gal1 is observed in many malignancies, and a large body of research has determined that ST6Gal1-mediated α2,6 sialylation impacts cancer hallmarks. ST6Gal1 affects oncogenic behaviors including sustained proliferation, enhanced self-renewal, epithelial-to-mesenchymal transition, invasion, and chemoresistance. However, there are relatively few ST6GaL1 related signaling pathways that are well-established to mediate these biologies: greater delineation of specific targets and signaling mechanisms that are orchestrated by ST6Gal1 is needed. The aim of this review is to provide a summary of our current understanding of select oncogenic signaling pathways and targets affected by ST6Gal1.
Collapse
Affiliation(s)
| | | | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Glycobiology of the Epithelial to Mesenchymal Transition. Biomedicines 2021; 9:biomedicines9070770. [PMID: 34356834 PMCID: PMC8301408 DOI: 10.3390/biomedicines9070770] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Glycosylation consists in the covalent, enzyme mediated, attachment of sugar chains to proteins and lipids. A large proportion of membrane and secreted proteins are indeed glycoproteins, while glycolipids are fundamental component of cell membranes. The biosynthesis of sugar chains is mediated by glycosyltransferases, whose level of expression represents a major factor of regulation of the glycosylation process. In cancer, glycosylation undergoes profound changes, which often contribute to invasion and metastasis. Epithelial to mesenchymal transition (EMT) is a key step in metastasis formation and is intimately associated with glycosylation changes. Numerous carbohydrate structures undergo up- or down-regulation during EMT and often regulate the process. In this review, we will discuss the relationship with EMT of the N-glycans, of the different types of O-glycans, including the classical mucin-type, O-GlcNAc, O-linked fucose, O-linked mannose and of glycolipids. Finally, we will discuss the role in EMT of galectins, a major class of mammalian galactoside-binding lectins. While the expression of specific carbohydrate structures can be used as a marker of EMT and of the propensity to migrate, the manipulation of the glycosylation machinery offers new perspectives for cancer treatment through inhibition of EMT.
Collapse
|
4
|
Dorsett KA, Marciel MP, Hwang J, Ankenbauer KE, Bhalerao N, Bellis SL. Regulation of ST6GAL1 sialyltransferase expression in cancer cells. Glycobiology 2020; 31:530-539. [PMID: 33320246 DOI: 10.1093/glycob/cwaa110] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/07/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
The ST6GAL1 sialyltransferase, which adds α2-6 linked sialic acids to N-glycosylated proteins, is overexpressed in a wide range of human malignancies. Recent studies have established the importance of ST6GAL1 in promoting tumor cell behaviors such as invasion, resistance to cell stress and chemoresistance. Furthermore, ST6GAL1 activity has been implicated in imparting cancer stem cell characteristics. However, despite the burgeoning interest in the role of ST6GAL1 in the phenotypic features of tumor cells, insufficient attention has been paid to the molecular mechanisms responsible for ST6GAL1 upregulation during neoplastic transformation. Evidence suggests that these mechanisms are multifactorial, encompassing genetic, epigenetic, transcriptional and posttranslational regulation. The purpose of this review is to summarize current knowledge regarding the molecular events that drive enriched ST6GAL1 expression in cancer cells.
Collapse
Affiliation(s)
- Kaitlyn A Dorsett
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael P Marciel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katherine E Ankenbauer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nikita Bhalerao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Venturi G, Gomes Ferreira I, Pucci M, Ferracin M, Malagolini N, Chiricolo M, Dall'Olio F. Impact of sialyltransferase ST6GAL1 overexpression on different colon cancer cell types. Glycobiology 2020; 29:684-695. [PMID: 31317190 DOI: 10.1093/glycob/cwz053] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer-associated glycan structures can be both tumor markers and engines of disease progression. The structure Siaα2,6Galβ1,4GlcNAc (Sia6LacNAc), synthesized by sialyltransferase ST6GAL1, is a cancer-associated glycan. Although ST6GAL1/Sia6LacNAc are often overexpressed in colorectal cancer (CRC), their biological and clinical significance remains unclear. To get insights into the clinical relevance of ST6GAL1 expression in CRC, we interrogated The Cancer Genome Atlas with mRNA expression data of hundreds of clinically characterized CRC and normal samples. We found an association of low ST6GAL1 expression with microsatellite instability (MSI), BRAF mutations and mucinous phenotype but not with stage, response to therapy and survival. To investigate the impact of ST6GAL1 expression in experimental systems, we analyzed the transcriptome and the phenotype of the CRC cell lines SW948 and SW48 after retroviral transduction with ST6GAL1 cDNA. The two cell lines display the two main pathways of CRC transformation: chromosomal instability and MSI, respectively. Constitutive ST6GAL1 expression induced much deeper transcriptomic changes in SW948 than in SW48 and affected different genes in the two cell lines. ST6GAL1 expression affected differentially the tyrosine phosphorylation induced by hepatocyte growth factor, the ability to grow in soft agar, to heal a scratch wound and to invade Matrigel in the two cell lines. These results indicate that the altered expression of a cancer-associated glycosyltransferase impacts the gene expression profile, as well as the phenotype, although in a cancer subtype-specific manner.
Collapse
Affiliation(s)
- Giulia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Inês Gomes Ferreira
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Michela Pucci
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Mariella Chiricolo
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| |
Collapse
|
6
|
Abstract
Carbohydrates or glycans and their conjugates are involved in a wide range of biological processes and play an important role in various diseases, including inflammation, viral and bacterial infections, and tumor progression and metastasis. Studying the biological significances of carbohydrates has been challenging due in part to their structural diversity and the limited access to complex carbohydrate-containing molecules. Conventional methods such as isothermal titration calorimetry and enzyme-linked lectin assay can be laborious and require significant amounts of time and materials. The emerging of glycan microarrays as high-throughput technology for studying carbohydrate interactions has overcome some of these challenges, and has greatly contributed to our understanding of the biological roles of carbohydrates and their glycoconjugates. In addition, glycan microarrays offer new applications in biomedical research, drug discovery and development. This chapter will focus on the biomedical applications of glycan microarrays and their potential role in drug discovery and development.
Collapse
|
7
|
Suzuki O. Glycosylation in lymphoma: Biology and glycotherapy. Pathol Int 2019; 69:441-449. [PMID: 31317621 PMCID: PMC6852584 DOI: 10.1111/pin.12834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/03/2019] [Indexed: 12/30/2022]
Abstract
Research using mouse lymphoma cell lines has resulted in many reports of glycosylation being a key regulator for the distant metastasis of mouse lymphoma cells in animal models. In contrast, there are only a few reports of experiments examining human lymphoma cell metastasis. The glycosylation pattern in human lymphoma shows that loss of Phaseolus vulgaris leukoagglutinating lectin (L-PHA) reactive oligosaccharides, and sialylation of L-PHA reactive oligosaccharides, are closely associated with a worse prognosis for diffuse large B cell lymphoma (DLBCL) patients. Sialic acid is related to cell adhesion to the extracellular matrix and metastasis of HBL-8 Burkitt lymphoma cells in a severe combined immunodeficiency (SCID) mouse animal model. In HBL-8 clones, differential cell surface sialylation was due to different expression levels of UDP-GlcNAc 2-epimerase (GNE). Knockdown of beta-galactoside alpha-2,6-sialyltransferase (ST6Gal1) resulted in enhanced lymphoma cell adhesion to galectin-1 in anaplastic large cell lymphoma cell line, H-ALCL. A fluorinated sialic acid analogue was shown to be useful for inhibiting sialyltransferase and may provide a new glycoengineering strategy for desialylation, as well as inhibiting invasion and metastasis and inducing cell death in lymphoma cell lines. This paper discusses glycosylation and sialylation in human lymphoma, and several glycoengineering therapeutic strategies for lymphoma.
Collapse
Affiliation(s)
- Osamu Suzuki
- Department of Diagnostic Pathology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
8
|
Garnham R, Scott E, Livermore KE, Munkley J. ST6GAL1: A key player in cancer. Oncol Lett 2019; 18:983-989. [PMID: 31423157 PMCID: PMC6607188 DOI: 10.3892/ol.2019.10458] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
Aberrant glycosylation is a universal feature of cancer cells and there is now overwhelming evidence that glycans can modulate pathways intrinsic to tumour cell biology. Glycans are important in all of the cancer hallmarks and there is a renewed interest in the glycomic profiling of tumours to improve early diagnosis, determine patient prognosis and identify targets for therapeutic intervention. One of the most widely occurring cancer associated changes in glycosylation is abnormal sialylation which is often accompanied by changes in sialyltransferase activity. Several sialyltransferases are implicated in cancer, but in recent years ST6 β-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) has become increasingly dominant in the literature. ST6GAL1 catalyses the addition of α2,6-linked sialic acids to terminal N-glycans and can modify glycoproteins and/or glycolipids. ST6GAL1 is upregulated in numerous types of cancer (including pancreatic, prostate, breast and ovarian cancer) and can promote growth, survival and metastasis. The present review discusses ST6GAL in relation to the hallmarks of cancer, and highlights its key role in multiple mechanisms intrinsic to tumour cell biology.
Collapse
Affiliation(s)
- Rebecca Garnham
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 3BZ, UK
| | - Emma Scott
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 3BZ, UK
| | - Karen E Livermore
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 3BZ, UK
| | - Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 3BZ, UK
| |
Collapse
|
9
|
Mariño-Crespo Ó, Fernández-Briera A, Gil-Martín E. Identification of proteins with the CDw75 epitope in human colorectal cancer. Oncol Lett 2018; 15:580-587. [PMID: 29391890 DOI: 10.3892/ol.2017.7336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/28/2017] [Indexed: 11/05/2022] Open
Abstract
The CDw75 epitope is an α(2,6) sialylated antigen overexpressed in colorectal cancer (CRC), where its expression correlates with the progression of the disease. The CDw75 epitope is located mainly in N-glycoproteins, whose identity remains unknown. The aim of the present study was to identify proteins with the CDw75 epitope as a strategy to deepen the understanding of molecular pathogenesis of CRC and to identify novel biomarkers for this disease. For this purpose, a two-dimensional electrophoresis approach was employed. Protein spots in the gels were matched to the corresponding CDw75 positive spots in the immunoblotted polyvinylidene difluoride membranes, and further identification of the protein species was performed by mass spectrometry. Additionally, one-dimensional western blotting experiments were performed to verify the expression of these candidate proteins in the colorectal tissue and their coincidence in molecular mass with the CDw75-positive bands. The findings of the present study indicate that haptoglobin and the keratins 8 (K8) and 18 (K18) are proteins with the CDw75 epitope in the colorectal tissue from CRC patients and also suggest novel functions and cellular locations for these proteins in the colorectal tissue and in relation to CRC.
Collapse
Affiliation(s)
- Óscar Mariño-Crespo
- Department of Biochemistry, Genetics and Immunology, Biomedical Research Center (CINBIO, 'Centro Singular de Investigación de Galicia'), University of Vigo, 36310 Vigo, Spain
| | - Almudena Fernández-Briera
- Department of Biochemistry, Genetics and Immunology, Biomedical Research Center (CINBIO, 'Centro Singular de Investigación de Galicia'), University of Vigo, 36310 Vigo, Spain
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Biomedical Research Center (CINBIO, 'Centro Singular de Investigación de Galicia'), University of Vigo, 36310 Vigo, Spain
| |
Collapse
|
10
|
de Freitas Junior JCM, Morgado-Díaz JA. The role of N-glycans in colorectal cancer progression: potential biomarkers and therapeutic applications. Oncotarget 2017; 7:19395-413. [PMID: 26539643 PMCID: PMC4991391 DOI: 10.18632/oncotarget.6283] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Abstract
Changes in glycosylation, which is one of the most common protein post-translational modifications, are considered to be a hallmark of cancer. N-glycans can modulate cell migration, cell-cell adhesion, cell signaling, growth and metastasis. The colorectal cancer (CRC) is a leading cause of cancer-related mortality and the correlation between CRC progression and changes in the pattern of expression of N-glycans is being considered in the search for new biomarkers. Here, we review the role of N-glycans in CRC cell biology. The perspectives on emerging N-glycan-related anticancer therapies, along with new insights and challenges, are also discussed.
Collapse
Affiliation(s)
| | - José Andrés Morgado-Díaz
- Cellular Biology Program, Structural Biology Group, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
11
|
Jung YR, Park JJ, Jin YB, Cao YJ, Park MJ, Kim EJ, Lee M. Silencing of ST6Gal I enhances colorectal cancer metastasis by down-regulating KAI1 via exosome-mediated exportation and thereby rescues integrin signaling. Carcinogenesis 2016; 37:1089-1097. [PMID: 27559112 DOI: 10.1093/carcin/bgw091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 07/31/2016] [Accepted: 08/20/2016] [Indexed: 12/24/2022] Open
Abstract
Aberrant sialylation has long been correlated with human cancer. Increased ST6 Gal I (β-galactoside α 2, 6 sialyltransferase) and consequently higher levels of cell-surface α 2, 6 sialylation has been associated with human colorectal cancer (CRC) metastasis. We have extensive circumstantial data that sialylation is connected to cancer metastasis, but we do not understand in detail how sialylation can switch on/off multiple steps in cancer metastasis. To investigate the molecular mechanism underlying the ST6Gal I-mediated metastasis of CRC, we silenced the ST6Gal I gene in a metastatic SW620 CRC cell line (SW620-shST6Gal I) and examined the metastatic behavior of the cells. We found that various hallmarks of metastatic ability were considerably enhanced in ST6Gal 1-depleted SW620 clones, as assessed both in vitro and in vivo . In particular, the metastasis suppressor, KAI1, was down-regulated in ST6Gal I-deficient SW620 clones. This reflected the increased exosome-mediated exportation of KAI1, and was associated with a decrease in the KAI1-mediated inhibition of integrin. These findings indicate that gene silencing of ST6Gal I could enhance metastasis of CRC by down-regulating KAI1 activity and rescuing its negative effects on integrin signaling.
Collapse
Affiliation(s)
| | - Jung-Jin Park
- Department of Biochemistry and Medical Research Center , College of Medicine , Chungbuk National University , Cheongju 28644 , Republic of Korea
| | - Yeung Bae Jin
- National Primate Research Center , Korea Research Institute of Bioscience and Biotechnology , Cheongju 28116 , Republic of Korea
| | - Yuan Jie Cao
- Department of Radiation Oncology , Tianjin Medical University Cancer Institute and Hospital , National Clinical Research Center for Cancer and Tianjin Key laboratory of Cancer Prevention and Therapy , Huan-Hu-Xi Road , Ti-Yuan-Bei , He Xi District , Tianjin 300060 , P.R. China and
| | - Myung-Jin Park
- Division of Radiation Cancer Research , Korea Institute of Radiological and Medical Sciences , Seoul 01812 , Republic of Korea
| | | | | |
Collapse
|
12
|
Haugstad KE, Hadjialirezaei S, Stokke BT, Brewer CF, Gerken TA, Burchell J, Picco G, Sletmoen M. Interactions of mucins with the Tn or Sialyl Tn cancer antigens including MUC1 are due to GalNAc-GalNAc interactions. Glycobiology 2016; 26:1338-1350. [PMID: 27282157 DOI: 10.1093/glycob/cww065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 01/04/2023] Open
Abstract
The molecular mechanism(s) underlying the enhanced self-interactions of mucins possessing the Tn (GalNAcα1-Ser/Thr) or STn (NeuNAcα2-6GalNAcα1-Ser/Thr) cancer markers were investigated using optical tweezers (OT). The mucins examined included modified porcine submaxillary mucin containing the Tn epitope (Tn-PSM), ovine submaxillary mucin with the STn epitope (STn-OSM), and recombinant MUC1 analogs with either the Tn and STn epitope. OT experiments in which the mucins were immobilized onto polystyrene beads revealed identical self-interaction characteristics for all mucins. Identical binding strength and energy landscape characteristics were also observed for synthetic polymers displaying multiple GalNAc decorations. Polystyrene beads without immobilized mucins showed no self-interactions and also no interactions with mucin-decorated polystyrene beads. Taken together, the experimental data suggest that in these molecules, the GalNAc residue mediates interactions independent of the anchoring polymer backbone. Furthermore, GalNAc-GalNAc interactions appear to be responsible for self-interactions of mucins decorated with the STn epitope. Hence, Tn-MUC1 and STn-MUC1 undergo self-interactions mediated by the GalNAc residue in both epitopes, suggesting a possible molecular role in cancer. MUC1 possessing the T (Galβ1-3GalNAcα1-Ser/Thr) or ST antigen (NeuNAcα2-3Galβ1-3GalNAcα1-Ser/Thr) failed to show self-interactions. However, in the case of ST-MUC1, self-interactions were observed after subsequent treatment with neuraminidase and β-galactosidase. This enzymatic treatment is expected to introduce Tn-epitopes and these observations thus further strengthen the conclusion that the observed interactions are mediated by the GalNAc groups.
Collapse
Affiliation(s)
- Kristin E Haugstad
- Department of Physics, Biophysics and Medical Technology, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Soosan Hadjialirezaei
- Department of Physics, Biophysics and Medical Technology, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Bjørn T Stokke
- Department of Physics, Biophysics and Medical Technology, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - C Fred Brewer
- Departments of Molecular Pharmacology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Thomas A Gerken
- Departments of Pediatrics, Biochemistry and Chemistry, W. A. Bernbaum Center for Cystic Fibrosis Research, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4948, USA
| | - Joy Burchell
- Breast Cancer Biology, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Gianfranco Picco
- Breast Cancer Biology, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Marit Sletmoen
- Department of Biotechnology, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
13
|
Arsenite Regulates Prolongation of Glycan Residues of Membrane Glycoprotein: A Pivotal Study via Wax Physisorption Kinetics and FTIR Imaging. Int J Mol Sci 2016; 17:427. [PMID: 27011183 PMCID: PMC4813277 DOI: 10.3390/ijms17030427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
Arsenic exposure results in several human cancers, including those of the skin, lung, and bladder. As skin cancers are the most common form, epidermal keratinocytes (KC) are the main target of arsenic exposure. The mechanisms by which arsenic induces carcinogenesis remains unclear, but aberrant cell proliferation and dysregulated energy homeostasis play a significant role. Protein glycosylation is involved in many key physiological processes, including cell proliferation and differentiation. To evaluate whether arsenite exposure affected protein glycosylation, the alteration of chain length of glycan residues in arsenite treated skin cells was estimated. Herein we demonstrated that the protein glycosylation was adenosine triphosphate (ATP)-dependent and regulated by arsenite exposure by using Fourier transform infrared (FTIR) reflectance spectroscopy, synchrotron-radiation-based FTIR (SR-FTIR) microspectroscopy, and wax physisorption kinetics coupled with focal-plane-array-based FTIR (WPK-FPA-FTIR) imaging. We were able to estimate the relative length of surface protein-linked glycan residues on arsenite-treated skin cells, including primary KC and two skin cancer cell lines, HSC-1 and HaCaT cells. Differential physisorption of wax adsorbents adhered to long-chain (elongated type) and short-chain (regular type) glycan residues of glycoprotein of skin cell samples treated with various concentration of arsenite was measured. The physisorption ratio of beeswax remain/n-pentacosane remain for KC cells was increased during arsenite exposure. Interestingly, this increase was reversed after oligomycin (an ATP synthase inhibitor) pretreatment, suggesting the chain length of protein-linked glycan residues is likely ATP-dependent. This is the first study to demonstrate the elongation and termination of surface protein-linked glycan residues using WPK-FPA-FTIR imaging in eukaryotes. Herein the result may provide a scientific basis to target surface protein-linked glycan residues in the process of arsenic carcinogenesis.
Collapse
|
14
|
Mereiter S, Magalhães A, Adamczyk B, Jin C, Almeida A, Drici L, Ibáñez-Vea M, Gomes C, Ferreira JA, Afonso LP, Santos LL, Larsen MR, Kolarich D, Karlsson NG, Reis CA. Glycomic analysis of gastric carcinoma cells discloses glycans as modulators of RON receptor tyrosine kinase activation in cancer. Biochim Biophys Acta Gen Subj 2015; 1860:1795-808. [PMID: 26721331 DOI: 10.1016/j.bbagen.2015.12.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Terminal α2-3 and α2-6 sialylation of glycans precludes further chain elongation, leading to the biosynthesis of cancer relevant epitopes such as sialyl-Lewis X (SLe(X)). SLe(X) overexpression is associated with tumor aggressive phenotype and patients' poor prognosis. METHODS MKN45 gastric carcinoma cells transfected with the sialyltransferase ST3GAL4 were established as a model overexpressing sialylated terminal glycans. We have evaluated at the structural level the glycome and the sialoproteome of this gastric cancer cell line applying liquid chromatography and mass spectrometry. We further validated an identified target expression by proximity ligation assay in gastric tumors. RESULTS Our results showed that ST3GAL4 overexpression leads to several glycosylation alterations, including reduced O-glycan extension and decreased bisected and increased branched N-glycans. A shift from α2-6 towards α2-3 linked sialylated N-glycans was also observed. Sialoproteomic analysis further identified 47 proteins with significantly increased sialylated N-glycans. These included integrins, insulin receptor, carcinoembryonic antigens and RON receptor tyrosine kinase, which are proteins known to be key players in malignancy. Further analysis of RON confirmed its modification with SLe(X) and the concomitant activation. SLe(X) and RON co-expression was validated in gastric tumors. CONCLUSION The overexpression of ST3GAL4 interferes with the overall glycophenotype of cancer cells affecting a multitude of key proteins involved in malignancy. Aberrant glycosylation of the RON receptor was shown as an alternative mechanism of oncogenic activation. GENERAL SIGNIFICANCE This study provides novel targets and points to an integrative tumor glycomic/proteomic-profiling for gastric cancer patients' stratification. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Stefan Mereiter
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto - IPATIMUP, Porto, Portugal; Institute of Biomedical Sciences of Abel Salazar - ICBAS, University of Porto, Portugal
| | - Ana Magalhães
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto - IPATIMUP, Porto, Portugal
| | - Barbara Adamczyk
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Andreia Almeida
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; Free University Berlin, Berlin, Germany
| | - Lylia Drici
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Maria Ibáñez-Vea
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Catarina Gomes
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto - IPATIMUP, Porto, Portugal
| | - José A Ferreira
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto - IPATIMUP, Porto, Portugal; Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology of Porto, Portugal
| | - Luis P Afonso
- Department of Pathology, Portuguese Institute of Oncology of Porto, Portugal
| | - Lúcio L Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology of Porto, Portugal; Department of Surgical Oncology, Portuguese Institute of Oncology of Porto, Portugal
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Celso A Reis
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto - IPATIMUP, Porto, Portugal; Institute of Biomedical Sciences of Abel Salazar - ICBAS, University of Porto, Portugal; Medical Faculty, University of Porto, Portugal.
| |
Collapse
|
15
|
Lu J, Gu J. Significance of β-Galactoside α2,6 Sialyltranferase 1 in Cancers. Molecules 2015; 20:7509-27. [PMID: 25919275 PMCID: PMC6272632 DOI: 10.3390/molecules20057509] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 12/16/2022] Open
Abstract
Altered glycosylation is a common feature of cancer cells. It takes a variety of forms, which includes loss of expression or excessive expression of some structures, the accumulation of precursors, the appearance of novel structures, etc. Notably, these changes in glycan structure do not occur as a random consequence of disorder biology. Only a limited subset of oligosaccharides is found frequently enriched on the tumor cell surface and implicated in different tumor phenotypes. Among these, altered sialylation has long been associated with metastatic cell behaviors such as invasion and enhanced cell survival and accumulating evidence points to the alteration occurring in the sialic acid linkage to other sugars, which normally exists in three main configurations: α2,3, α2,6, and α2,8, catalyzed by a group of sialyltransferases. The aberrant expression of all three configurations has been described in cancer progression. However, the increased α2,6 sialylation catalyzed by β-galactoside α2,6 sialyltranferase 1 (ST6Gal I) is frequently observed in many types of the cancers. In this review, we describe the findings on the role of ST6Gal I in cancer progression, and highlight in particular the knowledge of how ST6Gal I-mediated α2,6 sialylated glycans or sialylated carrier proteins regulate cell signaling to promote the malignant phenotype of human carcinoma.
Collapse
Affiliation(s)
- Jishun Lu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi 981-8558, Japan.
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi 981-8558, Japan.
| |
Collapse
|
16
|
Isaji T, Im S, Gu W, Wang Y, Hang Q, Lu J, Fukuda T, Hashii N, Takakura D, Kawasaki N, Miyoshi H, Gu J. An oncogenic protein Golgi phosphoprotein 3 up-regulates cell migration via sialylation. J Biol Chem 2015; 289:20694-705. [PMID: 24895123 DOI: 10.1074/jbc.m113.542688] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, the Golgi phosphoprotein 3 (GOLPH3) and its yeast homolog Vps74p have been characterized as essential for the Golgi localization of glycosyltransferase in yeast. GOLPH3 has been identified as a new oncogene that is commonly amplified in human cancers to modulate mammalian target of rapamycin signaling. However, the molecular mechanisms of the carcinogenic signaling pathway remain largely unclear. To investigate whether the expression of GOLPH3 was involved in the glycosylation processes in mammalian cells, and whether it affected cell behavior, we performed a loss-of-function study. Cell migration was suppressed in GOLPH3 knockdown (KD) cells, and the suppression was restored by a re-introduction of the GOLPH3 gene. HPLC and LC/MS analysis showed that the sialylation of N-glycans was specifically decreased in KD cells. The specific interaction between sialyltransferases and GOLPH3 was important for the sialylation. Furthermore, overexpression of α2,6-sialyltransferase-I rescued cell migration and cellular signaling, both of which were blocked in GOLPH3 knockdown cells. These results are the first direct demonstration of the role of GOLPH3 in N-glycosylation to regulate cell biological functions.
Collapse
|
17
|
Haugstad KE, Stokke BT, Brewer CF, Gerken TA, Sletmoen M. Single molecule study of heterotypic interactions between mucins possessing the Tn cancer antigen. Glycobiology 2014; 25:524-34. [PMID: 25527429 DOI: 10.1093/glycob/cwu183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mucins are linear, heavily O-glycosylated proteins with physiological roles that include cell signaling, cell adhesion, inflammation, immune response and tumorgenesis. Cancer-associated mucins often differ from normal mucins by presenting truncated carbohydrate chains. Characterization of the binding properties of mucins with truncated carbohydrate side chains could thus prove relevant for understanding their role in cancer mechanisms such as metastasis and recognition by the immune system. In this work, heterotypic interactions of model mucins that possess the Tn (GalNAcαThr/Ser) and T (Galβ1-3GalNAcαThr/Ser) cancer antigens derived from porcine submaxillary mucin (PSM) were studied using atomic force microscopy. PSM possessing only the Tn antigen (Tn-PSM) was found to bind to PSM analogs possessing a combination of T, Tn and STn antigens as well as biosynthetic analogs of the core 1 blood group A tetrasaccharide (GalNAcα1-3[Fucα1-2] Galβ1-3GalNAcαSer/Thr). The rupture forces for the heterotypic interactions ranged from 18- to 31 pN at a force-loading rate of ∼0.5 nN/s. The thermally averaged distance from the bound complex to the transition state (xβ) was estimated to be in the range 0.37-0.87 nm for the first barrier of the Bell Evans analysis and within 0.34-0.64 nm based on a lifetime analysis. These findings reveal that the binding strength and energy landscape for heterotypic interactions of Tn-PSM with the above mucins, resemble homotypic interactions of Tn-PSM. This suggests common carbohydrate epitope interactions for the Tn cancer antigen with the above mucin analogs, a finding that may be important to the role of the Tn antigen in cancer cells.
Collapse
Affiliation(s)
- Kristin E Haugstad
- Department of Physics, Biophysics and Medical Technology, The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Bjørn T Stokke
- Department of Physics, Biophysics and Medical Technology, The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - C Fred Brewer
- Department of Molecular Pharmacology Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Thomas A Gerken
- W.A. Bernbaum Center for Cystic Fibrosis Research, Departments of Pediatrics, Biochemistry and Chemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4948, USA
| | - Marit Sletmoen
- Department of Physics, Biophysics and Medical Technology, The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| |
Collapse
|
18
|
Dall'Olio F, Malagolini N, Trinchera M, Chiricolo M. Sialosignaling: Sialyltransferases as engines of self-fueling loops in cancer progression. Biochim Biophys Acta Gen Subj 2014; 1840:2752-64. [PMID: 24949982 DOI: 10.1016/j.bbagen.2014.06.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/13/2014] [Accepted: 06/10/2014] [Indexed: 02/03/2023]
|
19
|
Wang X, Chen J, Li QK, Peskoe SB, Zhang B, Choi C, Platz EA, Zhang H. Overexpression of α (1,6) fucosyltransferase associated with aggressive prostate cancer. Glycobiology 2014; 24:935-44. [PMID: 24906821 DOI: 10.1093/glycob/cwu051] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aberrant protein glycosylation is known to be associated with the development of cancers. The aberrant glycans are produced by the combined actions of changed glycosylation enzymes, substrates and transporters in glycosylation synthesis pathways in cancer cells. To identify glycosylation enzymes associated with aggressive prostate cancer (PCa), we analyzed the difference in the expression of glycosyltransferase genes between aggressive and non-aggressive PCa. Three candidate genes encoding glycosyltransferases that were elevated in aggressive PCa were subsequently selected. The expression of the three candidates was then further evaluated in androgen-dependent (LNCaP) and androgen-independent (PC3) PCa cell lines. We found that the protein expression of one of the glycosyltransferases, α (1,6) fucosyltransferase (FUT8), was only detected in PC3 cells, but not in LNCaP cells. We further showed that FUT8 protein expression was elevated in metastatic PCa tissues compared to normal prostate tissues. In addition, using tissue microarrays, we found that FUT8 overexpression was statistically associated with PCa with a high Gleason score. Using PC3 and LNCaP cells as models, we found that FUT8 overexpression in LNCaP cells increased PCa cell migration, while loss of FUT8 in PC3 cells decreased cell motility. Our results suggest that FUT8 may be associated with aggressive PCa and thus is potentially useful for its prognosis.
Collapse
Affiliation(s)
- Xiangchun Wang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Jing Chen
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Sarah B Peskoe
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bai Zhang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Caitlin Choi
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA The James Buchanan Brady Urological Institute and the Sidney Comprehensive Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| |
Collapse
|
20
|
Inagaki Y, Gao J, Song P, Kokudo N, Nakata M, Tang W. Clinicopathological utility of sialoglycoconjugates in diagnosing and treating colorectal cancer. World J Gastroenterol 2014; 20:6123-6132. [PMID: 24876734 PMCID: PMC4033451 DOI: 10.3748/wjg.v20.i20.6123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/30/2013] [Accepted: 02/17/2014] [Indexed: 02/06/2023] Open
Abstract
Aberrant expression of glycoconjugates occurs during malignant transformation of cancer cells. Overexpression of sialoglycoconjugates in particular may play an important role in the progression, i.e., invasion or metastasis, of cancer. Various types of sialoglycoconjugates have been investigated to clarify their biological significance and clinical utility in diagnosing and treating colorectal cancer. This review focuses specifically on expression of mucin (MUC) 1 and it suggests that MUC1 with the specific structure of a sialo-oligosaccharide has biological significance in determining the metastatic potential of colorectal cancer cells and clinicopathological utility in evaluating the effectiveness of treatments and the prognosis for patients with colorectal cancer. Further studies are expected to contribute to the expanded use of cancer-associated sialoglycoconjugates in cancer diagnosis and therapy.
Collapse
|
21
|
Malagolini N, Catera M, Osorio H, Reis CA, Chiricolo M, Dall'Olio F. Apoptotic cells selectively uptake minor glycoforms of vitronectin from serum. Apoptosis 2014; 18:373-84. [PMID: 23381642 DOI: 10.1007/s10495-013-0812-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apoptosis profoundly alters the carbohydrate layer coating the membrane of eukaryotic cells. Previously we showed that apoptotic cells became reactive with the α2,6-sialyl-specific lectin from Sambucus nigra agglutinin (SNA), regardless of their histological origin and the nature of the apoptotic stimulus. Here we reveal the basis of the phenomenon by showing that in apoptotic cancer cell lines SNA reactivity was mainly associated with a 67 kDa glycoprotein which we identified by MALDI-TOF/TOF and immunoblot analysis as bovine vitronectin (bVN). bVN was neither present in non-apoptotic cells, nor in cells induced to apoptosis in serum-free medium, indicating that its uptake from the cell culture serum occurred only during apoptosis. The bVN molecules associated with apoptotic cancer cell lines represented minor isoforms, lacking the carboxyterminal sequence and paradoxically containing a few α2,6-linked sialic acid residues. Despite their poor α2,6-sialylation, these bVN molecules were sufficient to turn apoptotic cells to SNA reactivity, which is a late apoptotic event occurring in cells positive to both annexin-V and propidium iodide. Unlike in cancer cell lines, the major bVN form taken up by apoptotic neutrophils and mononuclear cells was a 80 kDa form. In apoptotic SW948 cells we also detected the α2,6-sialylated forms of the stress-70 mitochondrial precursor (mortalin) and of tubulin-β2C. These data indicate that the acquisition of vitronectin isoforms from the environment is a general, although cell specific phenomenon, potentially playing an important role in post-apoptotic events and that the α2,6-sialylation of intracellular proteins is a new kind of posttranslational modification associated with apoptosis.
Collapse
Affiliation(s)
- Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Cell surface sialic acid modulates extracellular matrix adhesion and migration in pancreatic adenocarcinoma cells. Pancreas 2014; 43:109-17. [PMID: 23921962 DOI: 10.1097/mpa.0b013e31829d9090] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Tumor cells modulate their extracellular matrix (ECM) adhesion and migration to become more metastatic. Moreover, they show an increase in sialic acid, which could have an effect on their ECM adhesion and migration. This work describes the influence of pancreatic adenocarcinoma cell surface α2,3- and α2,6-sialic acid determinants on the aforementioned processes. METHODS We have characterized the cell surface α2,3- and α2,6-sialic acids, and sialyl-Lewis x levels and the integrin levels of 2 pancreatic adenocarcinoma cell lines, Capan-1 and MDAPanc-28, grown at different cell densities, and also of the ST3Gal III overexpressing Capan-1 cells, C31. We have measured their adhesion to several ECM proteins and their migration through collagen with and without blocking their sialic acid determinants. RESULTS Adhesion to ECM proteins of Capan-1 and MDAPanc-28 grown at different cell densities, and of C31, depended on their cell surface sialic acid determinants repertoire, correlating the higher α2,6-sialic acid levels with their increased ECM adhesion. Cell migration also depended on their sialic acid determinants expression; and in this case, higher α2,3-sialic acid levels correlated with a more migratory phenotype. CONCLUSION This study shows how the intrinsic heterogeneity of cell membrane sialylation regulates the adhesive and migratory potential of pancreatic adenocarcinoma cells.
Collapse
|
23
|
Park JJ, Lee M. Increasing the α 2, 6 sialylation of glycoproteins may contribute to metastatic spread and therapeutic resistance in colorectal cancer. Gut Liver 2013; 7:629-41. [PMID: 24312702 PMCID: PMC3848550 DOI: 10.5009/gnl.2013.7.6.629] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 12/13/2022] Open
Abstract
Abnormal glycosylation due to dysregulated glycosyltransferases and glycosidases is a key phenomenon of many malignancies, including colorectal cancer (CRC). In particular, increased ST6 Gal I (β-galactoside α 2, 6 sialyltransferase) and subsequently elevated levels of cell-surface α 2, 6-linked sialic acids have been associated with metastasis and therapeutic failure in CRC. As many CRC patients experience metastasis to the liver or lung and fail to respond to curative therapies, intensive research efforts have sought to identify the molecular changes underlying CRC metastasis. ST6 Gal I has been shown to facilitate CRC metastasis, and we believe that additional investigations into the involvement of ST6 Gal I in CRC could facilitate the development of new diagnostic and therapeutic targets. This review summarizes how ST6 Gal I has been implicated in the altered expression of sialylated glycoproteins, which have been linked to CRC metastasis, radioresistance, and chemoresistance.
Collapse
Affiliation(s)
- Jung-Jin Park
- Division of Life Science, Korea University College of Life Sciences and Biotechnology, Seoul, Korea
| | | |
Collapse
|
24
|
Madsen CB, Lavrsen K, Steentoft C, Vester-Christensen MB, Clausen H, Wandall HH, Pedersen AE. Glycan elongation beyond the mucin associated Tn antigen protects tumor cells from immune-mediated killing. PLoS One 2013; 8:e72413. [PMID: 24039759 PMCID: PMC3765166 DOI: 10.1371/journal.pone.0072413] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 07/16/2013] [Indexed: 11/18/2022] Open
Abstract
Membrane bound mucins are up-regulated and aberrantly glycosylated during malignant transformation in many cancer cells. This results in a negatively charged glycoprotein coat which may protect cancer cells from immune surveillance. However, only limited data have so far demonstrated the critical steps in glycan elongation that make aberrantly glycosylated mucins affect the interaction between cancer cells and cytotoxic effector cells of the immune system. Tn (GalNAc-Ser/Thr), STn (NeuAcα2-6GalNAc-Ser/Thr), T (Galβ1–3GalNAc-Ser/Thr), and ST (NeuAcα2-6Galβ1–3GalNAc-Ser/Thr) antigens are recognized as cancer associated truncated glycans, and are expressed in many adenocarcinomas, e.g. breast- and pancreatic cancer cells. To investigate the role of the cancer associated glycan truncations in immune-mediated killing we created glyco-engineered breast- and pancreatic cancer cells expressing only the shortest possible mucin-like glycans (Tn and STn). Glyco-engineering was performed by zinc finger nuclease (ZFN) knockout (KO) of the Core 1 enzyme chaperone COSMC, thereby preventing glycan elongation beyond the initial GalNAc residue in O-linked glycans. We find that COSMC KO in the breast and pancreatic cancer cell lines T47D and Capan-1 increases sensitivity to both NK cell mediated antibody-dependent cellular-cytotoxicity (ADCC) and cytotoxic T lymphocyte (CTL)-mediated killing. In addition, we investigated the association between total cell surface expression of MUC1/MUC16 and NK or CTL mediated killing, and observed an inverse correlation between MUC16/MUC1 expression and the sensitivity to ADCC and CTL-mediated killing. Together, these data suggest that up-regulation of membrane bound mucins protects cells from immune mediated killing, and that particular glycosylation steps, as demonstrated for glycan elongation beyond Tn and STn, can be important for fine tuning of the immune escape mechanisms in cancer cells.
Collapse
Affiliation(s)
- Caroline B. Madsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine Lavrsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Catharina Steentoft
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malene B. Vester-Christensen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans H. Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (HHW); (AEP)
| | - Anders Elm Pedersen
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (HHW); (AEP)
| |
Collapse
|
25
|
α2,3-Sialyltransferase ST3Gal IV promotes migration and metastasis in pancreatic adenocarcinoma cells and tends to be highly expressed in pancreatic adenocarcinoma tissues. Int J Biochem Cell Biol 2013; 45:1748-57. [PMID: 23726834 DOI: 10.1016/j.biocel.2013.05.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 04/29/2013] [Accepted: 05/14/2013] [Indexed: 12/16/2022]
Abstract
Sialyltransferases have received much attention recently as they are frequently up-regulated in cancer cells. However, the role played by each sialyltransferase in tumour progression is still unknown. α2,3-Sialyltransferases ST3Gal III and ST3Gal IV are involved in sialyl-Lewis(x) (SLe(x)) synthesis. Given that the role of ST3Gal III in pancreatic adenocarcinoma cells has been previously reported, in this study we have focused on investigating the role of ST3Gal IV in the acquisition of adhesive, migratory and metastatic capabilities and, secondly, in analyzing the expression of ST3Gal III and ST3Gal IV in pancreatic adenocarcinoma tissues versus control tissues. ST3Gal IV overexpressing pancreatic adenocarcinoma MDAPanc-28 cell lines were generated. They showed a heterogeneous increase in SLe(x), and enhanced E-selectin adhesion and migration. Furthermore, when injected into nude mice, increased metastasis and decreased survival were found in comparison with controls. The behaviour of MDAPanc-28 ST3Gal IV overexpressing cells in these processes was similar to the already reported MDAPanc-28 ST3Gal III overexpressing cells. Furthermore, pancreatic adenocarcinoma tissues tended to express high levels of ST3Gal III and ST3Gal IV together with other fucosyltransferase genes FUT3 and FUT6, all involved in the last steps of sialyl-Lewis(x) biosynthesis. In conclusion, both α2,3-sialyltransferases are involved in key steps of pancreatic tumour progression processes and are highly expressed in most pancreatic adenocarcinoma tissues.
Collapse
|
26
|
Sialic acid differential expression in non-melanoma skin cancer biopsies. Med Mol Morphol 2013; 46:198-202. [DOI: 10.1007/s00795-013-0025-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/09/2012] [Indexed: 12/01/2022]
|
27
|
Dall’Olio F, Vanhooren V, Chen CC, Slagboom PE, Wuhrer M, Franceschi C. N-glycomic biomarkers of biological aging and longevity: a link with inflammaging. Ageing Res Rev 2013; 12:685-98. [PMID: 22353383 DOI: 10.1016/j.arr.2012.02.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/24/2012] [Accepted: 02/06/2012] [Indexed: 01/31/2023]
Abstract
Glycosylation is a frequent co/post-translational modification of proteins which modulates a variety of biological functions. The analysis of N-glycome, i.e. the sugar chains N-linked to asparagine, identified new candidate biomarkers of aging such as N-glycans devoid of galactose residues on their branches, in a variety of human and experimental model systems, such as healthy old people, centenarians and their offspring and caloric restricted mice. These agalactosylated biantennary structures mainly decorate Asn297 of Fc portion of IgG (IgG-G0), and are present also in patients affected by progeroid syndromes and a variety of autoimmune/inflammatory diseases. IgG-G0 exert a pro-inflammatory effect through different mechanisms, including the lectin pathway of complement, binding to Fcγ receptors and formation of autoantibody aggregates. The age-related accumulation of IgG-G0 can contribute to inflammaging, the low-grade pro-inflammatory status that characterizes elderly, by creating a vicious loop in which inflammation is responsible for the production of aberrantly glycosylated IgG which, in turn, would activate the immune system, exacerbating inflammation. Moreover, recent data suggest that the N-glycomic shift observed in aging could be related not only to inflammation but also to alteration of important metabolic pathways. Thus, altered N-glycans are both powerful markers of aging and possible contributors to its pathogenesis.
Collapse
|
28
|
Meany DL, Hackler L, Zhang H, Chan DW. Tyramide signal amplification for antibody-overlay lectin microarray: a strategy to improve the sensitivity of targeted glycan profiling. J Proteome Res 2011; 10:1425-31. [PMID: 21133419 PMCID: PMC3831023 DOI: 10.1021/pr1010873] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibody-overlay lectin microarray (ALM) has been used for targeted glycan profiling to identify disease-related protein glycoforms. In this context, high sensitivity is desired because it allows for the identification of disease-related glycoforms that are often present at low concentrations. We describe a new tyramide signal amplification (TSA) for the antibody-overlay lectin microarray procedure for sensitive profiling of glycosylation patterns. We demonstrate that TSA increased the sensitivity of the microarray over 100 times for glycan profiling using the model protein prostate specific antigen (PSA). The glycan profile of PSA enriched from LNCAP cells, obtained at a subnanogram level with the aid of TSA, was consistent with the previous reports. We also established the glycan profile of prostate specific membrane antigen (PSMA) using the TSA and ALM. Thus, the TSA for antibody-overlay lectin microarray is a sensitive, rapid, comprehensive, and high-throughput method for targeted glycan profiling and can potentially be used for the identification of disease-related protein glycoforms.
Collapse
Affiliation(s)
- Danni L. Meany
- Department of Pathology, Johns Hopkins University, Baltimore, MD
| | - Laszlo Hackler
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD
| | - Daniel W. Chan
- Department of Pathology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
29
|
Petit D, Mir AM, Petit JM, Thisse C, Delannoy P, Oriol R, Thisse B, Harduin-Lepers A. Molecular phylogeny and functional genomics of beta-galactoside alpha2,6-sialyltransferases that explain ubiquitous expression of st6gal1 gene in amniotes. J Biol Chem 2010; 285:38399-414. [PMID: 20855889 DOI: 10.1074/jbc.m110.163931] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sialyltransferases are key enzymes in the biosynthesis of sialoglycoconjugates that catalyze the transfer of sialic residue from its activated form to an oligosaccharidic acceptor. β-Galactoside α2,6-sialyltransferases ST6Gal I and ST6Gal II are the two unique members of the ST6Gal family described in higher vertebrates. The availability of genome sequences enabled the identification of more distantly related invertebrates' st6gal gene sequences and allowed us to propose a scenario of their evolution. Using a phylogenomic approach, we present further evidence of an accelerated evolution of the st6gal1 genes both in their genomic regulatory sequences and in their coding sequence in reptiles, birds, and mammals known as amniotes, whereas st6gal2 genes conserve an ancestral profile of expression throughout vertebrate evolution.
Collapse
Affiliation(s)
- Daniel Petit
- Unité de Génétique Moléculaire Animale, Université de Limoges Faculté des Sciences et Techniques, INRA UMR 1061, 123 Avenue Albert Thomas, 87060 Limoges, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Toegel S, Pabst M, Wu SQ, Grass J, Goldring MB, Chiari C, Kolb A, Altmann F, Viernstein H, Unger FM. Phenotype-related differential alpha-2,6- or alpha-2,3-sialylation of glycoprotein N-glycans in human chondrocytes. Osteoarthritis Cartilage 2010; 18:240-8. [PMID: 19800998 PMCID: PMC2818349 DOI: 10.1016/j.joca.2009.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 08/18/2009] [Accepted: 09/09/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Sialic acids frequently occur at the terminal positions of glycoprotein N-glycans present at chondrocyte surfaces or in the cartilage matrix. Sialic acids are transferred to glycoproteins in either alpha-2,3 or alpha-2,6 linkage by specific sialyltransferases (SiaTs) and can potentially affect cell functions and cell-matrix interactions. The present study aimed to assess the relationship between the expression of the human chondrocyte phenotype and the sialylation of chondrocyte glycoprotein N-glycans. METHODS The transcription of 5 SiaT was quantified using real-time Reverse transcription polymerase chain reaction (RT-PCR) assays. N-glycan analysis was performed using LC-ESI-MS. Primary human chondrocytes were cultured in monolayer or alginate beads and compared to the chondrocyte cell lines C-28/I2 and SW1353. In addition, effects of interleukin-1beta (IL-1beta) or tumour necrosis factor-alpha (TNF-alpha) on primary cells were assessed. RESULTS Primary human chondrocytes predominantly express alpha-2,6-specific SiaTs and accordingly, alpha-2,6-linked sialic acid residues in glycoprotein N-glycans. In contrast, the preponderance of alpha-2,3-linked sialyl residues and, correspondingly, reduced levels of alpha-2,6-specific SiaTs are associated with the altered chondrocyte phenotype of C-28/I2 and SW1353 cells. Importantly, a considerable shift towards alpha-2,3-linked sialic acids and alpha-2,3-specific SiaT mRNA levels occurred in primary chondrocytes treated with IL-1beta or tumour necrosis factor-alpha (TNF-alpha). CONCLUSION The expression of the differentiated chondrocyte phenotype is linked to the ratio of alpha-2,6- to alpha-2,3-linked sialic acids in chondrocyte glycoprotein N-glycans. A shift towards altered sialylation might contribute to impaired cell-matrix interactions in disease conditions.
Collapse
Affiliation(s)
- S Toegel
- Medical University Vienna, Vienna, Austria,Laboratory for Cartilage Biology, Research Division, Hospital for Special Surgery, Weill Cornell Medical College, New York, USA,Corresponding author Stefan Toegel, Medical University Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria, Tel: 0043 1 4277 55461, Fax: 0043 1 4277 9554,
| | - M Pabst
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - SQ Wu
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria,Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - J Grass
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - MB Goldring
- Laboratory for Cartilage Biology, Research Division, Hospital for Special Surgery, Weill Cornell Medical College, New York, USA
| | - C Chiari
- Department of Orthopedics, Medical University Vienna, Vienna, Austria
| | - A Kolb
- Department of Orthopedics, Medical University Vienna, Vienna, Austria
| | - F Altmann
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - H Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - FM Unger
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Costa-Nogueira C, Villar-Portela S, Cuevas E, Gil-Martín E, Fernández-Briera A. Synthesis and expression of CDw75 antigen in human colorectal cancer. BMC Cancer 2009; 9:431. [PMID: 20003255 PMCID: PMC2803195 DOI: 10.1186/1471-2407-9-431] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 12/10/2009] [Indexed: 11/29/2022] Open
Abstract
Background Increased ST6Gal I activity has been associated with the α(2,6)sialylation enhancement of membrane glycoconjugates observed in metastatic colorectal carcinomas (CRC). Siaα(2,6)Galβ(1,4)GlcNAc sequence, known as CDw75, is a sialylated carbohydrate determinant generated by the ST6Gal I. This epitope has been reported to be associated with the progression of gastric and colorectal tumours, hence there are only a few conclusive studies to date. Methods By radioisotopic techniques we evaluated the ST6Gal I activity in healthy, transitional and tumour tissues from 43 patients with CRC. By immunohistochemistry we assessed the CDw75 expression in 25 colorectal adenomas, 43 tumours, 13 transitional and 28 healthy tissues of CRC patients. Results ST6Gal I activity was likewise found to be statistically higher in tumour tissue respect to healthy tissue from CRC patients. CDw75 expression was positive in 20% of colorectal adenomas. Furthermore, 70% of tumour specimens and 8.3% of transitional specimens were positive for CDw75 expression, whereas none of the healthy ones showed the presence of the epitope. Conclusion The major contribution of this study is the inclusion of data from transitional tissue and the analysis of CDw75 antigen expression in CRC and in colorectal adenomas, little known so far. ST6Gal I activity and CDw75 antigen expression were increased in CRC. Although their comparison did not reach the statistical significance, a great extent of patients showed both, an enhanced tumour ST6Gal I activity and an increased CDw75 expression in the tumour tissue. So, these two variables may play a role in malignant transformation. The expression of CDw75 in colorectal adenomas suggests that this antigen may be a tumour marker in CRC.
Collapse
Affiliation(s)
- Clotilde Costa-Nogueira
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain.
| | | | | | | | | |
Collapse
|
32
|
Drake PM, Cho W, Li B, Prakobphol A, Johansen E, Anderson NL, Regnier FE, Gibson BW, Fisher SJ. Sweetening the pot: adding glycosylation to the biomarker discovery equation. Clin Chem 2009; 56:223-36. [PMID: 19959616 DOI: 10.1373/clinchem.2009.136333] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cancer has profound effects on gene expression, including a cell's glycosylation machinery. Thus, tumors produce glycoproteins that carry oligosaccharides with structures that are markedly different from the same protein produced by a normal cell. A single protein can have many glycosylation sites that greatly amplify the signals they generate compared with their protein backbones. CONTENT In this article, we survey clinical tests that target carbohydrate modifications for diagnosing and treating cancer. We present the biological relevance of glycosylation to disease progression by highlighting the role these structures play in adhesion, signaling, and metastasis and then address current methodological approaches to biomarker discovery that capitalize on selectively capturing tumor-associated glycoforms to enrich and identify disease-related candidate analytes. Finally, we discuss emerging technologies--multiple reaction monitoring and lectin-antibody arrays--as potential tools for biomarker validation studies in pursuit of clinically useful tests. SUMMARY The future of carbohydrate-based biomarker studies has arrived. At all stages, from discovery through verification and deployment into clinics, glycosylation should be considered a primary readout or a way of increasing the sensitivity and specificity of protein-based analyses.
Collapse
|
33
|
Qian J, Zhu CH, Tang S, Shen AJ, Ai J, Li J, Geng MY, Ding J. alpha2,6-hyposialylation of c-Met abolishes cell motility of ST6Gal-I-knockdown HCT116 cells. Acta Pharmacol Sin 2009; 30:1039-45. [PMID: 19483716 DOI: 10.1038/aps.2009.84] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM We aimed to investigate the potential modification of previously unrecognized surface glycoprotein(s) by alpha2,6-sialylation other than by integrins. METHODS The expression of beta-galactoside alpha2,6-sialyltransferase (ST6Gal-I) in the colon cancer cell line HCT116 was reduced by siRNA. The adhesion and Boyden chamber assay were used to detect the variation in cell motility. alpha2,6-Sialylation proteins were detected with lectin affinity assay. The mRNA expression, protein expression and downstream signaling modulation with siRNA were detected using reverse transcription-polymerase chain reaction, flow cytometry analysis, and Western blot. RESULTS In HCT116 cells, the knockdown of ST6Gal-I inhibited cell motility, but did not affect cell adhesion. This selectively altered cell migration was caused by the loss of alpha2,6-sialic acid structures on c-Met. Moreover, STAT3 was dephosphorylated at tyrosine 705 in ST6Gal-I-knockdown (ST6Gal-I-KD) HCT116 cells. CONCLUSION c-Met is the substrate of ST6Gal-I. The hyposialylation of c-Met can abolish cell motility in ST6Gal-I-KD HCT116 cells.Acta Pharmacologica Sinica (2009) 30: 1039-1045; doi: 10.1038/aps.2009.84; published online 1 June 2009.
Collapse
|
34
|
Malagolini N, Chiricolo M, Marini M, Dall'Olio F. Exposure of 2,6-sialylated lactosaminic chains marks apoptotic and necrotic death in different cell types. Glycobiology 2008; 19:172-81. [DOI: 10.1093/glycob/cwn122] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
|
36
|
Vercoutter-Edouart AS, Slomianny MC, Dekeyzer-Beseme O, Haeuw JF, Michalski JC. Glycoproteomics and glycomics investigation of membrane N-glycosylproteins from human colon carcinoma cells. Proteomics 2008; 8:3236-56. [DOI: 10.1002/pmic.200800151] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Hedlund M, Ng E, Varki A, Varki NM. alpha 2-6-Linked sialic acids on N-glycans modulate carcinoma differentiation in vivo. Cancer Res 2008; 68:388-94. [PMID: 18199532 DOI: 10.1158/0008-5472.can-07-1340] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sialic acids on vertebrate cell surfaces mediate many biological roles. Altered expression of certain sialic acid types or their linkages can have prognostic significance in human cancer. A classic but unexplained example is enhanced alpha2-6-sialylation on N-glycans resulting from overexpression of the Golgi enzyme beta-galactoside:alpha2-6-sialyltransferase (ST6Gal-I). Previous data supporting a role for the resulting Sia alpha 2-3Gal beta 1-4GlcNAc (Sia6LacNAc) structure in tumor biology were based on in vitro studies in transfected carcinoma cells, in which increased Sia6LacNAc on beta1-integrins enhanced their binding to ligands, and stimulated cell motility. Here, we examine for the first time the in vivo role of the ST6Gal-I enzyme in the growth and differentiation of spontaneous mammary cancers in mice transgenic for a mouse mammary tumor virus promoter-driven polyomavirus middle T antigen, a tumor in which beta1-integrin function is important for tumorigenesis and in maintaining the proliferative state of tumor cells. Tumors induced in St6gal1-null animals were more differentiated compared with those in the wild-type background, both by histologic analysis and by protein expression profiles. Furthermore, we show the St6gal1-null tumors have selectively altered expression of genes associated with focal adhesion signaling and have decreased phosphorylation of focal adhesion kinase, a downstream target of beta1-integrins. This first in vivo evidence for a role of ST6Gal-I in tumor progression was confirmed using a novel approach, which conditionally restored St6gal1 in cell lines derived from the null tumors. These findings indicate a role for ST6Gal-I as a mediator of tumor progression, with its expression causing a less differentiated phenotype, via enhanced beta1-integrin function.
Collapse
Affiliation(s)
- Maria Hedlund
- Glycobiology Research and Training Center, Department of Medicine, University of California, San Diego, La Jolla, California 92093-0687, USA
| | | | | | | |
Collapse
|
38
|
Guo HB, Nairn A, Harris K, Randolph M, Alvarez-Manilla G, Moremen K, Pierce M. Loss of expression of N-acetylglucosaminyltransferase Va results in altered gene expression of glycosyltransferases and galectins. FEBS Lett 2008; 582:527-35. [PMID: 18230362 DOI: 10.1016/j.febslet.2008.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/08/2008] [Accepted: 01/14/2008] [Indexed: 01/24/2023]
Abstract
We isolated mouse embryo fibroblasts (MEFs) from N-acetylglucosaminyltransferase Va (GnT-Va) knockout mice and studied the effects of loss of expression of GnT-Va on asparagine-linked glycans (N-glycan) synthesis and the gene expression of groups of glycosyltransferases and galectins. Loss of GnT-Va expression caused aberrant expression of several N-glycan structures, including N-linked beta(1,6) branching, poly-N-lactosamine, bisecting N-acetylglucosamine (GlcNAc) and sialic acid. Using quantitative reverse transcriptase-PCR (qRT-PCR), altered gene expression of several groups of glycosyltransferases and galectins was observed in GnT-Va null MEFs, supporting the observed changes in N-glycan structures. These results suggest that genetic disruption of GnT-Va ultimately resulted in altered MEFs gene expression and decreased tumor progression associated with loss of GnT-Va observed may result in part from a combination of effects from these altered gene expressions.
Collapse
Affiliation(s)
- Hua-Bei Guo
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Ghesquière B, Buyl L, Demol H, Van Damme J, Staes A, Timmerman E, Vandekerckhove J, Gevaert K. A new approach for mapping sialylated N-glycosites in serum proteomes. J Proteome Res 2007; 6:4304-12. [PMID: 17918875 DOI: 10.1021/pr0703728] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new approach for proteome-wide analysis of sialylated N-glycopeptides based on the diagonal chromatographic COFRADIC technology is presented here. The use of alpha(2-3,6,8,9) neuraminidase is central to isolate sialylated N-glycopeptides out of a complex peptide mixture. Two different COFRADIC techniques are introduced here, either without or with post-metabolic oxygen-18 labeling (direct versus indirect sorting), and when applied to immuno-depleted mouse serum, we herewith identified 93 sialylated glycosylation sites in 53 serum proteins.
Collapse
Affiliation(s)
- Bart Ghesquière
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Malagolini N, Santini D, Chiricolo M, Dall'Olio F. Biosynthesis and expression of the Sda and sialyl Lewis x antigens in normal and cancer colon. Glycobiology 2007; 17:688-97. [PMID: 17395692 DOI: 10.1093/glycob/cwm040] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The carbohydrate determinants Sd(a) and sialyl Lewis x (sLex) both result from substitution of an alpha2,3-sialylated type 2 chain: the first with an N-acetylgalactosamine (GalNAc) beta1,4-linked to Gal and the second by an alpha1,3-linked fucose on N-acetylglucosamine. The Sd(a) antigen is synthesized by Sd(a) beta1,4-N-acetylgalactosaminyltransferase II (beta4GalNAcT-II), which is downregulated in colon cancer, whereas sLex is a cancer-associated antigen. In view of the possible competition between beta4GalNAcT-II and the fucosyltransferases (FucTs) synthesizing the sLex antigen, we investigated whether beta4GalNAcT-II acts as a negative regulator of sLex expression in colon cancer. beta4GalNAcT-II cDNA, when expressed in LS174T colon cancer cells, induces the expression of the Sd(a) antigen, a dramatic inhibition of sLex expression on cell membranes, and the replacement of sLex with the Sd(a) antigen on 290 kDa glycoproteins. Unexpectedly, in colorectal cancer specimens, beta4GalNAcT-II and sLex show a direct relation. The reasons appear to be (i) Sd(a) and sLex antigens are expressed by different glycoproteins of 340 and 290 kDa, respectively; (ii) the activity of alpha1,3-FucTs on 3'-sialyllactosamine parallels that of beta4GalNAcT-II; and (iii) both beta4GalNAcT-II and FucT activities parallel sLex expression. Quantitative reverse transcription-polymerase chain reaction analysis reveals that the transcripts of beta4GalNAcT-II and those of FucT-III and FucT-VII are positively correlated. These data indicate that in colon cancer tissues, the sLex antigen is regulated mainly by the total FucT activity on 3'-sialyllactosamine acceptors and that beta4GalNAcT-II can inhibit sLex expression in an experimental model, although not in colon cancer tissues.
Collapse
Affiliation(s)
- Nadia Malagolini
- Dipartimento di Patologia Sperimentale, Via S. Giacomo 14, 40126 Bologna, Italy
| | | | | | | |
Collapse
|