1
|
Buriak I, Kumeiko V. Marine Lectins and Lectin-like Proteins as Promising Molecules Targeting Aberrant Glycosylation Signatures in Human Brain Tumors. Mar Drugs 2024; 22:527. [PMID: 39728102 DOI: 10.3390/md22120527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Glycosylation is a ubiquitous and the most structurally diverse post-translational modification of proteins. High levels of phenotypic heterogeneity in brain tumors affect the biosynthetic pathway of glycosylation machinery, resulting in aberrant glycosylation patterns. Traditionally, unique glycocode readers, carbohydrate-binding proteins, have been used to identify differentially expressed carbohydrate determinants associated with the tumor cell surface. However, identifying novel distinctive glycosylation signatures in brain tumors requires the timely development of molecular tools capable of targeting them. We classified marine-derived lectins and lectin-like molecules according to their ability to cover aberrant glycosylation patterns in brain tumors to encourage exploration of the potential of these molecules for precision diagnostics and personalized therapy.
Collapse
Affiliation(s)
- Ivan Buriak
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
2
|
Chatterjee S, Yuan R, Thapa S, Talwar R. Central Role of β-1,4-GalT-V in Cancer Signaling, Inflammation, and Other Disease-Centric Pathways. Int J Mol Sci 2023; 25:483. [PMID: 38203654 PMCID: PMC10778672 DOI: 10.3390/ijms25010483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
UDP-Galactose: Glucosylceramide, β-1,4-Galactose transferase-V (β-1,4-GalT-V), is a member of a large glycosyltransferase family, primarily involved in the transfer of sugar residues from nucleotide sugars, such as galactose, glucose mannose, etc., to sugar constituents of glycosphingolipids and glycoproteins. For example, UDP-Galactose: Glucosylceramide, β-1,4-galactosyltransferase (β-1,4-GalT-V), transfers galactose to glucosylceramide to generate Lactosylceramide (LacCer), a bioactive "lipid second messenger" that can activate nicotinamide adenine dinucleotide phosphate(NADPH) oxidase (NOX-1) to produce superoxide's (O2-) to activate several signaling pathways critical in regulating multiple phenotypes implicated in health and diseases. LacCer can also activate cytosolic phospholipase A-2 to produce eicosanoids and prostaglandins to induce inflammatory pathways. However, the lack of regulation of β-1,4-GalT-V contributes to critical phenotypes central to cancer and cardiovascular diseases, e.g., cell proliferation, migration, angiogenesis, phagocytosis, and apoptosis. Additionally, inflammation that accompanies β-1,4-GalT-V dysregulation accelerates the initiation and progression of cancer, cardiovascular diseases, as well as inflammation-centric diseases, like lupus erythematosus, chronic obstructive pulmonary disease (COPD), and inflammatory bowel diseases. An exciting development in this field of research arrived due to the recognition that the activation of β-1,4-GalT-V is a "pivotal" point of convergence for multiple signaling pathways initiated by physiologically relevant molecules, e.g., growth factors, oxidized-low density lipoprotein(ox- LDL), pro-inflammatory molecules, oxidative and sheer stress, diet, and cigarette smoking. Thus, dysregulation of these pathways may well contribute to cancer, heart disease, skin diseases, and several inflammation-centric diseases in experimental animal models of human diseases and in humans. These observations have been described under post-transcriptional modifications of β-1,4- GalT-V. On the other hand, we also point to the important role of β-1-4 GalT-V-mediated glycosylation in altering the formation of glycosylated precursor forms of proteins and their activation, e.g., β-1 integrin, wingless-related integration site (Wnt)/-β catenin, Frizzled-1, and Notch1. Such alterations in glycosylation may influence cell differentiation, angiogenesis, diminished basement membrane architecture, tissue remodeling, infiltrative growth, and metastasis in human colorectal cancers and breast cancer stem cells. We also discuss Online Mendelian Inheritance in Man (OMIM), which is a comprehensive database of human genes and genetic disorders used to provide information on the genetic basis of inherited diseases and traits and information about the molecular pathways and biological processes that underlie human physiology. We describe cancer genes interacting with the β-1,4-GalT-V gene and homologs generated by OMIM. In sum, we propose that β-1,4-GalT-V gene/protein serves as a "gateway" regulating several signal transduction pathways in oxidative stress and inflammation leading to cancer and other diseases, thus rationalizing further studies to better understand the genetic regulation and interaction of β-1,4-GalT-V with other genes. Novel therapies will hinge on biochemical analysis and characterization of β-1,4-GalT-V in patient-derived materials and animal models. And using β-1,4-GalT-V as a "bonafide drug target" to mitigate these diseases.
Collapse
Affiliation(s)
- Subroto Chatterjee
- The Johns Hopkins Hospital, 1800 Orleans Street, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
3
|
Jin X, Yang GY. Pathophysiological roles and applications of glycosphingolipids in the diagnosis and treatment of cancer diseases. Prog Lipid Res 2023; 91:101241. [PMID: 37524133 DOI: 10.1016/j.plipres.2023.101241] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Glycosphingolipids (GSLs) are major amphiphilic glycolipids present on the surface of living cell membranes. They have important biological functions, including maintaining plasma membrane stability, regulating signal transduction, and mediating cell recognition and adhesion. Specific GSLs and related enzymes are abnormally expressed in many cancer diseases and affect the malignant characteristics of tumors. The regulatory roles of GSLs in signaling pathways suggest that they are involved in tumor pathogenesis. GSLs have therefore been widely studied as diagnostic markers of cancer diseases and important targets of immunotherapy. This review describes the tumor-related biological functions of GSLs and systematically introduces recent progress in using diverse GSLs and related enzymes to diagnose and treat tumor diseases. Development of drugs and biomarkers for personalized cancer therapy based on GSL structure is also discussed. These advances, combined with recent progress in the preparation of GSLs derivatives through synthetic biology technologies, suggest a strong future for the use of customized GSL libraries in treating human diseases.
Collapse
Affiliation(s)
- Xuefeng Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Clinical Pharmaceutics, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Estrogen-Driven Changes in Immunoglobulin G Fc Glycosylation. EXPERIENTIA. SUPPLEMENTUM 2021. [PMID: 34687016 DOI: 10.1007/978-3-030-76912-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Glycosylation within the immunoglobulin G (IgG) Fc region modulates its ability to engage complement and Fc receptors, affording the opportunity to fine-tune effector functions. Mechanisms regulating IgG Fc glycans remain poorly understood. Changes accompanying menarche, menopause, and pregnancy have long implicated hormonal factors. Intervention studies now confirm that estrogens enhance IgG Fc galactosylation, in females and also in males, defining the first pathway modulating Fc glycans and thereby a new link between sex and immunity. This mechanism may participate in fetal-maternal immunity, antibody-mediated inflammation, and other aspects of age- and sex-specific immune function. Here we review the changes affecting the IgG Fc glycome from childhood through old age, the evidence establishing a role for estrogens, and research directions to uncover associated mechanisms that may inform therapeutic intervention.
Collapse
|
5
|
Chatterjee S, Balram A, Li W. Convergence: Lactosylceramide-Centric Signaling Pathways Induce Inflammation, Oxidative Stress, and Other Phenotypic Outcomes. Int J Mol Sci 2021; 22:ijms22041816. [PMID: 33673027 PMCID: PMC7917694 DOI: 10.3390/ijms22041816] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 12/19/2022] Open
Abstract
Lactosylceramide (LacCer), also known as CD17/CDw17, is a member of a large family of small molecular weight compounds known as glycosphingolipids. It plays a pivotal role in the biosynthesis of glycosphingolipids, primarily by way of serving as a precursor to the majority of its higher homolog sub-families such as gangliosides, sulfatides, fucosylated-glycosphingolipids and complex neutral glycosphingolipids—some of which confer “second-messenger” and receptor functions. LacCer is an integral component of the “lipid rafts,” serving as a conduit to transduce external stimuli into multiple phenotypes, which may contribute to mortality and morbidity in man and in mouse models of human disease. LacCer is synthesized by the action of LacCer synthase (β-1,4 galactosyltransferase), which transfers galactose from uridine diphosphate galactose (UDP-galactose) to glucosylceramide (GlcCer). The convergence of multiple physiologically relevant external stimuli/agonists—platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), stress, cigarette smoke/nicotine, tumor necrosis factor-α (TNF-α), and in particular, oxidized low-density lipoprotein (ox-LDL)—on β-1,4 galactosyltransferase results in its phosphorylation or activation, via a “turn-key” reaction, generating LacCer. This newly synthesized LacCer activates NADPH (nicotinamide adenine dihydrogen phosphate) oxidase to generate reactive oxygen species (ROS) and a highly “oxidative stress” environment, which trigger a cascade of signaling molecules and pathways and initiate diverse phenotypes like inflammation and atherosclerosis. For instance, LacCer activates an enzyme, cytosolic phospholipase A2 (cPLA2), which cleaves arachidonic acid from phosphatidylcholine. In turn, arachidonic acid serves as a precursor to eicosanoids and prostaglandin, which transduce a cascade of reactions leading to inflammation—a major phenotype underscoring the initiation and progression of several debilitating diseases such as atherosclerosis and cancer. Our aim here is to present an updated account of studies made in the field of LacCer metabolism and signaling using multiple animal models of human disease, human tissue, and cell-based studies. These advancements have led us to propose that previously unrelated phenotypes converge in a LacCer-centric manner. This LacCer synthase/LacCer-induced “oxidative stress” environment contributes to inflammation, atherosclerosis, skin conditions, hair greying, cardiovascular disease, and diabetes due to mitochondrial dysfunction. Thus, targeting LacCer synthase may well be the answer to remedy these pathologies.
Collapse
|
6
|
Fang Y, Zhang Z. Arsenic trioxide as a novel anti-glioma drug: a review. Cell Mol Biol Lett 2020; 25:44. [PMID: 32983240 PMCID: PMC7517624 DOI: 10.1186/s11658-020-00236-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023] Open
Abstract
Arsenic trioxide has shown a strong anti-tumor effect with little toxicity when used in the treatment of acute promyelocytic leukemia (APL). An effect on glioma has also been shown. Its mechanisms include regulation of apoptosis and autophagy; promotion of the intracellular production of reactive oxygen species, causing oxidative damage; and inhibition of tumor stem cells. However, glioma cells and tissues from other sources show different responses to arsenic trioxide. Researchers are working to enhance its efficacy in anti-glioma treatments and reducing any adverse reactions. Here, we review recent research on the efficacy and mechanisms of action of arsenic trioxide in the treatment of gliomas to provide guidance for future studies.
Collapse
Affiliation(s)
- Yi Fang
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning People's Republic of China
| | - Zhen Zhang
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning People's Republic of China
| |
Collapse
|
7
|
Xie H, Zhu Y, An H, Wang H, Zhu Y, Fu H, Wang Z, Fu Q, Xu J, Ye D. Increased B4GALT1 expression associates with adverse outcome in patients with non-metastatic clear cell renal cell carcinoma. Oncotarget 2017; 7:32723-30. [PMID: 27092876 PMCID: PMC5078046 DOI: 10.18632/oncotarget.8737] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
B4GALT1 is one of seven beta-1, 4-galactosyltransferase (B4GALT) genes, which has distinct functions in various malignances. Here, we evaluate the association of B4GALT1 expression with oncologic outcome in patients with non-metastatic clear cell renal cell carcinoma (ccRCC). A retrospective analysis of 438 patients with non-metastatic ccRCC at two academic medical centers between 2005 and 2009 was performed. The first cohort with 207 patients was treated as training cohort and the other as validation cohort. Tissue microarrays (TMAs) were created in triplicate from formalin-fixed, paraffin embedded specimens. Immunohistochemistry (IHC) was performed and the association of B4GALT1 expression with standard pathologic features and prognosis were evaluated. B4GALT1 expression was significantly associated with tumor T stage (P<0.001 and P<0.001, respectively), Fuhrman grade (P<0.001 and P<0.001, respectively) and necrosis (P=0.021 and P=0.002, respectively) in both training and validation cohorts. And high B4GALT1 expression indicated poor overall survival (OS) (P<0.001 and P<0.001, respectively) in the two cohorts. Furthermore, B4GALT1 expression was identified as an independent adverse prognostic factor for survival (P=0.007 and P=0.002, respectively). Moreover, the accuracy of established prognostic models was improved when B4GALT1 expression was added. Therefore, a predictive nomogram was generated with identified independent prognosticators to assess patients' OS at 5 and 10 years. Increased B4GALT1 expression is a potential independent adverse prognostic factor for OS in patients with non-metastatic ccRCC.
Collapse
Affiliation(s)
- Huyang Xie
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huimin An
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongkai Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hangcheng Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zewei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiang Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Liu J, Liu H, Zhang W, Wu Q, Liu W, Liu Y, Pan D, Xu J, Gu J. N-acetylglucosaminyltransferase V confers hepatoma cells with resistance to anoikis through EGFR/PAK1 activation. Glycobiology 2013; 23:1097-109. [PMID: 23811795 DOI: 10.1093/glycob/cwt049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Elevated expression and activity of N-acetylglucosaminyltransferase V (Mgat5) in hepatocellular carcinoma (HCC) is a common early event involved in tumor invasion during hepatocarcinogenesis. A better understanding of the functional role and the molecular mechanism for Mgat5-targeted protein and downstream signaling pathway behind hepatoma invasion and metastasis is urgently needed. Here, we show that Mgat5 overexpression promoted anchorage-independent growth and inhibited anoikis in hepatoma cells. This effect was reversed by glycosyltransferase inactive mutant Mgat5 L188R transfection, α-mannosidase II inhibitor swainsonine treatment and N-acetyl glucosamine (GlcNAc) phosphotransferase (GPT) inhibitor tunicamycin administration. Mgat5 overexpression increased p21-activated kinase 1 (PAK1) expression and shRNA-mediated PAK1 knockdown and kinase inactivation with kinase dead mutant PAK1 K299R coexpression or allosteric inhibitor P21-activated kinase inhibitor III (IPA3) treatment reversed anoikis resistance in Mgat5-overexpressed hepatoma cells. Furthermore, Mgat5 overexpression upregulated β-1-6-GlcNAc branched N-glycosylation and following phosphorylation of epidermal growth factor receptor (EGFR) in hepatoma cells. EGFR tyrosine kinase inhibitors AG1478 and Iressa treatment declined anchorage-independent growth and anoikis resistance, which could be rescued by constitutive active mutant PAK1 T423E coexpression in Mgat5-overexpressed hepatoma cells. Conversely, knockdown of Mgat5 reduced EGFR/PAK1-dependent anoikis resistance, which could be reversed by PAK1 T423E. These results identified Mgat5-mediated β-1-6-GlcNAc branched N-glycosylation and following activation of EGFR as a potential novel upstream molecular event for PAK1-induced anoikis resistance in hepatoma cells, implicating that molecular targeted therapeutics against Mgat5/EGFR/PAK1 might open a new avenue for personalized medicine in advanced-stage HCC patients.
Collapse
Affiliation(s)
- Jing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chatterjee S, Alsaeedi N, Hou J, Bandaru VVR, Wu L, Halushka MK, Pili R, Ndikuyeze G, Haughey NJ. Use of a glycolipid inhibitor to ameliorate renal cancer in a mouse model. PLoS One 2013; 8:e63726. [PMID: 23671696 PMCID: PMC3650082 DOI: 10.1371/journal.pone.0063726] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 04/05/2013] [Indexed: 11/25/2022] Open
Abstract
In a xenograft model wherein, live renal cancer cells were implanted under the kidney capsule in mice, revealed a 30-fold increase in tumor volume over a period of 26 days and this was accompanied with a 32-fold increase in the level of lactosylceramide (LacCer). Mice fed D- threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), an inhibitor of glucosylceramide synthase and lactosylceramide synthase (LCS: β-1,4-GalT-V), showed marked reduction in tumor volume. This was accompanied by a decrease in the mass of lactosylceramide and an increase in glucosylceramide (GlcCer) level. Mechanistic studies revealed that D-PDMP inhibited cell proliferation and angiogenesis by inhibiting p44MAPK, p-AKT-1 pathway and mammalian target for rapamycin (mTOR). By linking glycosphingolipid synthesis with tumor growth, renal cancer progression and regression can be evaluated. Thus inhibiting glycosphingolipid synthesis can be a bonafide target to prevent the progression of other types of cancer.
Collapse
Affiliation(s)
- Subroto Chatterjee
- Department of Pediatrics, Division of Pediatric Cardiology, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chatterjee S, Alsaeedi N. Lactosylceramide synthase as a therapeutic target to mitigate multiple human diseases in animal models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:153-69. [PMID: 22695844 DOI: 10.1007/978-1-4614-3381-1_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Subroto Chatterjee
- Department of Pediatric Cardiology, Johns Hopkins University, Baltimore, MD 21287, USA.
| | | |
Collapse
|
11
|
Sun H, Zhang S. Arsenic trioxide regulates the apoptosis of glioma cell and glioma stem cell via down-regulation of stem cell marker Sox2. Biochem Biophys Res Commun 2011; 410:692-7. [PMID: 21703238 DOI: 10.1016/j.bbrc.2011.06.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 06/08/2011] [Indexed: 12/17/2022]
Abstract
Knowledge of the mechanism by which arsenic trioxide exerts the anti-tumor effects may help in designing a more effective regimen for therapy. Transcription factor Sox2, a key gene implicated in maintaining the "stemness" of embryonic and adult stem cells, plays an important role in the carcinogenesis and maintenance of glioblastoma. Here, we found that the expression of Sox2 at transcriptional level was decreased during As(2)O(3)-induced glioma cell apoptosis. And, the ectopic expression of Sox2 attenuated the apoptotic effect of As(2)O(3) on glioma cell. Furthermore, As(2)O(3) inhibited the self-renewal of glioma stem cells, and efficiently induces the apoptosis of glioma stem cells, at least, partly through down-regulation of Sox2. These data identify a previously unrecognized mechanism of the anti-tumor effects of arsenic trioxide.
Collapse
Affiliation(s)
- Hui Sun
- Department of Neurosurgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui 233004, People's Republic of China.
| | | |
Collapse
|
12
|
Wei Y, Zhou F, Ge Y, Chen H, Cui C, Liu D, Yang Z, Wu G, Shen J, Gu J, Jiang J. Regulation of the beta1,4-Galactosyltransferase I promoter by E2F1. J Biochem 2010; 148:263-71. [PMID: 20538716 DOI: 10.1093/jb/mvq061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cell surface carbohydrate chains are widely known to contribute to cell migration, recognition and proliferation. beta1,4-Galactosyltransferase I (beta1,4GalT I) transfers galactose to the terminal N-acetylglucosamine of complex-type N-glycan, and contributes to cell proliferation, differentiation and migration. Here, we identified beta1,4GalT I as a novel target gene of cell cycle regulator E2F1. E2F1 proteins interact with the promoter of the beta1,4GalT I gene in vivo, and E2F1 over-expression stimulates the activity of beta1,4GalT I promoter and the mRNA and protein expression of beta1,4GalT I, and augments the level of beta1, 4-galactosyltion. Site-specific mutagenesis revealed that this region which contains two E2F1 binding site (nt -215 to -207 and +1 to +6) is necessary for beta1,4GalT I activation by E2F1. Furthermore, down-regulation of beta1,4GalT I expression attenuates E2F1-induced DNA synthesis and cell cycle progression as well as the expression of cell-cycle regulator Cyclin D1. Thus, beta1,4GalT I is an important E2F1 target gene that is required for cell cycle progression in mammalian cells, which elicits a new mechanism of cell growth and a new mechanism of beta1,4GalT I transcription.
Collapse
Affiliation(s)
- Yuanyan Wei
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health & Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Diazoxide-mediated growth inhibition in human lung cancer cells via downregulation of beta-catenin-mediated cyclin D1 transcription. Lung 2008; 187:61-7. [PMID: 19052819 DOI: 10.1007/s00408-008-9127-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
Abstract
Treatment of various types of cells with the mitochondrial ATP-sensitive K(+) channel opener, diazoxide, preconditions cells to subsequent injuries and inhibits apoptosis. However, the role and mechanism(s) of diazoxide in solid tumor cell growth are largely unknown. Here we demonstrate that diazoxide inhibited the proliferation of lung cancer cells as well as the transcription of cell cycle-related protein Cyclin D1. Cyclin D1 overexpression inhibited the negative role of diazoxide in cell cycle progression. We further explored the mechanisms by which diazoxide affected Cyclin D1 transcription and found that the beta-catenin transcription factor was downregulated by diazoxide, with a corresponding decrease in Cyclin D1 promoter activity. Taken together, these results suggest that diazoxide inhibits lung cancer cell proliferation via downregulation of Cyclin D1 transcription, which may have important therapeutic implications in lung cancer patients.
Collapse
|
14
|
Viola S, Consoli GML, Merlo S, Drago F, Sortino MA, Geraci C. Inhibition of rat glioma cell migration and proliferation by a calix[8]arene scaffold exposing multiple GlcNAc and ureido functionalities. J Neurochem 2008; 107:1047-55. [DOI: 10.1111/j.1471-4159.2008.05656.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Wei Y, Liu D, Ge Y, Zhou F, Xu J, Chen H, Yun X, Gu J, Jiang J. Down-regulation of β1,4GalT V at protein level contributes to arsenic trioxide-induced glioma cell apoptosis. Cancer Lett 2008; 267:96-105. [DOI: 10.1016/j.canlet.2008.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 03/01/2008] [Accepted: 03/10/2008] [Indexed: 12/21/2022]
|
16
|
Ai Z, Lu W, Ton S, Liu H, Sou T, Shen Z, Qin X. Arsenic trioxide-mediated growth inhibition in gallbladder carcinoma cells via down-regulation of Cyclin D1 transcription mediated by Sp1 transcription factor. Biochem Biophys Res Commun 2007; 360:684-689. [PMID: 17617380 DOI: 10.1016/j.bbrc.2007.06.123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 06/23/2007] [Indexed: 02/03/2023]
Abstract
Gallbladder carcinoma (GBC), an aggressive and mostly lethal malignancy, is known to be resistant to a number of drug stimuli. Here, we demonstrated that arsenic trioxide inhibited the proliferation of gallbladder carcinoma in vivo and in vitro as well as the transcription of cell cycle-related protein Cyclin D1. And, Cyclin D1 overexpression inhibited the negative role of arsenic trioxide in cell cycle progression. We further explored the mechanisms by which arsenic trioxide affected Cyclin D1 transcription and found that the Sp1 transcription factor was down-regulated by arsenic trioxide, with a corresponding decrease in Cyclin D1 promoter activity. Taken together, these results suggested that arsenic trioxide inhibited gallbladder carcinoma cell proliferation via down-regulation of Cyclin D1 transcription in a Sp1-dependent manner, which provided a new mechanism of arsenic trioxide-involved cell proliferation and may have important therapeutic implications in gallbladder carcinoma patients.
Collapse
Affiliation(s)
- Zhilong Ai
- Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Jiang J, Zhou J, Wei Y, Shen J, Liu D, Chen X, Zhang S, Kong X, Yun X, Gu J. beta4GalT-II increases cisplatin-induced apoptosis in HeLa cells depending on its Golgi localization. Biochem Biophys Res Commun 2007; 358:41-6. [PMID: 17470362 DOI: 10.1016/j.bbrc.2007.04.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 04/05/2007] [Indexed: 11/22/2022]
Abstract
beta1,4-Galactosyltransferase II (beta4GalT-II) is one of the enzymes transferring galactose to the terminal N-acetylglucosamine of complex-type N-glycans and its expression is significantly altered during oncogenesis with unknown functions. Here, we reported for the first time the pro-apoptotic role of beta4GalT-II in tumor cells. The level of beta4GalT-II mRNA expression was obviously decreased during HeLa cell apoptosis induced by cisplatin. Interestingly, the ectopic expression of beta4GalT-II in HeLa cells markedly increased apoptosis and cleavage of PARP induced by cisplatin as well as the expression of pro-apoptotic protein Bax. Furthermore, deletion of Golgi localization domain abolished the apoptotic role of beta4GalT-II in HeLa cells. Collectively, these results suggest that beta4GalT-II increases HeLa cell apoptosis induced by cisplatin depending on its Golgi localization, which indicates that beta4GalT-II might contribute to the therapeutic efficiency of cisplatin for cervix cancer.
Collapse
Affiliation(s)
- Jianhai Jiang
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and State Key Laboratory of Genetic Engineering and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|