1
|
Zhou X, Zhang D, Han M, Ma Y, Li W, Yu N. Carbohydrate polymer-functionalized metal nanoparticles in cancer therapy: A review. Int J Biol Macromol 2025; 306:141235. [PMID: 39986501 DOI: 10.1016/j.ijbiomac.2025.141235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Metal nanoparticles have been emerged as promising candidates in cancer therapy because of their large surface area, optical properties and ROS generation. Therefore, these nanoparticles are able to mediate cell death through hyperthermia, photothermal therapy and ROS-triggered apoptosis. The various metal nanoparticles including gold, silver and iron oxide nanostructures have been exploited for the theranostic application. Moreover, precision oncology and off-targeting features can be improved by metal nanoparticles. The modification of metal nanoparticles with carbohydrate polymers including chitosan, hyaluronic acid, cellulose, agarose, starch and pectin, among others can significantly improve their anti-cancer activities. Carbohydrate polymers have been idea for the purpose of drug delivery due to their biocompatibility, biodegradability and increasing nanoparticle stability. In addition, carbohydrate polymers are able to improve drug delivery, cellular uptake and sustained release of cargo. Such nanoparticles are capable of responding to the specific stimuli in the tumor microenvironment including pH and light. Furthermore, the carbohydrate polymer-modified metal nanoparticles can be utilized for the combination of chemotherapy, phototherapy and immunotherapy. Since the biocompatibility and long-term safety are critical factors for the clinical translation of nanoparticles, the modification of metal nanoparticles with carbohydrate polymers can improve this way to the application in clinic.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Dongbin Zhang
- Department of Anesthesiology, Affiliated Hospital Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mingming Han
- Department of Pharmacy and Medical Devices, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Yanhong Ma
- Department of Rehabilitation, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| | - Wentao Li
- Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| | - Ning Yu
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| |
Collapse
|
2
|
Chen Y, Ballarò R, Sans M, Thege FI, Zuo M, Dou R, Min J, Yip-Schneider M, Zhang J, Wu R, Irajizad E, Makino Y, Rajapakshe KI, Rudsari HK, Hurd MW, León-Letelier RA, Katayama H, Ostrin E, Vykoukal J, Dennison JB, Do KA, Hanash SM, Wolff RA, Guerrero PA, Kim M, Schmidt CM, Maitra A, Fahrmann JF. Long-chain sulfatide enrichment is an actionable metabolic vulnerability in intraductal papillary mucinous neoplasm (IPMN)-associated pancreatic cancers. Gut 2025:gutjnl-2025-335220. [PMID: 40268349 DOI: 10.1136/gutjnl-2025-335220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/05/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND We conducted an integrated cross-species spatial assessment of transcriptomic and metabolomic alterations associated with progression of intraductal papillary mucinous neoplasms (IPMNs), which are bona fide cystic precursors of pancreatic ductal adenocarcinoma (PDAC). OBJECTIVE We aimed to uncover biochemical and molecular drivers that underlie malignant progression of IPMNs to PDAC. DESIGN Matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry (MS)-based spatial imaging and Visium spatial transcriptomics (ST) was performed on human resected IPMN/PDAC tissues (n=23) as well as pancreata from a mutant Kras;Gnas mouse model of IPMN/PDAC. Functional studies in murine IPMN/PDAC-derived Kras;Gnas cells were performed using CRISPR/cas9 technology, small interfering RNAs, and pharmacological inhibition. RESULTS MALDI-MS analyses of patient tissues revealed long-chain hydroxylated sulfatides to be selectively enriched in the neoplastic epithelium of IPMN/PDAC. Integrated ST analyses showed cognate transcripts involved in sulfatide biosynthesis, including UGT8, Gal3St1, and FA2H, to co-localise with areas of sulfatide enrichment. Genetic knockout or pharmacological inhibition of UGT8 in Kras;Gnas IPMN/PDAC cells decreased protein expression of FA2H and Gal3ST1 with consequent alterations in mitochondrial morphology and reduced mitochondrial respiration. Small molecule inhibition of UGT8 elicited anticancer effects via ceramide-mediated compensatory mitophagy and activation of intrinsic apoptosis pathways. In vivo, UGT8 inhibition suppressed tumour growth in allograft models of murine IPMN/PDAC cells derived from Kras;Gnas and Kras;Tp53;Gnas mice. CONCLUSION Our work identifies enhanced sulfatide metabolism as an early metabolic alteration in cystic precancerous lesions of the pancreas that persists through invasive neoplasia and a potential actionable vulnerability in IPMN-derived PDAC.
Collapse
Affiliation(s)
- Yihui Chen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Riccardo Ballarò
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marta Sans
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fredrik Ivar Thege
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mingxin Zuo
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rongzhang Dou
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jimin Min
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michele Yip-Schneider
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - J Zhang
- Department of Epidemiology, Indiana University, Indianapolis, Indiana, USA
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ehsan Irajizad
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuki Makino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kimal I Rajapakshe
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hamid K Rudsari
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark W Hurd
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ricardo A León-Letelier
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Edwin Ostrin
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paolo A Guerrero
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - C Max Schmidt
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
3
|
Morales-Pacheco M, Valenzuela-Mayen M, Gonzalez-Alatriste AM, Mendoza-Almanza G, Cortés-Ramírez SA, Losada-García A, Rodríguez-Martínez G, González-Ramírez I, Maldonado-Lagunas V, Vazquez-Santillan K, González-Covarrubias V, Pérez-Plasencia C, Rodríguez-Dorantes M. The role of platelets in cancer: from their influence on tumor progression to their potential use in liquid biopsy. Biomark Res 2025; 13:27. [PMID: 39934930 DOI: 10.1186/s40364-025-00742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Platelets, anucleate blood cells essential for hemostasis, are increasingly recognized for their role in cancer, challenging the traditional notion of their sole involvement in blood coagulation. It has been demonstrated that platelets establish bidirectional communication with tumor cells, contributing to tumor progression and metastasis through diverse molecular mechanisms such as modulation of proliferation, angiogenesis, epithelial-mesenchymal transition, resistance to anoikis, immune evasion, extravasation, chemoresistance, among other processes. Reciprocally, cancer significantly alters platelets in their count and composition, including mRNA, non-coding RNA, proteins, and lipids, product of both internal synthesis and the uptake of tumor-derived molecules. This phenomenon gives rise to tumor-educated platelets (TEPs), which are emerging as promising tools for the development of liquid biopsies. In this review, we provide a detailed overview of the dynamic roles of platelets in tumor development and progression as well as their use in diagnosis and prognosis. We also provide our view on current limitations, challenges and future research areas, including the need to design more efficient strategies for their isolation and analysis, as well as the validation of their sensitivity and specificity through large-scale and rigorous clinical trials. This research will not only enable the evaluation of their clinical viability but could also open new opportunities to enhance diagnostic accuracy and develop personalized treatments in oncology.
Collapse
Affiliation(s)
- Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Mexico City, 14610, Mexico
| | - Miguel Valenzuela-Mayen
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Mexico City, 14610, Mexico
| | | | - Gretel Mendoza-Almanza
- Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Sergio A Cortés-Ramírez
- Department of Pharmacology and Toxicology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Alberto Losada-García
- Department of Pharmacology and Toxicology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Griselda Rodríguez-Martínez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Mexico City, 14610, Mexico
- Laboratorio de Investigación en Patógenos Respiratorios y Producción de Biológicos, Hospital Infantil de México Federico Gómez, Mexico City, 14610, Mexico
| | - Imelda González-Ramírez
- Departamento de Atención a La Salud, Universidad Autónoma Metropolitana Xochimilco, Mexico City, 14610, Mexico
| | - Vilma Maldonado-Lagunas
- Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Karla Vazquez-Santillan
- Laboratorio de Innovación en Medicina de Precisión, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Vanessa González-Covarrubias
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, FES-Iztacala, Universidad Nacional Autónoma de México (UNAM), Iztacala, Tlalnepantla, 54090, Mexico
| | | |
Collapse
|
4
|
Chen L, Elizalde M, Alvarez-Sola G. The Role of Sulfatides in Liver Health and Disease. FRONT BIOSCI-LANDMRK 2025; 30:25077. [PMID: 39862071 DOI: 10.31083/fbl25077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 01/27/2025]
Abstract
Sulfatides or 3-O-sulfogalactosylceramide are negatively charged sulfated glycosphingolipids abundant in the brain and kidneys and play crucial roles in nerve impulse conduction and urinary pH regulation. Sulfatides are present in the liver, specifically in the biliary tract. Sulfatides are self-lipid antigens presented by cholangiocytes to activate cluster of differentiation 1d (CD1d)-restricted type II natural killer T (NKT) cells. These cells are involved in alcohol-related liver disease (ArLD) and ischemic liver injury and exert anti-inflammatory effects by regulating the activity of pro-inflammatory type I NKT cells. Loss of sulfatides has been implicated in the chronic inflammatory disorder of the liver known as primary sclerosing cholangitis (PSC); bile ducts deficient in sulfatides increase their permeability, resulting in the spread of bile into the liver parenchyma. Previous studies have shown elevated levels of sulfatides in hepatocellular carcinoma (HCC), where sulfatides could act as adhesive molecules that contribute to cancer metastasis. We have recently demonstrated how loss of function of GAL3ST1, a limiting enzyme involved in sulfatide synthesis, reduces tumorigenic capacity in cholangiocarcinoma (CCA) cells. The biological function of sulfatides in the liver is still unclear; however, this review aims to summarize the existing findings on the topic.
Collapse
Affiliation(s)
- Lin Chen
- Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Montserrat Elizalde
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Gloria Alvarez-Sola
- Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
5
|
O'Dwyer M, Kirkham-McCarthy L, Cerreto M, Foà R, Natoni A. PSGL-1 decorated with sialyl Lewis a/x promotes high affinity binding of myeloma cells to P-selectin but is dispensable for E-selectin engagement. Sci Rep 2024; 14:1756. [PMID: 38243063 PMCID: PMC10798956 DOI: 10.1038/s41598-024-52212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024] Open
Abstract
Dissemination of multiple myeloma into the bone marrow proceeds through sequential steps mediated by a variety of adhesion molecules and chemokines that eventually results in the extravasation of malignant plasma cells into this protective niche. Selectins are a class of C-type lectins that recognize carbohydrate structures exposed on blood borne cells and participate in the first step of the extravasation cascade, serving as brakes to slow down circulating cells enabling them to establish firm adhesion onto the endothelium. Myeloma cells enriched for the expression of selectin ligands present an aggressive disease in vivo that is refractory to bortezomib treatment and can be reverted by small molecules targeting E-selectin. In this study, we have defined the molecular determinants of the selectin ligands expressed on myeloma cells. We show that PSGL-1 is the main protein carrier of sialyl Lewisa/x-related structures in myeloma. PSGL-1 decorated with sialyl Lewisa/x is essential for P-selectin binding but dispensable for E-selectin binding. Moreover, sialylation is required for E-selectin engagement whereas high affinity binding to P-selectin occurs even in the absence of sialic acid. This study provides further knowledge on the biology of selectin ligands in myeloma, opening the way to their clinical application as diagnostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Michael O'Dwyer
- Translational Research Facility, University of Galway, Galway, Ireland
| | - Lucy Kirkham-McCarthy
- Biomedical Sciences, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Marina Cerreto
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Alessandro Natoni
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy.
| |
Collapse
|
6
|
Li GQ, Gao SX, Wang FH, Kang L, Tang ZY, Ma XD. Anticancer mechanisms on pyroptosis induced by Oridonin: New potential targeted therapeutic strategies. Biomed Pharmacother 2023; 165:115019. [PMID: 37329709 DOI: 10.1016/j.biopha.2023.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023] Open
Abstract
Pyroptosis is a type of inflammatory cell death that is triggered by the formation of pores on the cell membrane by gasdermin (GSDM) family proteins. This process activates inflammasomes and leads to the maturation and release of proinflammatory cytokines such as interleukin-1β (IL-1β) and interleukin-18 (IL-18). Pyroptosis, a form of programmed cell death, has been found to be associated with various biomolecules such as caspases, granzymes, non-coding RNA (lncRNA), reactive oxygen species (ROS), and NOD-like receptor protein 3 (NLRP3). These biomolecules have been shown to play a dual role in cancer by affecting cell proliferation, metastasis, and the tumor microenvironment (TME), resulting in both tumor promotion and anti-tumor effects. Recent studies have found that Oridonin (Ori) has anti-tumor effects by regulating pyroptosis through various pathways. Ori can inhibit pyroptosis by inhibiting caspase-1, which is responsible for activating pyroptosis of the canonical pathway. Additionally, Ori can inhibit pyroptosis by inhibiting NLRP3, which is responsible for activating pyroptosis of the noncanonical pathway. Interestingly, Ori can also activate pyroptosis by activating caspase-3 and caspase-8, which are responsible for activating pyroptosis of the emerging pathway; Ori has been found to be effective in inhibiting pyroptosis by blocking the action of perforin, which is responsible for facilitating the entry of granzyme into cells and activating pyroptosis. Additionally, Ori plays a crucial role in regulating pyroptosis by promoting the accumulation of ROS while inhibiting the ncRNA and NLRP3 pathways. It is worth noting that all of these pathways ultimately regulate pyroptosis by influencing the cleavage of GSDM, which is a key factor in the process. These studies concludes that Ori has extensive anti-cancer effects that are related to its potential regulatory function on pyroptosis. The paper summarizes several potential ways in which Ori participates in the regulation of pyroptosis, providing a reference for further study on the relationship between Ori, pyroptosis, and cancer.
Collapse
Affiliation(s)
- Guo Qiang Li
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Shi Xiang Gao
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Fu Han Wang
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Le Kang
- Department of Cardiac Surgery, Zhongshan Hospital, Affiliated Fudan University, Shang Hai 200030, PR China.
| | - Ze Yao Tang
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| | - Xiao Dong Ma
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| |
Collapse
|
7
|
Sans M, Chen Y, Thege FI, Dou R, Min J, Yip-Schneider M, Zhang J, Wu R, Irajizad E, Makino Y, Rajapakshe KI, Hurd MW, León-Letelier RA, Vykoukal J, Dennison JB, Do KA, Wolff RA, Guerrero PA, Kim MP, Schmidt CM, Maitra A, Hanash S, Fahrmann JF. Integrated spatial transcriptomics and lipidomics of precursor lesions of pancreatic cancer identifies enrichment of long chain sulfatide biosynthesis as an early metabolic alteration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553002. [PMID: 37645752 PMCID: PMC10462088 DOI: 10.1101/2023.08.14.553002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Background The development of diverse spatial profiling technologies has provided an unprecedented insight into molecular mechanisms driving cancer pathogenesis. Here, we conducted the first integrated cross-species assessment of spatial transcriptomics and spatial metabolomics alterations associated with progression of intraductal papillary mucinous neoplasms (IPMN), bona fide cystic precursors of pancreatic ductal adenocarcinoma (PDAC). Methods Matrix Assisted Laster Desorption/Ionization (MALDI) mass spectrometry (MS)-based spatial imaging and Visium spatial transcriptomics (ST) (10X Genomics) was performed on human resected IPMN tissues (N= 23) as well as pancreata from a mutant Kras;Gnas mouse model of IPMN. Findings were further compared with lipidomic analyses of cystic fluid from 89 patients with histologically confirmed IPMNs, as well as single-cell and bulk transcriptomic data of PDAC and normal tissues. Results MALDI-MS analyses of IPMN tissues revealed long-chain hydroxylated sulfatides, particularly the C24:0(OH) and C24:1(OH) species, to be selectively enriched in the IPMN and PDAC neoplastic epithelium. Integrated ST analyses confirmed that the cognate transcripts engaged in sulfatide biosynthesis, including UGT8, Gal3St1 , and FA2H , were co-localized with areas of sulfatide enrichment. Lipidomic analyses of cystic fluid identified several sulfatide species, including the C24:0(OH) and C24:1(OH) species, to be significantly elevated in patients with IPMN/PDAC compared to those with low-grade IPMN. Targeting of sulfatide metabolism via the selective galactosylceramide synthase inhibitor, UGT8-IN-1, resulted in ceramide-induced lethal mitophagy and subsequent cancer cell death in vitro , and attenuated tumor growth of mutant Kras;Gnas allografts. Transcript levels of UGT8 and FA2H were also selectively enriched in PDAC transcriptomic datasets compared to non-cancerous areas, and elevated tumoral UGT8 was prognostic for poor overall survival. Conclusion Enhanced sulfatide metabolism is an early metabolic alteration in cystic pre-cancerous lesions of the pancreas that persists through invasive neoplasia. Targeting sulfatide biosynthesis might represent an actionable vulnerability for cancer interception.
Collapse
|
8
|
Pokrovsky VS, Ivanova-Radkevich VI, Kuznetsova OM. Sphingolipid Metabolism in Tumor Cells. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:847-866. [PMID: 37751859 DOI: 10.1134/s0006297923070015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 09/28/2023]
Abstract
Sphingolipids are a diverse family of complex lipids typically composed of a sphingoid base bound to a fatty acid via amide bond. The metabolism of sphingolipids has long remained out of focus of biochemical studies. Recently, it has been attracting an increasing interest of researchers because of different and often multidirectional effects demonstrated by sphingolipids with a similar chemical structure. Sphingosine, ceramides (N-acylsphingosines), and their phosphorylated derivatives (sphingosine-1-phosphate and ceramide-1-phosphates) act as signaling molecules. Ceramides induce apoptosis and regulate stability of cell membranes and cell response to stress. Ceramides and sphingoid bases slow down anabolic and accelerate catabolic reactions, thus suppressing cell proliferation. On the contrary, their phosphorylated derivatives (ceramide-1-phosphate and sphingosine-1-phosphate) stimulate cell proliferation. Involvement of sphingolipids in the regulation of apoptosis and cell proliferation makes them critically important in tumor progression. Sphingolipid metabolism enzymes and sphingolipid receptors can be potential targets for antitumor therapy. This review describes the main pathways of sphingolipid metabolism in human cells, with special emphasis on the properties of this metabolism in tumor cells.
Collapse
Affiliation(s)
- Vadim S Pokrovsky
- People's Friendship University of Russia (RUDN University), Moscow, 117198, Russia.
| | | | - Olga M Kuznetsova
- People's Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| |
Collapse
|
9
|
Ding S, Dong X, Song X. Tumor educated platelet: the novel BioSource for cancer detection. Cancer Cell Int 2023; 23:91. [PMID: 37170255 PMCID: PMC10176761 DOI: 10.1186/s12935-023-02927-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/15/2023] [Indexed: 05/13/2023] Open
Abstract
Platelets, involved in the whole process of tumorigenesis and development, constantly absorb and enrich tumor-specific substances in the circulation during their life span, thus called "Tumor Educated Platelets" (TEPs). The alterations of platelet mRNA profiles have been identified as tumor markers due to the regulatory mechanism of post-transcriptional splicing. Small nuclear RNAs (SnRNAs), the important spliceosome components in platelets, dominate platelet RNA splicing and regulate the splicing intensity of pre-mRNA. Endogenous variation at the snRNA levels leads to widespread differences in alternative splicing, thereby driving the development and progression of neoplastic diseases. This review systematically expounds the bidirectional tumor-platelets interactions, especially the tumor induced alternative splicing in TEP, and further explores whether molecules related to alternative splicing such as snRNAs can serve as novel biomarkers for cancer diagnostics.
Collapse
Affiliation(s)
- Shanshan Ding
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Xiaohan Dong
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China.
| |
Collapse
|
10
|
Cancer-targeted fucoidan‑iron oxide nanoparticles for synergistic chemotherapy/chemodynamic theranostics through amplification of P-selectin and oxidative stress. Int J Biol Macromol 2023; 235:123821. [PMID: 36870633 DOI: 10.1016/j.ijbiomac.2023.123821] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023]
Abstract
A combination of chemotherapy and chemodynamic therapy (CDT) is being developed to improve the theranostic efficacy and biological safety of current therapies. However, most CDT agents are restricted due to complex issues such as multiple components, low colloidal stability, carrier-associated toxicity, insufficient reactive oxygen species generation, and poor targeting efficacy. To overcome these problems, a novel nanoplatform composed of fucoidan (Fu) and iron oxide (IO) nanoparticles (NPs) was developed to achieve chemotherapy combined with CDT synergistic treatment with a facile self-assembling manner, and the NPs were made up of Fu and IO, in which the Fu was not only used as a potential chemotherapeutic but was also designed to stabilize the IO and target P-selectin-overexpressing lung cancer cells, thereby producing oxidative stress and thus synergizing the CDT efficacy. The Fu-IO NPs exhibited a suitable diameter below 300 nm, which favored their cellular uptake by cancer cells. Microscopic and MRI data confirmed the lung cancer cellular uptake of the NPs due to active Fu targeting. Moreover, Fu-IO NPs induced efficient apoptosis of lung cancer cells, and thus offer significant anti-cancer functions by potential chemotherapeutic-CDT.
Collapse
|
11
|
Huang XF, Fu LS, Cai QQ, Fan F. Prognostic and immunological role of sulfatide-related lncRNAs in hepatocellular carcinoma. Front Oncol 2023; 13:1091132. [PMID: 36816914 PMCID: PMC9929346 DOI: 10.3389/fonc.2023.1091132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver. Long non-coding RNAs (lncRNAs) play important roles in the occurrence and development of HCC through multiple pathways. Our previous study reported the specific molecular mechanism for sulfatide regulation of integrin αV expression and cell adhesion in HCC cells through lncRNA AY927503. Next, it is necessary to identify more sulfatide-related lncRNAs, explore their clinical signifcance, and determine new targeted treatment strategies. Methods Microarrays were used to screen a complete set of lncRNAs with different expression profiles in sulfatide-treated cells. Sulfatide-related lncRNAs expression data and corresponding HCC patient survival information were obtained from the The Cancer Genome Atlas (TCGA) database, and the prognosis prediction model was constructed based on Cox regression analysis. Methylated RNA immunoprecipitation with next generation sequencing (MeRIP-seq) was used to detemine the effect of sulfatide on lncRNAs m6A modification. Tumor Immune Estimation Resource (TIMER) and Gene set nnrichment analysis (GSEA) were utilized to enrich the immune and functional pathways of sulfatide-related lncRNAs. Results A total of 85 differentially expressed lncRNAs (|Fold Change (FC)|>2, P<0.05) were screened in sulfatide-treated HCC cells. As a result, 24 sulfatide-related lncRNAs were highly expressed in HCC tissues, six of which were associated with poor prognosis in HCC patients. Based on thses data, a sulfatide-related lncRNAs prognosis assessment model for HCC was constructed. According to this risk score analysis, the overall survival (OS) curve showed that the OS of high-risk patients was significantly lower than that of low-risk patients (P<0.05). Notably, the expression difference in sulfatide-related lncRNA NRSN2-AS1 may be related to sulfatide-induced RNA m6A methylation. In addition, the expression level of NRSN2-AS1 was significantly positively correlated with immune cell infiltration in HCC and participated in the peroxisome and Peroxisome proliferator-activated receptor (PPAR) signaling pathways. Conclusions In conclusion, sulfatide-related lncRNAs might be promising prognostic and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Xing Feng Huang
- Department of Biliary Tract Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Li Sheng Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Key Lab of Glycoconjugate Research, Ministry of Public Health, Shanghai, China
| | - Qian Qian Cai
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Fei Fan
- Department of The Second Ward of Special Treatment, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
12
|
Cheng X, Zhang H, Hamad A, Huang H, Tsung A. Surgery-mediated tumor-promoting effects on the immune microenvironment. Semin Cancer Biol 2022; 86:408-419. [PMID: 35066156 PMCID: PMC11770836 DOI: 10.1016/j.semcancer.2022.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
Surgical resection continues to be the mainstay treatment for solid cancers even though chemotherapy and immunotherapy have significantly improved patient overall survival and progression-free survival. Numerous studies have shown that surgery induces the dissemination of circulating tumor cells (CTCs) and that the resultant inflammatory response promotes occult tumor growth and the metastatic process by forming a supportive tumor microenvironment (TME). Surgery-induced platelet activation is one of the initial responses to a wound and the formation of fibrin clots can provide the scaffold for recruited inflammatory cells. Activated platelets can also shield CTCs to protect them from blood shear forces and promote CTCs evasion of immune destruction. Similarly, neutrophils are recruited to the fibrin clot and enhance cancer metastatic dissemination and progression by forming neutrophil extracellular traps (NETs). Activated macrophages are also recruited to surgical sites to facilitate the metastatic spread. More importantly, the body's response to surgical insult results in the recruitment and expansion of immunosuppressive cell populations (i.e. myeloid-derived suppressor cells and regulatory T cells) and in the suppression of natural killer (NK) cells that contribute to postoperative cancer recurrence and metastasis. In this review, we seek to provide an overview of the pro-tumorigenic mechanisms resulting from surgery's impact on these cells in the TME. Further understanding of these events will allow for the development of perioperative therapeutic strategies to prevent surgery-associated metastasis.
Collapse
Affiliation(s)
- Xiang Cheng
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hongji Zhang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Ahmad Hamad
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hai Huang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Allan Tsung
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
13
|
Jo D, Kim HK, Kim YK, Song J. Transcriptome Profile of Thyroid Glands in Bile Duct Ligation Mouse Model. Int J Mol Sci 2022; 23:ijms23158244. [PMID: 35897811 PMCID: PMC9332885 DOI: 10.3390/ijms23158244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormone (TH) contributes to multiple cellular mechanisms in the liver, muscle cells, adipose tissue, and brain, etc. In particular, the liver is an important organ in TH metabolism for the conversion of thyronine (T4) into triiodothyronine (T3) by the deiodinase enzyme. TH levels were significantly decreased and thyroid-stimulating hormone (TSH) levels were significantly increased in patients with liver failure compared with normal subjects. Among liver failure diseases, hepatic encephalopathy (HE) deserves more attention because liver damage and neuropathologies occur simultaneously. Although there is numerous evidence of TH dysregulation in the HE model, specific mechanisms and genetic features of the thyroid glands in the HE model are not fully understood. Here, we investigated the significantly different genes in the thyroid glands of a bile duct ligation (BDL) mouse model as the HE model, compared to the thyroid glands of the control mouse using RNA sequencing. We also confirmed the alteration in mRNA levels of thyroid gland function-related genes in the BDL mouse model. Furthermore, we evaluated the increased level of free T4 and TSH in the BDL mouse blood. Thus, we emphasize the potential roles of TH in liver metabolism and suggest that thyroid dysfunction-related genes in the HE model should be highlighted for finding the appropriate solution for an impaired thyroid system in HE.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Korea;
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Korea
| | - Hee Kyung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Korea;
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Korea;
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Korea
- Correspondence: ; Tel.: +82-61-379-2706
| |
Collapse
|
14
|
Cui Y, Zhou Z, Chai Y, Zhang Y. Upregulated GSDMB in Clear Cell Renal Cell Carcinoma Is Associated with Immune Infiltrates and Poor Prognosis. J Immunol Res 2021; 2021:7753553. [PMID: 34957313 PMCID: PMC8702340 DOI: 10.1155/2021/7753553] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/27/2021] [Indexed: 01/12/2023] Open
Abstract
Gasdermin B (GSDMB) is part of the gasdermin (GSDM) family, and they use varying means of domain interactions in molecules to adjust their pore-forming and lipid-binding actions. The GSDM family has roles in the regulation of cell differentiation and proliferation, particularly in the process of pyroptosis. Nonetheless, the correlation of GSDMB with immune infiltrates and its prognostic values in clear cell renal cell carcinoma (ccRCC) are still undefined. Therefore, we assessed the correlation of GSDMB with immune infiltrates and its prognostic role in ccRCC. The transcriptional expression profiles of GSDMB in ccRCC tissues in addition to normal tissues were retrieved from The Cancer Genome Atlas (TCGA) and additionally verified in a different independent cohort, which was obtained from the Gene Expression Omnibus (GEO) database. The Human Protein Atlas and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) were used to assess the protein expression of GSDMB. To assess the effectiveness of GSDMB in distinguishing ccRCC from normal samples, the receiver operating characteristic (ROC) curve analysis was performed. Relationships between GSDMB expression, clinicopathological variables, and overall survival (OS) were evaluated with multivariate methods as well as Kaplan-Meier survival curves. Protein-protein interaction (PPI) networks were created with STRING. Functional enrichment analyses were conducted by utilizing the "ClusterProfiler" package. The Tumor Immune Estimation Resource (TIMER) and tumor-immune system interaction database (TISIDB) were utilized to determine the association between the mRNA expression of GSDMB and immune infiltrates. GSDMB expression was significantly more upregulated in ccRCC tissues compared to surrounding normal tissues. An increase in the mRNA expression of GSDMB was related to the high pathologic stage and advanced TNM stage. The analysis of the ROC curve indicated that GSDMB had an AUC value of 0.820 to distinguish between ccRCC tissues and adjacent normal controls. Kaplan-Meier survival analysis indicated that ccRCC patients with high GSDMB had a poorer prognosis compared to those with low GSDMB (P < 0.001). Correlation analysis showed that the mRNA expression of GSDMB was associated with immune infiltrates and the purity of the tumor. Upregulation of GSDMB is significantly related to immune infiltrates and poor survival in ccRCC. The results of this study indicate that GSDMB could be regarded as a biomarker for the detection of poor prognosis and potential target of immune treatment in ccRCC.
Collapse
MESH Headings
- Biomarkers, Tumor
- Carcinoma, Renal Cell/diagnosis
- Carcinoma, Renal Cell/etiology
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/mortality
- Computational Biology/methods
- Databases, Genetic
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Kidney Neoplasms/diagnosis
- Kidney Neoplasms/etiology
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/mortality
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Molecular Sequence Annotation
- Multivariate Analysis
- Pore Forming Cytotoxic Proteins/genetics
- Pore Forming Cytotoxic Proteins/metabolism
- Prognosis
- Protein Interaction Mapping
- ROC Curve
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/metabolism
- Tumor-Associated Macrophages/pathology
Collapse
Affiliation(s)
- Yuanshan Cui
- Department of Urology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, China
| | - Zhongbao Zhou
- Department of Urology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Yumeng Chai
- Department of Urology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Yong Zhang
- Department of Urology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Revuelta J, Fraile I, Monterrey DT, Peña N, Benito-Arenas R, Bastida A, Fernández-Mayoralas A, García-Junceda E. Heparanized chitosans: towards the third generation of chitinous biomaterials. MATERIALS HORIZONS 2021; 8:2596-2614. [PMID: 34617543 DOI: 10.1039/d1mh00728a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The functionalization of chitosans is an emerging research area in the design of solutions for a wide range of biomedical applications. In particular, the modification of chitosans to incorporate sulfate groups has generated great interest since they show structural similarity to heparin and heparan sulfates. Most of the biomedical applications of heparan sulfates are derived from their ability to bind different growth factors and other proteins, as through these interactions they can modulate the cellular response. This review aims to summarize the most recent advances in the synthesis, and structural and physicochemical characterization of heparanized chitosan, a remarkably interesting family of polysaccharides that have demonstrated the ability to mimic heparan sulfates as ligands for different proteins, thereby exerting their biological activity by mimicking the function of these glycosaminoglycans.
Collapse
Affiliation(s)
- Julia Revuelta
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Isabel Fraile
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Dianelis T Monterrey
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Nerea Peña
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Raúl Benito-Arenas
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Agatha Bastida
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Alfonso Fernández-Mayoralas
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Eduardo García-Junceda
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
16
|
Porubsky S, Nientiedt M, Kriegmair MC, Siemoneit JHH, Sandhoff R, Jennemann R, Borgmann H, Gaiser T, Weis CA, Erben P, Hielscher T, Popovic ZV. The prognostic value of galactosylceramide-sulfotransferase (Gal3ST1) in human renal cell carcinoma. Sci Rep 2021; 11:10926. [PMID: 34035403 PMCID: PMC8149814 DOI: 10.1038/s41598-021-90381-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/11/2021] [Indexed: 12/30/2022] Open
Abstract
Renal cell carcinoma (RCC) is the deadliest primary genitourinary malignancy typically associated with asymptomatic initial presentation and poorly predictable survival. Next to established risk factors, tumor microenvironment may alter metastatic capacity and immune landscape. Due to their high concentrations, sulfoglycolipids (sulfatides) were among the first well-described antigens in RCC that are associated with worse prognosis. As sulfatide detection in routine diagnostics is not possible, we aimed to test the prognostic value of its protein counterpart, sulfatide-producing enzyme Gal3ST1. We performed retrospective long-term follow up analysis of Gal3ST1 expression as prognostic risk factor in a representative RCC patient cohort. We observed differentially regulated Gal3ST1 expression in all RCC types, being significantly more associated with clear cell RCC than to chromophobe RCC (p = 0.001). Surprisingly, in contrast to published observations from in vitro models, we could not confirm an association between Gal3ST1 expression and a malignant clinical behaviour of the RCC. In our cohort, Gal3ST1 did not significantly influence progression-free survival (Hazard Ratio (HR): 1.7 95% CI (0.6–4.9), p = 0.327). Particularly after adjusting for histology, T-stage, N-status and M-status at baseline, we observed no independent prognostic effect (HR = 1.0 95% CI (0.3–3.3), p = 0.96). The analysis of Gal3ST1 mRNA expression in a TCGA dataset supported the results of our cohort. Thus, Gal3ST1 might help to differentiate between chromophobe RCC and other frequent RCC entities but—despite previously published data from cell culture models—does not qualify as a prognostic marker for RCC. Further investigation of regulatory mechanisms of sulfatide metabolism in human RCC microenvironment is necessary to understand the role of this quantitatively prominent glycosphingolipid in RCC progression.
Collapse
Affiliation(s)
- Stefan Porubsky
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.,Institute of Pathology, University Medical Center, Johannes-Gutenberg University, Mainz, Germany
| | - Malin Nientiedt
- Department of Urology and Urosurgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maximilian C Kriegmair
- Department of Urology and Urosurgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jörn-Helge Heinrich Siemoneit
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Richard Jennemann
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Hendrik Borgmann
- Department of Urology, University Medical Center, Johannes-Gutenberg University, Mainz, Germany
| | - Timo Gaiser
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Philipp Erben
- Department of Urology and Urosurgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Hielscher
- Department of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Zoran V Popovic
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
17
|
Kim HS, Han M, Park IH, Park CH, Kwak MS, Shin JS. Sulfatide Inhibits HMGB1 Secretion by Hindering Toll-Like Receptor 4 Localization Within Lipid Rafts. Front Immunol 2020; 11:1305. [PMID: 32655573 PMCID: PMC7324676 DOI: 10.3389/fimmu.2020.01305] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
The high mobility group box 1 (HMGB1) is a well-known late mediator of sepsis, secreted by multiple stimuli, involving pathways, such as the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways, and reactive oxygen species (ROS) under inflammation. Sulfatide, in contrast, is a sphingolipid commonly found in myelin sheets with a disputed immunological role. We sought to determine the immunological characteristics of sulfatide in the periphery by analyzing the secretion of HMGB1 triggered by lipopolysaccharide (LPS) stimulation in Raw 264.7 cells. Suppression of HMGB1 secretion by inhibiting its cytosolic translocation was observed after pre-treatment with sulfatide before LPS stimulation. Further analysis of the downstream molecules of toll-like receptor (TLR) signaling revealed suppression of c-Jun N-terminal kinase (JNK) phosphorylation and p65 translocation. LPS-mediated ROS production was also decreased when sulfatide pre-treatment was provided, caused by the down-regulation of the phosphorylation of activators, such as IRAK4 and TBK1. Investigation of the upstream mechanism that encompasses all the aforementioned inhibitory characteristics unveiled the involvement of lipid rafts. In addition to the co-localization of biotinylated sulfatide and monosialotetrahexosylganglioside, a decrease in LPS-induced co-localization of TLR4 and lipid raft markers was observed when sulfatide treatment was given before LPS stimulation. Overall, sulfatide was found to exert its anti-inflammatory properties by hindering the co-localization of TLR4 and lipid rafts, nullifying the effect of LPS on TLR4 signaling. Similar effects of sulfatide were also confirmed in the LPS-mediated murine experimental sepsis model, showing decreased levels of serum HMGB1, increased survivability, and reduced pathological severity.
Collapse
Affiliation(s)
- Hee Sue Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Myeonggil Han
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - In Ho Park
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Cheol Ho Park
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Man Sup Kwak
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
18
|
Li L, Li Y, Bai Y. Role of GSDMB in Pyroptosis and Cancer. Cancer Manag Res 2020; 12:3033-3043. [PMID: 32431546 PMCID: PMC7201009 DOI: 10.2147/cmar.s246948] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/04/2020] [Indexed: 12/14/2022] Open
Abstract
Gasdermin B (GSDMB) belongs to the gasdermin (GSDM) family which may adopt different mechanisms of intramolecular domain interactions to modulate their lipid-binding and pore-forming activities. The GSDM family has regulatory functions in cell proliferation and differentiation, especially in pyroptosis process. Pyroptosis is a pro-inflammatory form of regulated cell death and is designed to attract a nonspecific innate response to the site of infection. For cancer cells, the activation of pyroptosis may promote cell death and exert anticancer properties. Also, recent studies have observed the pyroptosis-like features in GSDMB and some researches have shown that GSDMB overexpression occurred in several kinds of cancers; these findings bring a contradiction with the participation of GSDMB in pyroptosis. Although people pay less attention to GSDMB, it still has some essential research value. It is a paradox that GSDMB might participate in programmed cell death, which might put forward a research direction of therapeutic targets for cancer. Here, we review the possible progress of how GSDMB participated in this inflammatory regulation mechanistically and the potential functions of GSDMB in cancer.
Collapse
Affiliation(s)
- Lisha Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, People's Republic of China
| | - Yanjing Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, People's Republic of China
| | - Yuxian Bai
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, People's Republic of China
| |
Collapse
|
19
|
Kocabay S, Akkaya B. Preparation of sulfatide mimicking oleic acid sulfated chitosan as a potential inhibitor for metastasis. Int J Biol Macromol 2020; 147:792-798. [PMID: 31739035 DOI: 10.1016/j.ijbiomac.2019.10.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
Sulfatide is associated with numerous health problems, affecting different parts of the human body, including the metastasis; however, the underlying mechanisms are yet to be fully elucidated. Sulfatide has been used to potential inhibitor for tumor cell metastasis. In the present study we synthesized oleic acid sulfated chitosan (OlcShCs). It shows structural similarity to sulfatide because of its functional groups (sulfate and fatty acyl chains). Chitosan has smart properties such as biocompatibility, biodegradability and non-toxicity. We have prepared oleic acid sulfated chitosan (OlcShCs) by chitosan modification to mimic sulfatide. Its structure was characterized by FT-IR, H-NMR, and thermogravimetric analysis. After characterization studies its antimicrobial, antifungal and cytotoxic properties were investigated. Oleic acid sulfated chitosan (OlcShCs) was tested for its anti-cancer potential against human cancer cell lines (HeLa (ATCC® CCL-2™)) for 24 h, 48 h and 72 h using the MTT assays. This new material which is soluble at physiological conditions, is a potential candidate for further metastasis inhibition investigations.
Collapse
Affiliation(s)
- Samet Kocabay
- Cumhuriyet University Science Faculty, Department of Molecular Biology and Genetics, Sivas, Turkey; Inönü University Science and Literature Faculty, Department of Molecular Biology and Genetics, Malatya, Turkey
| | - Birnur Akkaya
- Cumhuriyet University Science Faculty, Department of Molecular Biology and Genetics, Sivas, Turkey.
| |
Collapse
|
20
|
The sugar code: letters and vocabulary, writers, editors and readers and biosignificance of functional glycan-lectin pairing. Biochem J 2019; 476:2623-2655. [PMID: 31551311 DOI: 10.1042/bcj20170853] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
Ubiquitous occurrence in Nature, abundant presence at strategically important places such as the cell surface and dynamic shifts in their profile by diverse molecular switches qualifies the glycans to serve as versatile biochemical signals. However, their exceptional structural complexity often prevents one noting how simple the rules of objective-driven assembly of glycan-encoded messages are. This review is intended to provide a tutorial for a broad readership. The principles of why carbohydrates meet all demands to be the coding section of an information transfer system, and this at unsurpassed high density, are explained. Despite appearing to be a random assortment of sugars and their substitutions, seemingly subtle structural variations in glycan chains by a sophisticated enzymatic machinery have emerged to account for their specific biological meaning. Acting as 'readers' of glycan-encoded information, carbohydrate-specific receptors (lectins) are a means to turn the glycans' potential to serve as signals into a multitude of (patho)physiologically relevant responses. Once the far-reaching significance of this type of functional pairing has become clear, the various modes of spatial presentation of glycans and of carbohydrate recognition domains in lectins can be explored and rationalized. These discoveries are continuously revealing the intricacies of mutually adaptable routes to achieve essential selectivity and specificity. Equipped with these insights, readers will gain a fundamental understanding why carbohydrates form the third alphabet of life, joining the ranks of nucleotides and amino acids, and will also become aware of the importance of cellular communication via glycan-lectin recognition.
Collapse
|
21
|
Robinson CM, Poon BPK, Kano Y, Pluthero FG, Kahr WHA, Ohh M. A Hypoxia-Inducible HIF1-GAL3ST1-Sulfatide Axis Enhances ccRCC Immune Evasion via Increased Tumor Cell-Platelet Binding. Mol Cancer Res 2019; 17:2306-2317. [PMID: 31427440 DOI: 10.1158/1541-7786.mcr-19-0461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/09/2019] [Accepted: 08/14/2019] [Indexed: 11/16/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common form of kidney cancer and the major cause of mortality for individuals with von Hippel-Lindau (VHL) disease. ccRCC is characterized most frequently by inactivation of VHL tumor suppressor protein that mediates degradation of the alpha subunit of the hypoxia-inducible factor (HIF) transcription factor family. HIF has been implicated in disease progression and the aim of this study was to identify novel HIF target genes that may contribute to ccRCC. We show that GAL3ST1, an enzyme that catalyzes the sulfonation of the plasma membrane sulfolipid sulfatide, is among the top 50 upregulated genes in ccRCC tissue relative to matched normal tissue. Increased expression of GAL3ST1 in primary ccRCC correlates with decreased survival. We show that GAL3ST1 is a HIF target gene whose expression is induced upon VHL loss leading to the accumulation of its enzymatic product sulfatide. Notably, platelets bind more efficiently to renal cancer cells with high GAL3ST1-sulfatide expression than to GAL3ST1-sulfatide-negative counterparts, which protects ccRCC cells against natural killer cell-mediated cytotoxicity. These results suggest that GAL3ST1 is a HIF-responsive gene that may contribute to ccRCC development via promoting cancer cell evasion of immune surveillance. IMPLICATIONS: Cancer development is in part dependent on evasion of immune response. We identify a HIF target gene product GAL3ST1 that may play a role in this critical process.
Collapse
Affiliation(s)
- Claire M Robinson
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Betty P K Poon
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yoshihito Kano
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Fred G Pluthero
- Division of Haematology/Oncology and Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Walter H A Kahr
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Division of Haematology/Oncology and Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Michael Ohh
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Lemay AM, Courtemanche O, Couttas TA, Jamsari G, Gagné A, Bossé Y, Joubert P, Don AS, Marsolais D. High FA2H and UGT8 transcript levels predict hydroxylated hexosylceramide accumulation in lung adenocarcinoma. J Lipid Res 2019; 60:1776-1786. [PMID: 31409741 DOI: 10.1194/jlr.m093955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancer causes more deaths than any other cancer. Sphingolipids encompass metabolically interconnected species whose balance has pivotal effects on proliferation, migration, and apoptosis. In this study, we paralleled quantification of sphingolipid species with quantitative (q)PCR analyses of metabolic enzymes in order to identify dysregulated routes of sphingolipid metabolism in different subtypes of lung cancers. Lung samples were submitted to histopathological reexamination in order to confirm cancer type/subtype, which included adenocarcinoma histological subtypes and squamous cell and neuroendocrine carcinomas. Compared with benign lesions and tumor-free parenchyma, all cancers featured decreased sphingosine-1-phosphate and SMs. qPCR analyses evidenced differential mechanisms leading to these alterations between cancer types, with neuroendocrine carcinomas upregulating SGPL1, but CERT1 being downregulated in adenocarcinomas and squamous cell carcinomas. 2-Hydroxyhexosylceramides (2-hydroxyHexCers) were specifically increased in adenocarcinomas. While UDP-glycosyltransferase 8 (UGT8) transcript levels were increased in all cancer subtypes, fatty acid 2-hydroxylase (FA2H) levels were higher in adenocarcinomas than in squamous and neuroendocrine carcinomas. As a whole, we report differing mechanisms through which all forms of lung cancer achieve low SM and lysosphingolipids. Our results also demonstrate that FA2H upregulation is required for the accumulation of 2-hydroxyHexCers in lung cancers featuring high levels of UGT8.
Collapse
Affiliation(s)
- Anne-Marie Lemay
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada
| | - Olivier Courtemanche
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada
| | - Timothy A Couttas
- Centenary Institute, University of Sydney, Camperdown, NSW 2006, Australia.,Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Giuleta Jamsari
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Andréanne Gagné
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada.,Departments of Molecular Medicine, Molecular Biology, Medical Biochemistry, Université Laval, Québec, QC G1V 0A6, Canada
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada.,Pathology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Anthony S Don
- Centenary Institute, University of Sydney, Camperdown, NSW 2006, Australia.,Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.,National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - David Marsolais
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada .,Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
23
|
Molina-Crespo Á, Cadete A, Sarrio D, Gámez-Chiachio M, Martinez L, Chao K, Olivera A, Gonella A, Díaz E, Palacios J, Dhal PK, Besev M, Rodríguez-Serrano M, García Bermejo ML, Triviño JC, Cano A, García-Fuentes M, Herzberg O, Torres D, Alonso MJ, Moreno-Bueno G. Intracellular Delivery of an Antibody Targeting Gasdermin-B Reduces HER2 Breast Cancer Aggressiveness. Clin Cancer Res 2019; 25:4846-4858. [PMID: 31064780 DOI: 10.1158/1078-0432.ccr-18-2381] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 03/21/2019] [Accepted: 05/02/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Gasdermin B (GSDMB) overexpression/amplification occurs in about 60% of HER2 breast cancers, where it promotes cell migration, resistance to anti-HER2 therapies, and poor clinical outcome. Thus, we tackle GSDMB cytoplasmic overexpression as a new therapeutic target in HER2 breast cancers. EXPERIMENTAL DESIGN We have developed a new targeted nanomedicine based on hyaluronic acid-biocompatible nanocapsules, which allow the intracellular delivery of a specific anti-GSDMB antibody into HER2 breast cancer cells both in vitro and in vivo. RESULTS Using different models of HER2 breast cancer cells, we show that anti-GSDMB antibody loaded to nanocapsules has significant and specific effects on GSDMB-overexpressing cancer cells' behavior in ways such as (i) lowering the in vitro cell migration induced by GSDMB; (ii) enhancing the sensitivity to trastuzumab; (iii) reducing tumor growth by increasing apoptotic rate in orthotopic breast cancer xenografts; and (iv) diminishing lung metastasis in MDA-MB-231-HER2 cells in vivo. Moreover, at a mechanistic level, we have shown that AbGB increases GSDMB binding to sulfatides and consequently decreases migratory cell behavior and may upregulate the potential intrinsic procell death activity of GSDMB. CONCLUSIONS Our findings portray the first evidence of the effectiveness and specificity of an antibody-based nanomedicine that targets an intracellular oncoprotein. We have proved that intracellular-delivered anti-GSDMB reduces diverse protumor GSDMB functions (migration, metastasis, and resistance to therapy) in an efficient and specific way, thus providing a new targeted therapeutic strategy in aggressive HER2 cancers with poor prognosis.
Collapse
Affiliation(s)
- Ángela Molina-Crespo
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPaz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos, Madrid, Spain
| | - Ana Cadete
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain
- Departamento de Farmacia y Tecnología Farmacéutica, Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain
| | - David Sarrio
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPaz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos, Madrid, Spain
| | - Manuel Gámez-Chiachio
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPaz, Madrid, Spain
| | - Lidia Martinez
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPaz, Madrid, Spain
| | - Kinlin Chao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland
| | - Ana Olivera
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain
- Departamento de Farmacia y Tecnología Farmacéutica, Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain
| | - Andrea Gonella
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain
- Departamento de Farmacia y Tecnología Farmacéutica, Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain
| | - Eva Díaz
- Fundación MD Anderson Internacional, C/Gómez Hemans, Madrid, Spain
| | - José Palacios
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos, Madrid, Spain
- Departamento de Patología, Hospital Ramón y Cajal, IRYCIS, Ctra De Colmenar, Madrid, Spain
| | | | | | | | | | | | - Amparo Cano
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPaz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos, Madrid, Spain
| | - Marcos García-Fuentes
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain
- Departamento de Farmacia y Tecnología Farmacéutica, Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain
| | - Osnat Herzberg
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland
| | - Dolores Torres
- Departamento de Farmacia y Tecnología Farmacéutica, Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain
| | - Maria José Alonso
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain.
- Departamento de Farmacia y Tecnología Farmacéutica, Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPaz, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos, Madrid, Spain
- Fundación MD Anderson Internacional, C/Gómez Hemans, Madrid, Spain
| |
Collapse
|
24
|
Baba H, Ishibashi T. The Role of Sulfatides in Axon–Glia Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:165-179. [DOI: 10.1007/978-981-32-9636-7_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Sulfatide decreases the resistance to stress-induced apoptosis and increases P-selectin-mediated adhesion: a two-edged sword in breast cancer progression. Breast Cancer Res 2018; 20:133. [PMID: 30400820 PMCID: PMC6219063 DOI: 10.1186/s13058-018-1058-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023] Open
Abstract
Background We have previously shown that galactosylceramide (GalCer) affects the tumourigenic and metastatic properties of breast cancer cells by acting as an anti-apoptotic molecule. Since GalCer is a precursor molecule in the synthesis of sulfatides, the present study was aimed to define the role of sulfatides in apoptosis and breast cancer progression. Methods Expression of GAL3ST1 in breast cancer cell lines and breast cancer tissue specimens was analysed using real-time PCR, western blotting and immunohistochemistry analysis. The amount of sulfatide, GalCer and ceramide was analysed by thin-layer chromatography binding assay and by the modified hydrophilic interaction liquid chromatography coupled with electrospray mass spectrometry methodology. The tumourigenicity of cancer cells was analysed by an in-vivo tumour growth assay. Apoptotic cells were detected based on caspase-3 activation and the TUNEL assay. The interaction of breast cancer cells with P-selectin or E-selectin was analysed using the flow adhesion assay. The ability of sulfatide-expressing cells to activate and aggregate platelets was studied using the flow-cytometry-based aggregation assay. Results Using two models of breast cancer, T47D cells with blocked synthesis of sulfatide and MDA-MB-231 cells with neosynthesis of this glycosphingolipid, we showed that high sulfatide levels resulted in increased sensitivity of cancer cells to apoptosis induced by hypoxia and doxorubicin in vitro, and decreased their tumourigenicity after transplantation into athymic nu/nu mice. Accordingly, a clinical study on GAL3ST1 expression in invasive ductal carcinoma revealed that its elevated level is associated with better prognosis. Using MDA-MB-231 cells with neosynthesis of sulfatide we also showed that sulfatide is responsible for adhesion of breast cancer cells to P-selectin-expressing cells, including platelets. Sulfatide also acted as an activating molecule, increasing the expression of P-selectin. Conclusions This study demonstrates that increased synthesis of sulfatide sensitises cancer cells to microenvironmental stress factors such as hypoxia and anticancer drugs such as doxorubicin. However, sulfatide is probably not directly involved in apoptotic cascades, because its increased synthesis by GAL3ST1 decreased the amounts of its precursor, GalCer, a known anti-apoptotic molecule. On the other hand, our data support the view that sulfatides are malignancy-related adhesive molecules involved in activating and binding P-selectin-expressing platelets to breast cancer cells. Electronic supplementary material The online version of this article (10.1186/s13058-018-1058-z) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Vicaretti SD, Mohtarudin NA, Garner AM, Zandberg WF. Capillary Electrophoresis Analysis of Bovine Milk Oligosaccharides Permits an Assessment of the Influence of Diet and the Discovery of Nine Abundant Sulfated Analogues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8574-8583. [PMID: 29745223 DOI: 10.1021/acs.jafc.8b01041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bovine milk oligosaccharides (BMOs), like their analogues in human milk, have important prebiotic functions. Environmental factors have previously been linked to variation in BMO structures, and thus to test the hypothesis that the bovine diet may lead to these changes in relative BMO abundances, a rapid capillary electrophoresis (CE)-based work flow was developed to profile the BMOs extracted from the milk of cows fed distinctly different diets. Over the first week of lactation, few significant differences were observed between the different diet groups, with the dominant changes being clearly linked to lactation period. CE analyses indicated the presence of ten unusually anionic BMOs, which were predicted to be phosphorylated and sulfated species. Nine unique sulfated BMOs were detected by high-resolution accurate mass spectrometry, none of which have been previously described in bovine milk. The biosynthesis of these was in direct competition with 3'-sialyllactose, the most abundant BMO in bovine milk.
Collapse
|
27
|
Bruno A, Dovizio M, Tacconelli S, Contursi A, Ballerini P, Patrignani P. Antithrombotic Agents and Cancer. Cancers (Basel) 2018; 10:cancers10080253. [PMID: 30065215 PMCID: PMC6115803 DOI: 10.3390/cancers10080253] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 02/08/2023] Open
Abstract
Platelet activation is the first response to tissue damage and, if unrestrained, may promote chronic inflammation-related cancer, mainly through the release of soluble factors and vesicles that are rich in genetic materials and proteins. Platelets also sustain cancer cell invasion and metastasis formation by fostering the development of the epithelial-mesenchymal transition phenotype, cancer cell survival in the bloodstream and arrest/extravasation at the endothelium. Furthermore, platelets contribute to tumor escape from immune elimination. These findings provide the rationale for the use of antithrombotic agents in the prevention of cancer development and the reduction of metastatic spread and mortality. Among them, low-dose aspirin has been extensively evaluated in both preclinical and clinical studies. The lines of evidence have been considered appropriate to recommend the use of low-dose aspirin for primary prevention of cardiovascular disease and colorectal cancer by the USA. Preventive Services Task Force. However, two questions are still open: (i) the efficacy of aspirin as an anticancer agent shared by other antiplatelet agents, such as clopidogrel; (ii) the beneficial effect of aspirin improved at higher doses or by the co-administration of clopidogrel. This review discusses the latest updates regarding the mechanisms by which platelets promote cancer and the efficacy of antiplatelet agents.
Collapse
Affiliation(s)
- Annalisa Bruno
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Melania Dovizio
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Annalisa Contursi
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Patrizia Ballerini
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| |
Collapse
|
28
|
Xu XR, Yousef GM, Ni H. Cancer and platelet crosstalk: opportunities and challenges for aspirin and other antiplatelet agents. Blood 2018. [PMID: 29519806 DOI: 10.1182/blood-2017-05-743187] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Platelets have long been recognized as key players in hemostasis and thrombosis; however, growing evidence suggests that they are also significantly involved in cancer, the second leading cause of mortality worldwide. Preclinical and clinical studies showed that tumorigenesis and metastasis can be promoted by platelets through a wide variety of crosstalk between platelets and cancer cells. For example, cancer changes platelet behavior by directly inducing tumor-platelet aggregates, triggering platelet granule and extracellular vesicle release, altering platelet phenotype and platelet RNA profiles, and enhancing thrombopoiesis. Reciprocally, platelets reinforce tumor growth with proliferation signals, antiapoptotic effect, and angiogenic factors. Platelets also activate tumor invasion and sustain metastasis via inducing an invasive epithelial-mesenchymal transition phenotype of tumor cells, promoting tumor survival in circulation, tumor arrest at the endothelium, and extravasation. Furthermore, platelets assist tumors in evading immune destruction. Hence, cancer cells and platelets maintain a complex, bidirectional communication. Recently, aspirin (acetylsalicylic acid) has been recognized as a promising cancer-preventive agent. It is recommended at daily low dose by the US Preventive Services Task Force for primary prevention of colorectal cancer. The exact mechanisms of action of aspirin in chemoprevention are not very clear, but evidence has emerged that suggests a platelet-mediated effect. In this article, we will introduce how cancer changes platelets to be more cancer-friendly and highlight advances in the modes of action for aspirin in cancer prevention. We also discuss the opportunities, challenges, and opposing viewpoints on applying aspirin and other antiplatelet agents for cancer prevention and treatment.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - George M Yousef
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Heyu Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada; and
- Department of Medicine and
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Serum concentrations of soluble (s)L- and (s)P-selectins in women with ovarian cancer. MENOPAUSE REVIEW 2018; 17:11-17. [PMID: 29725279 PMCID: PMC5925195 DOI: 10.5114/pm.2018.74897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022]
Abstract
Introduction The aim of the study was to compare serum concentration of soluble L- and P-selectins in women with ovarian cancer (OC) and healthy controls, and to investigate sL- and sP-selectin levels with regard to clinical and pathological parameters. Correlation analysis was used to measure the following: sL- and sP-selectin concentration and Ca125; sP-selectin and platelet concentrations; and sL-selectin and serum leukocyte levels in women with OC. Material and methods The study included 29 patients with OC and 23 healthy controls. Serum concentrations of sL- and sP-selectins were measured in all subjects. Routine diagnostic tests: CBC and USG (both groups) and Ca125 (study group) were performed. Results Significantly higher serum concentrations of sL- and sP-selectins were found in the study group as compared to controls. Lower levels of serum sL-selectin were observed in women with poorly-differentiated OC (G3) and advanced stages of the disease (FIGO III, IV), but the results were statistically insignificant. No statistically significant relationship was detected between sP-selectin serum concentration in women with OC and tumour differentiation, histological type, and stage of the disease. No significant correlation was found between sL- and sP-selectins and Ca125 levels. A weak correlation was found between serum concentration of sP-selectin in women with OC and platelet count. No statistically significant correlation was observed between sL-selectin concentration and serum leukocyte levels in women with OC. Conclusions The analysis of sL- and sP-selectin concentrations may be a useful tool in the diagnosis of OC. The levels of sL-selectin decrease with disease progression.
Collapse
|
30
|
Riedl J, Pabinger I, Ay C. Platelets in cancer and thrombosis. Hamostaseologie 2017; 34:54-62. [DOI: 10.5482/hamo-13-10-0054] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/28/2013] [Indexed: 12/21/2022] Open
Abstract
SummaryPlatelets are the smallest circulating blood cells and their major function is the maintenance of haemostasis. They do not have a nucleus, but instead a multitude of granules that contain molecules important for several physiological processes. These granules can be released after platelet activation and thereby platelets take part in haemostasis, wound repair or immunological processes. Furthermore, platelets are also involved in the pathophysiology of several diseases, including cancer. Platelets can support various steps of cancer development and progression by promoting tumour growth, angiogenesis and metastasis. Moreover, platelets contribute to the hypercoagulable state frequently observed in cancer patients, leading to an increased risk of venous thromboembolism (VTE). In previous studies a high platelet count was repeatedly found to be associated with an elevated risk of VTE and a worse prognosis in patients with cancer.The aim of this review is to give an overview of the most important alterations of platelet physiology in cancer patients and how these alterations may influence cancer disease and contribute to cancer-associated VTE.
Collapse
|
31
|
The Interaction of Selectins and PSGL-1 as a Key Component in Thrombus Formation and Cancer Progression. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6138145. [PMID: 28680883 PMCID: PMC5478826 DOI: 10.1155/2017/6138145] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/12/2017] [Accepted: 04/23/2017] [Indexed: 12/11/2022]
Abstract
Cellular interaction is inevitable in the pathomechanism of human disease. Formation of heterotypic cellular aggregates, between distinct cells of hematopoietic and nonhematopoietic origin, may be involved in events leading to inflammation and the complex process of cancer progression. Among adhesion receptors, the family of selectins with their ligands have been considered as one of the major contributors to cell-cell interactions. Consequently, the inhibition of the interplay between selectins and their ligands may have potential therapeutic benefits. In this review, we focus on the current evidence on the selectins as crucial modulators of inflammatory, thrombotic, and malignant disorders. Knowing that there is promiscuity in selectin binding, we outline the importance of a key protein that serves as a ligand for all selectins. This dimeric mucin, the P-selectin glycoprotein ligand 1 (PSGL-1), has emerged as a major player in inflammation, thrombus, and cancer development. We discuss the interaction of PSGL-1 with various selectins in physiological and pathological processes with particular emphasis on mechanisms that lead to severe disease.
Collapse
|
32
|
Tian Y, Yang Y, Zhang X, Nakajima T, Tanaka N, Sugiyama E, Kamijo Y, Lu Y, Moriya K, Koike K, Gonzalez FJ, Aoyama T. Age-dependent PPARα activation induces hepatic sulfatide accumulation in transgenic mice carrying the hepatitis C virus core gene. Glycoconj J 2016; 33:927-936. [PMID: 27318478 PMCID: PMC6309323 DOI: 10.1007/s10719-016-9703-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 01/01/2023]
Abstract
Sulfatides, a type of glycosphingolipid, are associated with carcinogenesis. Peroxisome proliferator-activated receptor α (PPARα) is involved in the regulation of sulfatide metabolism as well as in cancer development. We previously reported that transgenic (Tg) mice expressing hepatitis C virus core protein (HCVcp) exhibited age-dependent PPARα activation and carcinogenesis in liver. However, the metabolism of sulfatides in hepatocellular carcinoma is unknown. To examine the relationship between sulfatide metabolism, carcinogenesis, HCVcp, and PPARα, age-dependent changes of these factors were examined in HCVcpTg, PPARα inhibitor-treated HCVcpTg, and non-Tg mice. The sulfatide content in liver, the hepatic expression of two key enzymes catalyzing the initial and last reactions in sulfatide synthesis, the hepatic expression of known sulfatide-transferring protein, oxidative stress, and hepatic PPARα expression and its activation were age-dependently increased in HCVcpTg mice. The increased synthesis and accumulation of sulfatides and PPARα activation were significantly enhanced in liver cancer lesions. These changes were attenuated by PPARα inhibitor treatment and not observed in non-Tg mice. These results suggest that HCVcp-induced age-dependent PPARα activation increases synthesis of sulfatides and the resulting sulfatide accumulation affects HCV-related liver cancer. The monitoring of hepatic sulfatide content and the modulation of sulfatide generation by intervention using a PPARα inhibitor might be useful for the prediction and prevention of HCV-related hepatocarcinogenesis, respectively.
Collapse
Affiliation(s)
- Yangyang Tian
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, 390-8621, Japan
| | - Yang Yang
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, 390-8621, Japan
| | - Xiaowei Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Takero Nakajima
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, 390-8621, Japan
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, 390-8621, Japan
| | - Eiko Sugiyama
- Department of Nutritional Science, Prefectural College, Nagano, Nagano, 380-8525, Japan
| | - Yuji Kamijo
- Department of Nephrology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| | - Yu Lu
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, 390-8621, Japan
| | - Kyoji Moriya
- Department of Infection Control and Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, 390-8621, Japan
| |
Collapse
|
33
|
Ding D, Yao Y, Zhang S, Su C, Zhang Y. C-type lectins facilitate tumor metastasis. Oncol Lett 2016; 13:13-21. [PMID: 28123516 PMCID: PMC5245148 DOI: 10.3892/ol.2016.5431] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Metastasis, a life-threatening complication of cancer, leads to the majority of cases of cancer-associated mortality. Unfortunately, the underlying molecular and cellular mechanisms of cancer metastasis remain to be fully elucidated. C-type lectins are a large group of proteins, which share structurally homologous carbohydrate-recognition domains (CRDs) and possess diverse physiological functions, including inflammation and antimicrobial immunity. Accumulating evidence has demonstrated the contribution of C-type lectins in different steps of the metastatic spread of cancer. Notably, a substantial proportion of C-type lectins, including selectins, mannose receptor (MR) and liver and lymph node sinusoidal endothelial cell C-type lectin, are important molecular targets for the formation of metastases in vitro and in vivo. The present review summarizes what has been found regarding C-type lectins in the lymphatic and hematogenous metastasis of cancer. An improved understanding the role of C-type lectins in cancer metastasis provides a comprehensive perspective for further clarifying the molecular mechanisms of cancer metastasis and supports the development of novel C-type lectins-based therapies the for prevention of metastasis in certain types of cancer.
Collapse
Affiliation(s)
- Dongbing Ding
- Department of Gastrointestinal Surgery, Jingmen First People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Yao Yao
- Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Songbai Zhang
- Department of Gastrointestinal Surgery, Jingmen First People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Chunjie Su
- Department of Gastrointestinal Surgery, Jingmen First People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Yonglian Zhang
- Department of Gastrointestinal Surgery, Jingmen First People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
34
|
Korniluk A, Kamińska J, Kiszło P, Kemona H, Dymicka-Piekarska V. Lectin adhesion proteins (P-, L- and E-selectins) as biomarkers in colorectal cancer. Biomarkers 2016; 22:629-634. [PMID: 27775438 DOI: 10.1080/1354750x.2016.1252967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONTEXT Selectins probably participate in the interactions between platelets and other inflammatory cells in cancer invasion and metastasis formation. We assessed a potential relationship of P-, L- and E-selectin in colorectal cancer (CRC) patients in relation to tumour advancement according to TNM classification, and tumour location. MATERIALS AND METHODS The study group was composed of 53 CRC patients and 25 healthy subjects. Plasma levels of soluble P-, L- and E-selectins were measured using the immunoenzymatic method with Quantikine kits (R&D Systems, Minneapolis, MN). RESULTS The mean levels of all selectins were significantly higher in CRC patients compared to healthy controls. The highest level of sP-selectin was observed in patients with metastases to the liver (stage IV), and was significantly higher than in patients without metastases (stage I/II) and with lymph node metastases (stage III), p = .02. The highest levels of sL- and sE-selectin were observed in patients with lymph node metastasis. We also found sP-selectin to be the best predictor of CRC. CONCLUSION Our finding show possible involvement of tested selectins in CRC advancement and forming metastasis. Among sL- and E- selectins, P-selectin plays an important role in the progression of CRC and could be an attractive biomarker with clinical significance.
Collapse
Affiliation(s)
- Aleksandra Korniluk
- a Department of Clinical Laboratory Diagnostics , Medical University of Bialystok , Poland
| | - Joanna Kamińska
- a Department of Clinical Laboratory Diagnostics , Medical University of Bialystok , Poland
| | - Paweł Kiszło
- a Department of Clinical Laboratory Diagnostics , Medical University of Bialystok , Poland
| | - Halina Kemona
- a Department of Clinical Laboratory Diagnostics , Medical University of Bialystok , Poland
| | | |
Collapse
|
35
|
Ando R, Tokuda N, Yamamoto T, Ikeda K, Hashimoto N, Taguchi R, Fan X, Furukawa K, Niimura Y, Suzuki A, Goto M, Furukawa K. Immunization of A4galt-deficient mice with glycosphingolipids from renal cell cancers resulted in the generation of anti-sulfoglycolipid monoclonal antibodies. Glycoconj J 2016; 33:169-80. [PMID: 26883028 DOI: 10.1007/s10719-016-9654-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/09/2016] [Accepted: 01/29/2016] [Indexed: 11/30/2022]
Abstract
In this study, we immunized Gb3/CD77 synthase gene (A4galt) knockout (KO) mice with glycosphingolipids (GSLs) extracted from 3 renal cell cancer (RCC) cell lines to raise monoclonal antibodies (mAbs) reactive with globo-series GSLs specifically expressed in RCCs. Although a number of mAbs reactive with globo-series GSLs were generated, they reacted with both RCC cell lines and normal kidney cells. When we analyzed recognized antigens by mAbs that were specifically reactive with RCC, but not with normal kidney cells at least on the cell surface, many of them turned out to be reactive with sulfoglycolipids. Eight out of 11 RCC-specific mAbs were reactive with SM2 alone, and the other 3 mAbs were more broadly reactive with sulfated glycolipids, i.e. SM3 and SM4 as well as SM2. In the immunohistochemistry, these anti-sulfoglycolipids mAbs showed RCC-specific reaction, with no or minimal reaction with adjacent normal tissues. Thus, immunization of A4galt KO mice with RCC-derived GSLs resulted in the generation of anti sulfated GSL mAbs, and these mAbs may be applicable for the therapeutics for RCC patients.
Collapse
Affiliation(s)
- Reiko Ando
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-0065, Japan
| | - Noriyo Tokuda
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-0065, Japan
| | - Tokunori Yamamoto
- Department of Urology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-0065, Japan
| | - Kazutaka Ikeda
- IMS, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Noboru Hashimoto
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-0065, Japan
| | - Ryo Taguchi
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan
| | - Xiaoen Fan
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-0065, Japan
| | - Keiko Furukawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-0065, Japan.,Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan
| | - Yukio Niimura
- Research Center of Biomedical Analysis and Radioisotope, Teikyo University School of Medicine, 2-11-1, Kuga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Akemi Suzuki
- Institute of Glycoscience, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Momokazu Goto
- Department of Urology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-0065, Japan
| | - Koichi Furukawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-0065, Japan. .,Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan.
| |
Collapse
|
36
|
Yue Z, Wang A, Zhu Z, Tao L, Li Y, Zhou L, Chen W, Lu Y. Holothurian glycosaminoglycan inhibits metastasis via inhibition of P-selectin in B16F10 melanoma cells. Mol Cell Biochem 2015; 410:143-54. [PMID: 26318439 DOI: 10.1007/s11010-015-2546-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/18/2015] [Indexed: 12/14/2022]
Abstract
P-selectin-mediated tumor cell adhesion to platelets is a well-established stage in the process of tumor metastasis. Through computerized structural analysis, we found a marine-derived polysaccharide, holothurian glycosaminoglycan (hGAG), behaved as a ligand-competitive inhibitor of P-selectin, indicating its potential to disrupt the binding of P-selectin to cell surface receptor and activation of downstream regulators of tumor cell migration. Our experimental data demonstrated that hGAG significantly inhibited P-selectin-mediated adhesion of tumor cells to platelets and tumor cell migration in vitro and reduced subsequent pulmonary metastasis in vivo. Furthermore, abrogation of the P-selectin-mediated adhesion of tumor cells led to down-regulation of protein levels of integrins, FAK and MMP-2/9 in B16F10 cells, which is a crucial molecular mechanism of hGAG to inhibit tumor metastasis. In conclusion, hGAG has emerged as a novel anti-cancer agent via blocking P-selectin-mediated malignant events of tumor metastasis.
Collapse
Affiliation(s)
- Zhiqiang Yue
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Aiyun Wang
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, 210023, China.,Jiangsu Provincial Center for Research and Development of Marine Drugs, Nanjing, 210023, Jiangsu, China
| | - Zhijie Zhu
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Li Tao
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Yao Li
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Liang Zhou
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Wenxing Chen
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, 210023, China.,Jiangsu Provincial Center for Research and Development of Marine Drugs, Nanjing, 210023, Jiangsu, China
| | - Yin Lu
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China. .,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, 210023, China. .,Jiangsu Provincial Center for Research and Development of Marine Drugs, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
37
|
Boligan KF, Mesa C, Fernandez LE, von Gunten S. Cancer intelligence acquired (CIA): tumor glycosylation and sialylation codes dismantling antitumor defense. Cell Mol Life Sci 2015; 72:1231-48. [PMID: 25487607 PMCID: PMC11113383 DOI: 10.1007/s00018-014-1799-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 01/28/2023]
Abstract
Aberrant glycosylation is a key feature of malignant transformation and reflects epigenetic and genetic anomalies among the multitude of molecules involved in glycan biosynthesis. Although glycan biosynthesis is not template bound, altered tumor glycosylation is not random, but associated with common glycosylation patterns. Evidence suggests that acquisition of distinct glycosylation patterns evolves from a 'microevolutionary' process conferring advantages in terms of tumor growth, tumor dissemination, and immune escape. Such glycosylation modifications also involve xeno- and hypersialylation. Xeno-autoantigens such as Neu5Gc-gangliosides provide potential targets for immunotherapy. Hypersialylation may display 'enhanced self' to escape immunosurveillance and involves several not mutually exclusive inhibitory pathways that all rely on protein-glycan interactions. A better understanding of tumor 'glycan codes' as deciphered by lectins, such as siglecs, selectins, C-type lectins and galectins, may lead to novel treatment strategies, not only in cancer, but also in autoimmune disease or transplantation.
Collapse
Affiliation(s)
- Kayluz Frias Boligan
- Institute of Pharmacology, University of Bern, Friedbühlstrasse 49, 3010, Bern, Switzerland,
| | | | | | | |
Collapse
|
38
|
Herman D, Leakey TI, Behrens A, Yao-Borengasser A, Cooney CA, Jousheghany F, Phanavanh B, Siegel ER, Safar AM, Korourian S, Kieber-Emmons T, Monzavi-Karbassi B. CHST11 gene expression and DNA methylation in breast cancer. Int J Oncol 2015; 46:1243-51. [PMID: 25586191 PMCID: PMC4324579 DOI: 10.3892/ijo.2015.2828] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/03/2014] [Indexed: 01/09/2023] Open
Abstract
Our previously published data link P-selectin-reactive chondroitin sulfate structures on the surface of breast cancer cells to metastatic behavior of cells. We have shown that a particular sulfation pattern mediated by the expression of carbohydrate (chondroitin 4) sulfotransferase-11 (CHST11) correlates with P-selectin binding and aggressiveness of human breast cancer cell lines. The present study was performed to evaluate the prognostic value of CHST11 expression and determine whether aberrant DNA methylation controls CHST11 expression in breast cancer. Publicly available datasets were used to examine the association of CHST11 expression to aggressiveness and progression of breast cancer. Methylation status was analyzed using bisulfite genomic sequencing. 5-aza-2′-deoxycytidine (5AzadC) was used for DNA demethylation. Reduced representation bisulfite sequencing was performed in the CpG island of CHST11 with a minimum coverage of 10. Quantitative real-time RT-PCR was employed to confirm the expression profile of CHST11 in breast cancer cell lines. Flow cytometry was also used to confirm the expression of the CHST11 product, chondroitin sulfate A (CS-A). The expression of CHST11 was significantly higher in basal-like and Her2-amplified cell lines compared to luminal cell lines. CHST11 was also highly expressed in cancer tissues compared to normal tissues and the expression levels were significantly associated with tumor progression. We observed very low levels of DNA methylation in a CpG island of CHST11 in basal-like cells but very high levels in the same region in luminal cells. Treatment of MCF7 cells, a luminal cell line with very low expression of CHST11, with 5AzadC increased the expression of CHST11 and its immediate product, CS-A, in a dose-dependent manner. These results suggest that CHST11 may play a direct role in progression of breast cancer and that its expression is controlled by DNA methylation. Therefore, in addition to CHST11 mRNA levels, the methylation status of this gene also has potential as a prognostic biomarker.
Collapse
Affiliation(s)
- Damir Herman
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Tatiana I Leakey
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alice Behrens
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Aiwei Yao-Borengasser
- Department of Medical Genetics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Craig A Cooney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Fariba Jousheghany
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Bounleut Phanavanh
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Eric R Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - A Mazin Safar
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Soheila Korourian
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Thomas Kieber-Emmons
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|
39
|
Gray platelet syndrome: proinflammatory megakaryocytes and α-granule loss cause myelofibrosis and confer metastasis resistance in mice. Blood 2014; 124:3624-35. [PMID: 25258341 DOI: 10.1182/blood-2014-04-566760] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
NBEAL2 encodes a multidomain scaffolding protein with a putative role in granule ontogeny in human platelets. Mutations in NBEAL2 underlie gray platelet syndrome (GPS), a rare inherited bleeding disorder characterized by a lack of α-granules within blood platelets and progressive bone marrow fibrosis. We present here a novel Nbeal2(-/-) murine model of GPS and demonstrate that the lack of α-granules is due to their loss from platelets/mature megakaryocytes (MKs), and not by initial impaired formation. We show that the lack of Nbeal2 confers a proinflammatory phenotype to the bone marrow MKs, which in combination with the loss of proteins from α-granules drives the development of bone marrow fibrosis. In addition, we demonstrate that α-granule deficiency impairs platelet function beyond their purely hemostatic role and that Nbeal2 deficiency has a protective effect against cancer metastasis.
Collapse
|
40
|
Yamamoto K, Miyazaki K, Higashi S. Pericellular proteolysis by matrix metalloproteinase-7 is differentially modulated by cholesterol sulfate, sulfatide, and cardiolipin. FEBS J 2014; 281:3346-56. [PMID: 24903600 DOI: 10.1111/febs.12865] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 11/30/2022]
Abstract
Matrix metalloproteinase (MMP)-7 binds to cell surface cholesterol sulfate (CS) and acts as a membrane-associated protease. We have previously found that CS modulates the substrate preference of MMP-7, thereby regulating its pericellular proteolytic action. MMP-7 potentially associates with the cell surface via sulfatide (SM4) and cardiolipin (CL) when they are overexpressed on the cell surface. Here, we investigated the molecular interaction between these acidic lipids and MMP-7 or its substrates, and their effects on the activity of MMP-7. Studies using MMP-7 variants with low CS-binding ability suggested that these lipids interact with a similar site on MMP-7. The hydroxamate-based MMP inhibitor TAPI-1 markedly reduced the affinity of MMP-7 for CS and CL, whereas that for SM4 was not affected by TAPI-1. These three acidic lipids also had different effects on the hydrolytic activity of MMP-7 towards a small peptide substrate: SM4, CL and CS reduced the activity to 80%, 92%, and 20%, respectively. Nevertheless, SM4 and CS similarly accelerated the MMP-7-catalyzed degradation of fibronectin and laminin-332, whereas CL did not. The increased proteolysis of substrate was observed only when both substrate and enzyme had affinity for the lipid, suggesting that the lipids probably bring the reactants into closer proximity. Furthermore, MMP-7 bound to cell surface SM4 or CS cleaved specific cell surface proteins and released similar fragments, whereas the cleavage was not stimulated by cell surface CL-bound MMP-7. This study provides a novel mechanism by which acidic lipids differentially regulate pericellular proteolysis by MMP-7 through allosteric alteration of the substrate-binding site and their inherent affinities for MMP-7 substrates.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Graduate School of Nanobioscience, Yokohama City University, Japan; Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, UK
| | | | | |
Collapse
|
41
|
Mannello F, Maccari F, Ligi D, Canale M, Galeotti F, Volpi N. Characterization of oversulfated chondroitin sulfate rich in 4,6-O-disulfated disaccharides in breast cyst fluids collected from human breast gross cysts. Cell Biochem Funct 2013; 32:344-50. [DOI: 10.1002/cbf.3022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 01/11/2023]
Affiliation(s)
- Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, Unit of Cell Biology; “Carlo Bo” University; Urbino Italy
| | - Francesca Maccari
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Daniela Ligi
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, Unit of Cell Biology; “Carlo Bo” University; Urbino Italy
| | - Matteo Canale
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, Unit of Cell Biology; “Carlo Bo” University; Urbino Italy
| | - Fabio Galeotti
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Nicola Volpi
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| |
Collapse
|
42
|
Velasco S, Díez-Revuelta N, Hernández-Iglesias T, Kaltner H, André S, Gabius HJ, Abad-Rodríguez J. Neuronal Galectin-4 is required for axon growth and for the organization of axonal membrane L1 delivery and clustering. J Neurochem 2013; 125:49-62. [DOI: 10.1111/jnc.12148] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/05/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Silvia Velasco
- Membrane Biology and Axonal Repair Laboratory; Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n; Toledo Spain
| | - Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory; Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n; Toledo Spain
| | | | - Herbert Kaltner
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität; München Germany
| | - Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität; München Germany
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität; München Germany
| | - José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory; Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n; Toledo Spain
| |
Collapse
|
43
|
Wu W, Dong YW, Shi PC, Yu M, Fu D, Zhang CY, Cai QQ, Zhao QL, Peng M, Wu LH, Wu XZ. Regulation of integrin αV subunit expression by sulfatide in hepatocellular carcinoma cells. J Lipid Res 2013; 54:936-52. [PMID: 23345412 DOI: 10.1194/jlr.m031450] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Integrin is important in migration and metastasis of tumor cells. Changes of integrin expression and distribution will cause an alteration of cellular adhesion and migration behaviors. In this study, we investigated sulfatide regulation of the integrin αV subunit expression in hepatoma cells and observed that either exogenous or endogenous sulfatide elicited a robust upregulation of integrin αV subunit mRNA and protein expression in hepatoma cells. This regulatory effect occurred with a corresponding phosphorylation (T739) of the transcription factor Sp1. Based on the electrophoretic mobility shift assay, sulfatide enhanced the integrin αV promoter activity and strengthened the Sp1 complex super-shift. The results of chromatin immunoprecipitation analysis also indicated that sulfatide enhanced Sp1 binding to the integrin αV promoter in vivo. Silence of Sp1 diminished the stimulation of integrin αV expression by sulfatide. In the early stage of sulfatide stimulation, phosphorylation of Erk as well as c-Src was noted, and inhibition of Erk activation with either U0126 or PD98059 significantly suppressed Sp1 phosphorylation and integrin αV expression. We demonstrated that sulfatide regulated integrin αV expression and cell adhesion, which was associated with Erk activation.
Collapse
Affiliation(s)
- Wei Wu
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Key Lab of Glycoconjugate Research, Ministry of Public Health, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ozawa H, Sonoda Y, Kato S, Suzuki E, Matsuoka R, Kanaya T, Kiuchi F, Hada N, Kasahara T. Sulfatides inhibit adhesion, migration, and invasion of murine melanoma B16F10 cell line in vitro. Biol Pharm Bull 2012; 35:2054-8. [PMID: 22972421 DOI: 10.1248/bpb.b12-00492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endogenous sulfatide, such as 3-sulfated galactosylceramide (3-sulfatide) has been reported to be involved in neuronal development and regulation of tumor cell metastasis. Recently, a new 6-sulfated glucosylceramide (6-sulfatide) has been isolated from the ascidian, Ciona intestinalis. To determine the antitumor function of the new sulfatide, we examined the effects of synthetic 6-sulfatide and 3-sulfatide on the metastatic features of a murine melanoma cell line, B16F10. Both sulfatides significantly inhibited the adhesion of melanoma cells onto fibronectin-coated tissue plates and, the motility and invasion of the cells, with 6-sulfatide showing stronger inhibitory activities. In addition, both sulfatides inhibited α(5)-, and β(1)- but not α(v)- or β(3)-integrin expression. Furthermore, these sulfatides inhibited the activation of focal adhesion kinase, Akt, and extracellular signal-regulated kinase signaling pathways, which are thought to be important for cell migration and invasion. Therefore, these sulfatides may serve as promising drug candidates for the treatment of cancer metastasis.
Collapse
Affiliation(s)
- Hiroki Ozawa
- Faculty of Pharmacy, Keio University, 1–5–30 Shibakoen, Tokyo 105–8512, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Vismara E, Coletti A, Valerio A, Naggi A, Urso E, Torri G. Anti-metastatic semi-synthetic sulfated maltotriose C-C linked dimers. Synthesis and characterisation. Molecules 2012; 17:9912-30. [PMID: 22902885 PMCID: PMC3646267 DOI: 10.3390/molecules17089912] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/08/2012] [Accepted: 08/09/2012] [Indexed: 01/04/2023] Open
Abstract
This manuscript describes the preparation and the spectroscopic characterisation of semi-synthetic sulfated maltotriose C-C linked dimers (SMTCs) where the natural C-O-C anomeric bond was substituted by one direct central C-C bond. This C-C bond induces conformation and flexibility changes with respect to the usual anomeric bond. SMTCs neutral precursors came from maltotriosyl bromide electroreduction through maltotriosyl radical intermediate dimerisation. The new C-C bond configuration, named for convenience α,α, α,β and β,β as the natural anomeric bond, dictated the statistic ratio formation of three diastereoisomers. They were separated by silica gel flash chromatography followed by semi preparative HPLC chromatography. Each diastereoisomer was exhaustively sulfated to afford the corresponding SMTCs. SMTCs were huge characterised by NMR spectroscopy which provided the sulfation degree, too. α,α and α,β were found quite homogeneous samples with a high degree of sulfation (85-95%). β,β appeared a non-homogeneous sample whose average sulfation degree was evaluated at around 78%. Mass spectroscopy experiments confirmed the sulfation degree range. Some considerations were proposed about SMTCs structure-biological properties.
Collapse
Affiliation(s)
- Elena Vismara
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano via Mancinelli 7, 20131 Milan, Italy; (A.C.); (A.V.)
| | - Alessia Coletti
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano via Mancinelli 7, 20131 Milan, Italy; (A.C.); (A.V.)
| | - Antonio Valerio
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano via Mancinelli 7, 20131 Milan, Italy; (A.C.); (A.V.)
| | - AnnaMaria Naggi
- Scientific Institute of Chemistry and Biochemistry “G. Ronzoni”, via G. Colombo 81, 20133 Milan, Italy; (A.N.); (E.U.); (G.T.)
| | - Elena Urso
- Scientific Institute of Chemistry and Biochemistry “G. Ronzoni”, via G. Colombo 81, 20133 Milan, Italy; (A.N.); (E.U.); (G.T.)
| | - Giangiacomo Torri
- Scientific Institute of Chemistry and Biochemistry “G. Ronzoni”, via G. Colombo 81, 20133 Milan, Italy; (A.N.); (E.U.); (G.T.)
| |
Collapse
|
46
|
Coupland LA, Chong BH, Parish CR. Platelets and P-selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Res 2012; 72:4662-71. [PMID: 22836751 DOI: 10.1158/0008-5472.can-11-4010] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prometastatic role of platelets has long been recognized with proposed mechanisms of action including shielding tumor cells from natural killer (NK) cell destruction and aiding endothelial attachment and extravasation of tumor cells with platelet P-selectin being implicated in these processes. However, many aspects of the prometastatic function of platelets remain unclear. In this study, we used mouse models of metastatic breast cancer and melanoma to investigate the platelet effect, focusing on organ specificity, the relationship with NK cells and the relative importance of platelet-derived versus endothelial-derived P-selectin. We found that platelets promote lung metastasis in the absence of NK cells in both acute and spontaneous metastasis models. In addition, the prometastatic action of platelets was found to be organ specific, clearly enhancing lung metastasis but not affecting B16F1 liver metastasis, in fact, liver metastasis was enhanced in the absence of platelets. Furthermore, the profound antimetastatic activity of NK cells was equally effective in the presence or absence of platelets and chronologically distinct from the prometastatic role of platelets. Finally, it was shown that endothelial-derived P-selectin is just as important as platelet-derived P-selectin in promoting lung metastasis and also plays an important role in liver metastasis. Taken together, our findings help clarify the roles of platelets, NK cells and P-selectin in metastasis, and they identify P-selectin as an attractive therapeutic target for preventing metastasis in multiple organs.
Collapse
Affiliation(s)
- Lucy A Coupland
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | |
Collapse
|
47
|
Takahashi T, Suzuki T. Role of sulfatide in normal and pathological cells and tissues. J Lipid Res 2012; 53:1437-50. [PMID: 22619219 DOI: 10.1194/jlr.r026682] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sulfatide is 3-O-sulfogalactosylceramide that is synthesized by two transferases (ceramide galactosyltransferase and cerebroside sulfotransferase) from ceramide and is specifically degraded by a sulfatase (arylsulfatase A). Sulfatide is a multifunctional molecule for various biological fields including the nervous system, insulin secretion, immune system, hemostasis/thrombosis, bacterial infection, and virus infection. Therefore, abnormal metabolism or expression change of sulfatide could cause various diseases. Here, we discuss the important biological roles of sulfatide in the nervous system, insulin secretion, immune system, hemostasis/thrombosis, cancer, and microbial infections including human immunodeficiency virus and influenza A virus. Our review will be helpful to achieve a comprehensive understanding of sulfatide, which serves as a fundamental target of prevention of and therapy for nervous disorders, diabetes mellitus, immunological diseases, cancer, and infectious diseases.
Collapse
Affiliation(s)
- Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka and Global COE Program for Innovation in Human Health Sciences, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | | |
Collapse
|
48
|
Ledeen RW, Wu G, André S, Bleich D, Huet G, Kaltner H, Kopitz J, Gabius HJ. Beyond glycoproteins as galectin counterreceptors: tumor-effector T cell growth control via ganglioside GM1. Ann N Y Acad Sci 2012; 1253:206-21. [DOI: 10.1111/j.1749-6632.2012.06479.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
50
|
Paschos KA, Canovas D, Bird NC. The engagement of selectins and their ligands in colorectal cancer liver metastases. J Cell Mol Med 2011; 14:165-74. [PMID: 19627399 PMCID: PMC3837616 DOI: 10.1111/j.1582-4934.2009.00852.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The colonization of the liver by colorectal cancer (CRC) cells is a complicated process which includes many stages, until macrometastases occur. The entrapment of malignant cells within the hepatic sinusoids and their interactions with resident non-parenchymal cells are considered very important for the whole metastatic sequence. In the sinusoids, cell connection and signalling is mediated by multiple cell adhesion molecules, such as the selectins. The three members of the selectin family, E-, P- and L-selectin, in conjunction with sialylated Lewis ligands and CD44 variants, regulate colorectal cell communication and adhesion with platelets, leucocytes, sinusoidal endothelial cells and stellate cells. Their role in CRC liver metastases has been investigated in animal models and human tissue, in vivo and in vitro, in static and shear flow conditions, and their key-function in several molecular pathways has been displayed. Therefore, trials have already commenced aiming to exploit selectins and their ligands in the treatment of benign and malignant diseases. Multiple pharmacological agents have been developed that are being tested for potential therapeutic applications.
Collapse
Affiliation(s)
- Konstantinos A Paschos
- Liver Research Group, Section of Oncology, School of Medicine, Royal Hallamshire Hospital, The University of Sheffield, Sheffield, UK.
| | | | | |
Collapse
|