1
|
Chen Y, Huang T, You C, Chen Y, Chen Y, Que Y, Su Y. The function and regulatory network of sugarcane chitinase gene ScChiIV1 in response to pathogen stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109630. [PMID: 39954373 DOI: 10.1016/j.plaphy.2025.109630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Plant chitinase is a pathogenesis-related protein that can hydrolyze chitin, the main component of fungal cell walls, and plays an important role in plant disease defense responses. Our previous study found the sugarcane class IV chitinase gene ScChiIV1 (GenBank Accession No. KP165001) was responding positively to smut pathogen Sporisorium scitamineum stress, but its disease resistance function and mechanism were unclear. Here, the upstream promoter of the ScChiIV1 gene (pro-ScChiIV1) with a length of 1696 bp was cloned which contained cis-acting elements related to hormone and stress response. Transient overexpression of the pro-ScChiIV1 in Nicotiana benthamiana showed inducible transcriptional levels by ABA, Fusarium solani var. coeruleum, and Alternaria longipes stimuli. Furthermore, stable overexpression of the ScChiIV1 gene in N. benthamiana enhanced the resistance of transgenic plants against F. solani var. coeruleum and S. scitamineum. Phenotypic monitoring, relevant physiological indicators, immune-related gene expression, and transcriptome analyses revealed that ScChiIV1 may activate potential TFs and PKs by inducing Ca2+ influx, ROS generation, and MAPK activation, thereby increasing the expression level of genes related to hormone signaling pathways, hypersensitive response (HR), and reactive oxygen species (ROS), as well as the activities of chitinase, superoxide dismutase (SOD), and catalase (CAT). In addition, ScChiIV1 reduced the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in transgenic plants, ultimately increasing disease resistance. This study provides novel insights into the molecular mechanism of the early response of the ScChiIV1 gene to pathogen stress and offers an excellent genetic resource for sugarcane disease resistant breeding.
Collapse
Affiliation(s)
- Yanling Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Tingchen Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Chuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Yao Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yan Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Chen Y, Gou Y, Huang T, Chen Y, You C, Que Y, Gao S, Su Y. Characterization of the chitinase gene family in Saccharum reveals the disease resistance mechanism of ScChiVII1. PLANT CELL REPORTS 2024; 43:299. [PMID: 39616552 DOI: 10.1007/s00299-024-03389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
KEY MESSAGE A chitinase gene ScChiVII1 which is involved in defense against pathogen stress was characterized in sugarcane. Chitinases, a subclass of pathogenesis-related proteins, catalyze chitin hydrolysis and play a key role in plant defense against chitin-containing pathogens. However, there is little research on disease resistance analysis of chitinase genes in sugarcane, and the systematic identification of their gene families has not been reported. In this study, 85 SsChi and 23 ShChi genes, which were divided into 6 groups, were identified from the wild sugarcane species Saccharum spontaneum and Saccharum hybrid cultivar R570, respectively. Transcriptome analysis and real-time quantitative PCR revealed that SsChi genes responded to smut pathogen stress. The chitinase crude extracted from the leaves of transgenic Nicotiana benthamiana plants overexpressing ScChiVII1 (a homologous gene of SsChi22a) inhibited the hyphal growth of Fusarium solani var. coeruleum and Sporisorium scitamineum. Notably, the chitinase and catalase activities and the jasmonic acid content in the leaves of ScChiVII1 transgenic N. benthamiana increased after inoculation with F solani var. coeruleum, but the salicylic acid, hydrogen peroxide, and malondialdehyde contents decreased. Comprehensive RNA sequencing of leaves before (0 day) and after inoculation (2 days) revealed that ScChiVII1 transgenic tobacco enhanced plant disease resistance by activating transcription factors and disease resistance-related signaling pathways, and modulating the expression of genes involved in the hypersensitive response and ethylene synthesis pathways. Taken together, this study provides comprehensive information on the chitinase gene family and offers potential genetic resources for disease resistance breeding in sugarcane.
Collapse
Affiliation(s)
- Yanling Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaxin Gou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tingchen Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yao Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shiwu Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Chen JY, Sang H, Chilvers MI, Wu CH, Chang HX. Characterization of soybean chitinase genes induced by rhizobacteria involved in the defense against Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2024; 15:1341181. [PMID: 38405589 PMCID: PMC10884886 DOI: 10.3389/fpls.2024.1341181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024]
Abstract
Rhizobacteria are capable of inducing defense responses via the expression of pathogenesis-related proteins (PR-proteins) such as chitinases, and many studies have validated the functions of plant chitinases in defense responses. Soybean (Glycine max) is an economically important crop worldwide, but the functional validation of soybean chitinase in defense responses remains limited. In this study, genome-wide characterization of soybean chitinases was conducted, and the defense contribution of three chitinases (GmChi01, GmChi02, or GmChi16) was validated in Arabidopsis transgenic lines against the soil-borne pathogen Fusarium oxysporum. Compared to the Arabidopsis Col-0 and empty vector controls, the transgenic lines with GmChi02 or GmChi16 exhibited fewer chlorosis symptoms and wilting. While GmChi02 and GmChi16 enhanced defense to F. oxysporum, GmChi02 was the only one significantly induced by Burkholderia ambifaria. The observation indicated that plant chitinases may be induced by different rhizobacteria for defense responses. The survey of 37 soybean chitinase gene expressions in response to six rhizobacteria observed diverse inducibility, where only 10 genes were significantly upregulated by at least one rhizobacterium and 9 genes did not respond to any of the rhizobacteria. Motif analysis on soybean promoters further identified not only consensus but also rhizobacterium-specific transcription factor-binding sites for the inducible chitinase genes. Collectively, these results confirmed the involvement of GmChi02 and GmChi16 in defense enhancement and highlighted the diverse inducibility of 37 soybean chitinases encountering F. oxysporum and six rhizobacteria.
Collapse
Affiliation(s)
- Jheng-Yan Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Martin I. Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
- Master Program of Plant Medicine, National Taiwan University, Taipei, Taiwan
- Center of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Xuan C, Feng M, Li X, Hou Y, Wei C, Zhang X. Genome-Wide Identification and Expression Analysis of Chitinase Genes in Watermelon under Abiotic Stimuli and Fusarium oxysporum Infection. Int J Mol Sci 2024; 25:638. [PMID: 38203810 PMCID: PMC10779513 DOI: 10.3390/ijms25010638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Chitinases, which catalyze the hydrolysis of chitin, the primary components of fungal cell walls, play key roles in defense responses, symbiotic associations, plant growth, and stress tolerance. In this study, 23 chitinase genes were identified in watermelon (Citrullus lanatus [Thunb.]) and classified into five classes through homology search and phylogenetic analysis. The genes with similar exon-intron structures and conserved domains were clustered into the same class. The putative cis-elements involved in the responses to phytohormone, stress, and plant development were identified in their promoter regions. A tissue-specific expression analysis showed that the ClChi genes were primarily expressed in the roots (52.17%), leaves (26.09%), and flowers (34.78%). Moreover, qRT-PCR results indicate that ClChis play multifaceted roles in the interaction between plant/environment. More ClChi members were induced by Race 2 of Fusarium oxysporum f. sp. niveum, and eight genes were expressed at higher levels on the seventh day after inoculation with Races 1 and 2, suggesting that these genes play a key role in the resistance of watermelon to Fusarium wilt. Collectively, these results improve knowledge of the chitinase gene family in watermelon species and help to elucidate the roles played by chitinases in the responses of watermelon to various stresses.
Collapse
Affiliation(s)
- Changqing Xuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Mengjiao Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Xin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Yinjie Hou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300384, China
| |
Collapse
|
5
|
Haxim Y, Kahar G, Zhang X, Si Y, Waheed A, Liu X, Wen X, Li X, Zhang D. Genome-wide characterization of the chitinase gene family in wild apple ( Malus sieversii) and domesticated apple ( Malus domestica) reveals its role in resistance to Valsa mali. FRONTIERS IN PLANT SCIENCE 2022; 13:1007936. [PMID: 36420026 PMCID: PMC9676469 DOI: 10.3389/fpls.2022.1007936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Chitinases are responsible for catalyzing the hydrolysis of chitin and contribute to plant defense against fungal pathogens by degrading fungal chitin. In this study, genome-wide identification of the chitinase gene family of wild apple (Malus sieversii) and domesticated apple (Malus domestica) was conducted, and the expression profile was analyzed in response to Valsa mali infection. A total of 36 and 47 chitinase genes belonging to the glycosyl hydrolase 18 (GH18) and 19 (GH19) families were identified in the genomes of M. sieversii and M. domestica, respectively. These genes were classified into five classes based on their phylogenetic relationships and conserved catalytic domains. The genes were randomly distributed on the chromosomes and exhibited expansion by tandem and segmental duplication. Eight of the 36 MsChi genes and 17 of the 47 MdChi genes were differentially expressed in response to V. mali inoculation. In particular, MsChi35 and its ortholog MdChi41, a class IV chitinase, were constitutively expressed at high levels in M. sieversii and domesticated apple, respectively, and may play a crucial role in the defense response against V. mali. These results improve knowledge of the chitinase gene family in apple species and provide a foundation for further studies of fungal disease prevention in apple.
Collapse
Affiliation(s)
- Yakupjan Haxim
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Gulnaz Kahar
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- University of Chinese Academy of Sciences, College of Resources and Environment, Beijing, China
| | - Xuechun Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- School of Life Sciences, Xinjiang Normal University, Ürümqi, China
| | - Yu Si
- University of Chinese Academy of Sciences, College of Resources and Environment, Beijing, China
| | - Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| |
Collapse
|
6
|
Umemoto N, Saito N, Noguchi M, Shoda SI, Ohnuma T, Watanabe T, Sakuda S, Fukamizo T. Plant Chitinase Mutants as the Catalysts for Chitooligosaccharide Synthesis Using the Sugar Oxazoline Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12897-12906. [PMID: 36184795 DOI: 10.1021/acs.jafc.2c04632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sugar oxazolines, (GlcNAc)n-oxa (n = 2, 3, 4, and 5), were synthesized from a mixture of chitooligosaccharides, (GlcNAc)n (n = 2, 3, 4, and 5), and utilized for synthesis of (GlcNAc)7 with higher elicitor activity using plant chitinase mutants as the catalysts. From isothermal titration calorimetry, the binding affinity of (GlcNAc)2-oxa toward an inactive mutant obtained from Arabidopsis thaliana GH18 chitinase was found to be higher than those of the other (GlcNAc)n-oxa (n = 3, 4, and 5). To synthesize (GlcNAc)7, the donor/acceptor substrates with different size combinations, (GlcNAc)2-oxa/(GlcNAc)5 (1), (GlcNAc)3-oxa/(GlcNAc)4 (2), (GlcNAc)4-oxa/(GlcNAc)3 (3), and (GlcNAc)5-oxa/(GlcNAc)2 (4), were incubated with hypertransglycosylating mutants of GH18 chitinases from A. thaliana and Cycas revoluta. The synthetic activities of these plant chitinase mutants were lower than that of a mutant of Bacillus circulans chitinase A1. Nevertheless, in the plant chitinase mutants, the synthetic efficiency of combination (1) was higher than those of the other combinations (2), (3), and (4), suggesting that the synthetic reaction is mostly dominated by the binding affinities of (GlcNAc)n-oxa. In contrast, the Bacillus enzyme mutant with a different subsite arrangement synthesized (GlcNAc)7 from combination (1) in the lowest efficiency. Donor/acceptor-size dependency of the enzymatic synthesis appeared to be strongly related to the subsite arrangement of the enzyme used as the catalyst. The A. thaliana chitinase mutant was found to be useful when combination (1) is employed for the substrates.
Collapse
Affiliation(s)
- Naoyuki Umemoto
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba, Sendai 980-8579, Japan
| | - Natsuki Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba, Sendai 980-8579, Japan
| | - Masato Noguchi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba, Sendai 980-8579, Japan
| | - Shin-Ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba, Sendai 980-8579, Japan
| | - Takayuki Ohnuma
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Takeshi Watanabe
- Department of Agro-Food Science, Niigata Agro-Food University, Tainai-shi, Niigata 959-2702, Japan
| | - Shohei Sakuda
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan
| | - Tamo Fukamizo
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
7
|
Bai X, Zhan G, Tian S, Peng H, Cui X, Islam MA, Goher F, Ma Y, Kang Z, Xu ZS, Guo J. Transcription factor BZR2 activates chitinase Cht20.2 transcription to confer resistance to wheat stripe rust. PLANT PHYSIOLOGY 2021; 187:2749-2762. [PMID: 34618056 PMCID: PMC8644182 DOI: 10.1093/plphys/kiab383] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/13/2021] [Indexed: 05/21/2023]
Abstract
The brassinosteroid pathway promotes a variety of physiological processes in plants and the brassinosteroid insensitive1-ethylmethane sulfonate suppressor (BES)/brassinazole-resistant (BZR) functions as one of its key regulators. We previously showed that the BES/BZR-type transcription factor TaBZR2 mediates the drought stress response in wheat (Triticum aestivum) by directly upregulating the transcriptional activity of glutathione S-transferase 1. However, the function of TaBZR2 in plants under biotic stresses is unknown. In this study, we found that transcript levels of TaBZR2 were upregulated in response to inoculation with wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, Pst) and treatment with flg22 or an elicitor-like protein of Pst, Pst322. Wheat lines overexpressing TaBZR2 conferred increased resistance, whereas TaBZR2-RNAi lines exhibited decreased resistance to multiple races of Pst. TaBZR2 targeted the promoter of the chitinase gene TaCht20.2, activating its transcription. Knockdown of TaCht20.2 in wheat resulted in enhanced susceptibility to Pst, indicating the positive role of TaCht20.2 in wheat resistance. Upon Pst infection in vivo, the overexpression of TaBZR2 increased total chitinase activity, whereas RNAi-mediated silencing of TaBZR2 reduced total chitinase activity. Taken together, our results suggest that TaBZR2 confers broad-spectrum resistance to the stripe rust fungus by increasing total chitinase activity in wheat.
Collapse
Affiliation(s)
- Xingxuan Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Gangming Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Shuxin Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Huan Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Xiaoyu Cui
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/ Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, P.R. China
| | - Md Ashraful Islam
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Farhan Goher
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Youzhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/ Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, P.R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/ Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, P.R. China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
- Author for communication:
| |
Collapse
|
8
|
Viswanath VK, Gore ST, Valiyaparambil A, Mukherjee S, Lakshminarasimhan A. Plasmodium chitinases: revisiting a target of transmission-blockade against malaria. Protein Sci 2021; 30:1493-1501. [PMID: 33934433 DOI: 10.1002/pro.4095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/21/2023]
Abstract
Malaria is a life-threatening disease caused by one of the five species of Plasmodium, among which Plasmodium falciparum cause the deadliest form of the disease. Plasmodium species are dependent on a vertebrate host and a blood-sucking insect vector to complete their life cycle. Plasmodium chitinases belonging to the GH18 family are secreted inside the mosquito midgut, during the ookinete stage of the parasite. Chitinases mediate the penetration of parasite through the peritrophic membrane, facilitating access to the gut epithelial layer. In this review, we describe Plasmodium chitinases with special emphasis on chitinases from P. falciparum and P. vivax, the representative examples of the short and long forms of this protein. In addition to the chitinase domain, chitinases belonging to the long form contain a pro-domain and chitin-binding domain. Amino acid sequence alignment of long and short form chitinase domains reveals multiple positions containing variant residues. A subset of these positions was found to be conserved or invariant within long or short forms, indicating the role of these positions in attributing form-specific activity. The reported differences in affinities to allosamidin for P. vivax and P. falciparum were predicted to be due to different residues at two amino acid positions, resulting in altered interactions with the inhibitor. Understanding the role of these amino acids in Plasmodium chitinases will help us elucidate the mechanism of catalysis and the mode of inhibition, which will be the key for identification of potent inhibitors or antibodies demonstrating transmission-blocking activity.
Collapse
Affiliation(s)
- Vysakh K Viswanath
- Tata Institute for Genetics and Society, Center at inStem, Bengaluru, India
| | - Suraj T Gore
- Aurigene Discovery Technologies Ltd, Bengaluru, India
| | | | | | | |
Collapse
|
9
|
Dutta B, Deska J, Bandopadhyay R, Shamekh S. In silico characterization of bacterial chitinase: illuminating its relationship with archaeal and eukaryotic cousins. J Genet Eng Biotechnol 2021; 19:19. [PMID: 33495874 PMCID: PMC7835276 DOI: 10.1186/s43141-021-00121-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/14/2021] [Indexed: 11/23/2022]
Abstract
Background Chitin is one of the most abundant biopolymers on Earth, only trailing second after cellulose. The enzyme chitinase is responsible for the degradation of chitin. Chitinases are found to be produced by wide range of organisms ranging from archaea to higher plants. Though chitin is a major component of fungal cell walls and invertebrate exoskeletons, bacterial chitinase can be industrially generated at low cost, in facile downstream processes at high production rate. Microbial chitinases are more stable, active, and economically practicable compared to the plant- and animal-derived enzymes. Results In the present study, computationally obtained results showed functional characteristics of chitinase with particular emphasis on bacterial chitinase which is fulfilling all the required qualities needed for commercial production. Sixty-two chitinase sequences from four different groups of organisms were collected from the RCSB Protein Data Bank. Considering one suitable exemplary sequence from each group is being compared with others. Primary, secondary, and tertiary structures are determined by in silico models. Different physical parameters, viz., pI, molecular weight, instability index, aliphatic index, GRAVY, and presence of functional motifs, are determined, and a phylogenetic tree has been constructed to elucidate relationships with other groups of organisms. Conclusions This study provides novel insights into distribution of chitinase among four groups and their characterization. The results represent valuable information toward bacterial chitinase in terms of the catalytic properties and structural features, can be exploited to produce a range of chitin-derived products. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00121-6.
Collapse
Affiliation(s)
- Bhramar Dutta
- Juva Truffle Center, Huttulantie 1C, Juva, Finland.,Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, West Bengal 713104, India
| | - Jan Deska
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 11000 (Otakaari 1B), FI 00076, Aalto, Finland
| | - Rajib Bandopadhyay
- Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, West Bengal 713104, India.
| | | |
Collapse
|
10
|
Glycoside hydrolase family 18 chitinases: The known and the unknown. Biotechnol Adv 2020; 43:107553. [DOI: 10.1016/j.biotechadv.2020.107553] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
|
11
|
Alessandri C, Ferrara R, Bernardi ML, Zennaro D, Tuppo L, Giangrieco I, Ricciardi T, Tamburrini M, Ciardiello MA, Mari A. Molecular approach to a patient's tailored diagnosis of the oral allergy syndrome. Clin Transl Allergy 2020; 10:22. [PMID: 32551040 PMCID: PMC7298840 DOI: 10.1186/s13601-020-00329-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Oral allergy syndrome (OAS) is one of the most common IgE-mediated allergic reactions. It is characterized by a number of symptoms induced by the exposure of the oral and pharyngeal mucosa to allergenic proteins belonging to class 1 or to class 2 food allergens. OAS occurring when patients sensitized to pollens are exposed to some fresh plant foods has been called pollen food allergy syndrome (PFAS). In the wake of PFAS, several different associations of allergenic sources have been progressively proposed and called syndromes. Molecular allergology has shown that these associations are based on IgE co-recognition taking place between homologous allergens present in different allergenic sources. In addition, the molecular approach reveals that some allergens involved in OAS are also responsible for systemic reactions, as in the case of some food Bet v 1-related proteins, lipid transfer proteins and gibberellin regulated proteins. Therefore, in the presence of a convincing history of OAS, it becomes crucial to perform a patient's tailored molecule-based diagnosis in order to identify the individual IgE sensitization profile. This information allows the prediction of possible cross-reactions with homologous molecules contained in other sources. In addition, it allows the assessment of the risk of developing more severe symptoms on the basis of the features of the allergenic proteins to which the patient is sensitized. In this context, we aimed to provide an overview of the features of relevant plant allergenic molecules and their involvement in the clinical onset of OAS. The value of a personalized molecule-based approach to OAS diagnosis is also analyzed and discussed.
Collapse
Affiliation(s)
- Claudia Alessandri
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Rosetta Ferrara
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Maria Livia Bernardi
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Danila Zennaro
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Lisa Tuppo
- Allergy Data Laboratories (ADL), Latina, Italy
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy
| | - Ivana Giangrieco
- Allergy Data Laboratories (ADL), Latina, Italy
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy
| | - Teresa Ricciardi
- Allergy Data Laboratories (ADL), Latina, Italy
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy
| | | | | | - Adriano Mari
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| |
Collapse
|
12
|
Affiliation(s)
- Ashish Malik
- Botany Department; M. D. University; Rohtak India
| | - Preety
- Botany Department; M. D. University; Rohtak India
| |
Collapse
|
13
|
Fukamizo T, Shinya S. Chitin/Chitosan-Active Enzymes Involved in Plant–Microbe Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:253-272. [DOI: 10.1007/978-981-13-7318-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Tuppo L, Giangrieco I, Alessandri C, Ricciardi T, Rafaiani C, Ciancamerla M, Ferrara R, Zennaro D, Bernardi ML, Tamburrini M, Mari A, Ciardiello MA. Pomegranate chitinase III: Identification of a new allergen and analysis of sensitization patterns to chitinases. Mol Immunol 2018; 103:89-95. [PMID: 30241023 DOI: 10.1016/j.molimm.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
Allergy to pomegranate is often associated with severe symptoms. Two allergens have previously been described: 9k-LTP Pun g 1 and pommaclein Pun g 7. This study describes the isolation of a chitinase III, identified by direct protein sequencing and mass spectrometry. It is a 29-kDa protein showing 69% sequence identity with the latex hevamine and IgE binding in dot blotting, immunoblotting and FABER®test. Chitinase-specific IgE were detected in 69 of 357 patients sensitized to one or more pomegranate allergenic preparations present on the FABER®test. Using this test, 19.2% of the patients sensitized to kiwifruit chitinase IV were also sensitized to pomegranate chitinase III, rather than to latex chitinase I (7.2%) with which it shares the N-terminal hevein-like domain. In conclusion, a new allergen has been identified, contributing to improving food allergy diagnosis. This study reveals the important role of chitinases III and IV as allergy sensitizers and prompts further investigations.
Collapse
Affiliation(s)
- Lisa Tuppo
- Institute of Biosciences and BioResources, CNR, I-80131 Naples, Italy; Allergy Data Laboratories s.r.l., Latina, Italy
| | - Ivana Giangrieco
- Institute of Biosciences and BioResources, CNR, I-80131 Naples, Italy; Allergy Data Laboratories s.r.l., Latina, Italy
| | - Claudia Alessandri
- Allergy Data Laboratories s.r.l., Latina, Italy; Associated Centers for Molecular Allergology, Rome, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | - Teresa Ricciardi
- Institute of Biosciences and BioResources, CNR, I-80131 Naples, Italy
| | - Chiara Rafaiani
- Allergy Data Laboratories s.r.l., Latina, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | | | - Rosetta Ferrara
- Allergy Data Laboratories s.r.l., Latina, Italy; Associated Centers for Molecular Allergology, Rome, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | - Danila Zennaro
- Allergy Data Laboratories s.r.l., Latina, Italy; Associated Centers for Molecular Allergology, Rome, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | - Maria Livia Bernardi
- Allergy Data Laboratories s.r.l., Latina, Italy; Associated Centers for Molecular Allergology, Rome, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | | | - Adriano Mari
- Allergy Data Laboratories s.r.l., Latina, Italy; Associated Centers for Molecular Allergology, Rome, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | | |
Collapse
|
15
|
Menghiu G, Ostafe V, Prodanovic R, Fischer R, Ostafe R. Biochemical characterization of chitinase A from Bacillus licheniformis DSM8785 expressed in Pichia pastoris KM71H. Protein Expr Purif 2018; 154:25-32. [PMID: 30237128 DOI: 10.1016/j.pep.2018.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/15/2018] [Accepted: 09/15/2018] [Indexed: 02/07/2023]
Abstract
Chitin is an abundant biopolymer found mainly in the exoskeleton of crustaceans and insects. The degradation of chitin using chitinases is one way to address the accumulation of chitin waste streams in the environment, and research has therefore focused on the identification, improvement and expression of suitable enzymes. Here we describe the production, purification and characterization of Bacillus licheniformis chitinase A in the Pichia pastoris expression system. Optimal enzyme activity occurred at pH 4.0-5.0 and within the temperature range 50-60 °C. With colloidal chitin as the substrate, the Km (2.307 mM) and Vmax (0.024 mM min-1) of the enzyme were determined using a 3,5-dinitrosalicylic acid assay. The degradation products of colloidal chitin and hexa-N-acetylchitohexaose were compared by thin-layer chromatography. The activity of the glycosylated enzyme produced in P. pastoris was compared with the in vitro deglycosylated and aglycosylated version produced in Escherichia coli. We showed that the glycosylated chitinase was more active than the deglycosylated and aglycosylated variants.
Collapse
Affiliation(s)
- Gheorghita Menghiu
- Institute for Biology VII, Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; Advanced Environmental Research Laboratories, Department of Biology - Chemistry, West University of Timisoara, Oituz 4, 300086, Timisoara, Romania
| | - Vasile Ostafe
- Advanced Environmental Research Laboratories, Department of Biology - Chemistry, West University of Timisoara, Oituz 4, 300086, Timisoara, Romania
| | - Radivoje Prodanovic
- Faculty of Chemistry, University of Belgrade, Studentski trg 12, 11000, Belgrade, Serbia
| | - Rainer Fischer
- Institute for Biology VII, Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; Indiana Bioscience Research Institute, W. 16th St. Suite 300, Indianapolis, IN, 46202, USA
| | - Raluca Ostafe
- Institute for Biology VII, Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; Indiana Bioscience Research Institute, W. 16th St. Suite 300, Indianapolis, IN, 46202, USA.
| |
Collapse
|
16
|
Kuba Y, Takashima T, Uechi K, Taira T. Purification, cDNA cloning, and characterization of plant chitinase with a novel domain combination from lycophyte Selaginella doederleinii. Biosci Biotechnol Biochem 2018; 82:1742-1752. [PMID: 29966504 DOI: 10.1080/09168451.2018.1491285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Chitinase-A from a lycophyte Selaginella doederleinii (SdChiA), having molecular mass of 53 kDa, was purified to homogeneity by column chromatography. The cDNA encoding SdChiA was cloned by rapid amplification of cDNA ends and polymerase chain reaction. It consisted of 1477 nucleotides and its open reading frame encoded a polypeptide of 467 amino acid residues. The deduced amino acid sequence indicated that SdChiA consisted of two N-terminal chitin-binding domains and a C-terminal plant class V chitinase catalytic domain, belonging to the carbohydrate-binding module family 18 (CBM18) and glycoside hydrolase family 18 (GH18), respectively. SdChiA had chitin-binding ability. The time-dependent cleavage pattern of (GlcNAc)4 by SdChiA showed that SdChiA specifically recognizes the β-anomer in the + 2 subsite of the substrate (GlcNAc)4 and cleaves the glycoside bond at the center of the substrate. This is the first report of the occurrence of a family 18 chitinase containing CBM18 chitin-binding domains. ABBREVIATIONS AtChiC: Arabidopsis thaliana class V chitinase; CBB: Coomassie brilliant blue R250; CBM: carbohydrate binding module family; CrChi-A: Cycas revolute chitinase-A; EaChiA: Equisetum arvense chitinase-A; GH: glycoside hydrolase family, GlxChi-B: gazyumaru latex chitinase-B; GlcNAc: N-acetylglucosamine; HPLC: high performance liquid chromatography; LysM; lysin motif; MtNFH1: Medicago truncatula ecotypes R108-1 chitinase; NCBI: national center for biotechnology information; NF: nodulation factor; NtChiV: Nicotiana tabacum class V chitinase; PCR: polymerase chain reaction; PrChi-A: Pteris ryukyuensis chitinase-A; RACE: rapid amplification of cDNA ends; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SdChiA: Selaginella doederleinii chitinase-A.
Collapse
Affiliation(s)
- Yumani Kuba
- a Graduate School of Agricultural Science , Kagoshima University , Kagoshima , Japan.,b Department of Bioscience and Biotechnology , University of the Ryukyus , Okinawa , Japan
| | - Tomoya Takashima
- a Graduate School of Agricultural Science , Kagoshima University , Kagoshima , Japan.,b Department of Bioscience and Biotechnology , University of the Ryukyus , Okinawa , Japan
| | - Keiko Uechi
- b Department of Bioscience and Biotechnology , University of the Ryukyus , Okinawa , Japan
| | - Toki Taira
- a Graduate School of Agricultural Science , Kagoshima University , Kagoshima , Japan.,b Department of Bioscience and Biotechnology , University of the Ryukyus , Okinawa , Japan
| |
Collapse
|
17
|
Bhuvanachandra B, Madhuprakash J, Podile AR. Active-site mutations improved the transglycosylation activity of Stenotrophomonas maltophilia chitinase A. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:407-414. [DOI: 10.1016/j.bbapap.2017.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 11/09/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
|
18
|
Zhang LY, Cai J, Li RJ, Liu W, Wagner C, Wong KB, Xie ZP, Staehelin C. A single amino acid substitution in a chitinase of the legume Medicago truncatula is sufficient to gain Nod-factor hydrolase activity. Open Biol 2017; 6:rsob.160061. [PMID: 27383628 PMCID: PMC4967823 DOI: 10.1098/rsob.160061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022] Open
Abstract
The symbiotic interaction between nitrogen-fixing rhizobia and legumes depends on lipo-chitooligosaccharidic Nod-factors (NFs). The NF hydrolase MtNFH1 of Medicago truncatula is a symbiotic enzyme that hydrolytically inactivates NFs with a C16 : 2 acyl chain produced by the microsymbiont Sinorhizobium meliloti 1021. MtNFH1 is related to class V chitinases (glycoside hydrolase family 18) but lacks chitinase activity. Here, we investigated the substrate specificity of MtNFH1-related proteins. MtCHIT5a and MtCHIT5b of M. truncatula as well as LjCHIT5 of Lotus japonicus showed chitinase activity, suggesting a role in plant defence. The enzymes failed to hydrolyse NFs from S. meliloti. NFs from Rhizobium leguminosarum with a C18 : 4 acyl moiety were neither hydrolysed by these chitinases nor by MtNFH1. Construction of chimeric proteins and further amino acid replacements in MtCHIT5b were performed to identify chitinase variants that gained the ability to hydrolyse NFs. A single serine-to-proline substitution was sufficient to convert MtCHIT5b into an NF-cleaving enzyme. MtNFH1 with the corresponding proline-to-serine substitution failed to hydrolyse NFs. These results are in agreement with a substrate-enzyme model that predicts NF cleavage when the C16 : 2 moiety is placed into a distinct fatty acid-binding cleft. Our findings support the view that MtNFH1 evolved from the ancestral MtCHIT5b by gene duplication and subsequent symbiosis-related neofunctionalization.
Collapse
Affiliation(s)
- Lan-Yue Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China
| | - Jie Cai
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China
| | - Ru-Jie Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China
| | - Christian Wagner
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China
| | - Kam-Bo Wong
- Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China Shenzhen Research and Development Center of State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Baoan, Shenzhen, People's Republic of China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China Shenzhen Research and Development Center of State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Baoan, Shenzhen, People's Republic of China
| |
Collapse
|
19
|
Kobaru S, Tanaka R, Taira T, Uchiumi T. Functional analyses of chitinases in the moss Physcomitrella patens: chitin oligosaccharide-induced gene expression and enzymatic characterization. Biosci Biotechnol Biochem 2016; 80:2347-2356. [PMID: 27562231 DOI: 10.1080/09168451.2016.1224640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Plant chitinases play diverse roles including defense against pathogenic fungi. Using reverse-transcription quantitative PCR analysis, we found that six chitinase (PpChi) genes and two genes for chitin elicitor receptor kinases (PpCERKs) are expressed at considerable levels in the moss Physcomitrella patens subsp. patens. The expressed PpChis belonged to glycoside hydrolase family 19 (class I: PpChi-Ia and -Ib; class II: PpChi-IIa and -IIc; and class IV: PpChi-IV) and to glycoside hydrolase family 18 (class V: PpChi-Vb). Treatment with chitin tetramer or hexamer increased the expression of class I and IV PpChi genes and decreased that of class II PpChi genes. Recombinant PpChi-Ia, PpChi-IV, and PpChi-Vb were characterized. PpChi-IV exhibited higher activity against chitin tetramer and pentamer than PpChi-Ia did. PpChi-Vb showed transglycosylation activity and PpChi-Ia inhibited fungal growth. These results suggest that chitinases of different classes play different roles in defense mechanism of moss plant against fungal pathogens.
Collapse
Affiliation(s)
- Saki Kobaru
- a Graduate School of Science and Engineering , Kagoshima University , Kagoshima , Japan
| | - Ryusuke Tanaka
- b Department of Bioscience and Biotechnology , University of the Ryukyus , Nishihara-cho , Japan
| | - Toki Taira
- b Department of Bioscience and Biotechnology , University of the Ryukyus , Nishihara-cho , Japan
| | - Toshiki Uchiumi
- a Graduate School of Science and Engineering , Kagoshima University , Kagoshima , Japan
| |
Collapse
|
20
|
Modulation of the transglycosylation activity of plant family GH18 chitinase by removing or introducing a tryptophan side chain. FEBS Lett 2015. [DOI: 10.1016/j.febslet.2015.07.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
22
|
Umemoto N, Kanda Y, Ohnuma T, Osawa T, Numata T, Sakuda S, Taira T, Fukamizo T. Crystal structures and inhibitor binding properties of plant class V chitinases: the cycad enzyme exhibits unique structural and functional features. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:54-66. [PMID: 25652217 DOI: 10.1111/tpj.12785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/09/2015] [Accepted: 01/30/2015] [Indexed: 06/04/2023]
Abstract
A class V (glycoside hydrolase family 18) chitinase from the cycad Cycas revoluta (CrChiA) is a plant chitinase that has been reported to possess efficient transglycosylation (TG) activity. We solved the crystal structure of CrChiA, and compared it with those of class V chitinases from Nicotiana tabacum (NtChiV) and Arabidopsis thaliana (AtChiC), which do not efficiently catalyze the TG reaction. All three chitinases had a similar (α/β)8 barrel fold with an (α + β) insertion domain. In the acceptor binding site (+1, +2 and +3) of CrChiA, the Trp168 side chain was found to stack face-to-face with the +3 sugar. However, this interaction was not found in the identical regions of NtChiV and AtChiC. In the DxDxE motif, which is essential for catalysis, the carboxyl group of the middle Asp (Asp117) was always oriented toward the catalytic acid Glu119 in CrChiA, whereas the corresponding Asp in NtChiV and AtChiC was oriented toward the first Asp. These structural features of CrChiA appear to be responsible for the efficient TG activity. When binding of the inhibitor allosamidin was evaluated using isothermal titration calorimetry, the changes in binding free energy of the three chitinases were found to be similar to each other, i.e. between -9.5 and -9.8 kcal mol(-1) . However, solvation and conformational entropy changes in CrChiA were markedly different from those in NtChiV and AtChiC, but similar to those of chitinase A from Serratia marcescens (SmChiA), which also exhibits significant TG activity. These results provide insight into the molecular mechanism underlying the TG reaction and the molecular evolution from bacterial chitinases to plant class V chitinases.
Collapse
Affiliation(s)
- Naoyuki Umemoto
- Department of Advanced Bioscience, Kinki University, 3327-204 Nakamachi, Nara, 631-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Inamine S, Onaga S, Ohnuma T, Fukamizo T, Taira T. Purification, cDNA cloning, and characterization of LysM-containing plant chitinase from horsetail (Equisetum arvense). Biosci Biotechnol Biochem 2015; 79:1296-304. [PMID: 25818933 DOI: 10.1080/09168451.2015.1025693] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chitinase-A (EaChiA), molecular mass 36 kDa, was purified from the vegetative stems of a horsetail (Equisetum arvense) using a series of column chromatography. The N-terminal amino acid sequence of EaChiA was similar to the lysin motif (LysM). A cDNA encoding EaChiA was cloned by rapid amplification of cDNA ends and polymerase chain reaction. It consisted of 1320 nucleotides and encoded an open reading frame of 361 amino acid residues. The deduced amino acid sequence indicated that EaChiA is composed of a N-terminal LysM domain and a C-terminal plant class IIIb chitinase catalytic domain, belonging to the glycoside hydrolase family 18, linked by proline-rich regions. EaChiA has strong chitin-binding activity, however, no antifungal activity. This is the first report of a chitinase from Equisetopsida, a class of fern plants, and the second report of a LysM-containing chitinase from a plant.
Collapse
Affiliation(s)
- Saki Inamine
- a Graduate School of Science and Engineering , Kagoshima University , Kagoshima , Japan
| | | | | | | | | |
Collapse
|
24
|
Volpicella M, Leoni C, Fanizza I, Placido A, Pastorello EA, Ceci LR. Overview of plant chitinases identified as food allergens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5734-5742. [PMID: 24841122 DOI: 10.1021/jf5007962] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Food allergies are induced by proteins belonging to a limited number of families. Unfortunately, relationships between protein structure and capacity to induce the immune response have not been completely clarified yet, which precludes possible improvements in the diagnosis, prevention, and therapy of allergies. Plant chitinases constitute a good example of food allergenic proteins for which structural analysis of allergenicity has only been carried out partially. In plants, there are at least five structural classes of chitinases plus a number of chitinase-related polypeptides. Their allergenicity has been mostly investigated for chitinases of class I, due to both their higher prevalence among plant chitinases and by the high structural similarity between their substrate-binding domain and hevein, a well-known allergen present in the latex of rubber trees. Even if allergenic molecules have been identified for at least three other classes of plant chitinases, the involvement of the different structural motifs in the allergenicity of molecules has been disregarded so far. In this review, we provide a structurally based catalog of plant chitinases investigated for allergenicity, which could be a useful base for further studies aimed at better clarifying the structure-allergenicity relationships for this protein family.
Collapse
Affiliation(s)
- Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Goñi O, Sanchez-Ballesta MT, Merodio C, Escribano MI. Two cold-induced family 19 glycosyl hydrolases from cherimoya (Annona cherimola) fruit: an antifungal chitinase and a cold-adapted chitinase. PHYTOCHEMISTRY 2013; 95:94-104. [PMID: 23890591 DOI: 10.1016/j.phytochem.2013.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 06/27/2013] [Accepted: 07/03/2013] [Indexed: 06/02/2023]
Abstract
Two cold-induced chitinases were isolated and purified from the mesocarp cherimoyas (Annona cherimola Mill.) and they were characterised as acidic endochitinases with a Mr of 24.79 and 47.77kDa (AChi24 and AChi48, respectively), both family 19 glycosyl hydrolases. These purified chitinases differed significantly in their biochemical and biophysical properties. While both enzymes had similar optimal acidic pH values, AChi24 was enzymatically active and stable at alkaline pH values, as well as displaying an optimal temperature of 45°C and moderate thermostability. Kinetic studies revealed a great catalytic efficiency of AChi24 for oligomeric and polymeric substrates. Conversely, AChi48 hydrolysis showed positive co-operativity that was associated to a mixture of different functional oligomeric states through weak transient protein interactions. The rise in the AChi48 kcat at increasing enzyme concentrations provided evidence of its oligomerisation. AChi48 chitinase was active and stable in a broad acidic pH range, and while it was relatively labile as temperatures increased, with an optimal temperature of 35°C, it retained about 50% of its maximal activity from 5 to 50°C. Thermodynamic characterisation reflected the high kcat of AChi48 and the remarkably lower ΔH(‡), ΔS(‡) and ΔG(‡) values at 5°C compared to AChi24, indicating that the hydrolytic activity of AChi48 was less thermodependent. In vitro functional studies revealed that AChi24 had a strong antifungal defence potential against Botrytis cinerea, whereas they displayed no cryoprotective or antifreeze activity. Hence, based on biochemical, thermodynamic and functional data, this study demonstrates that two acidic endochitinases are induced at low temperatures in a subtropical fruit, and that one of them acts in an oligomeric cold-adapted manner.
Collapse
Affiliation(s)
- Oscar Goñi
- Grupo Biotecnología y Calidad Posrecolección, Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, José Antonio Novais 10, Ciudad Universitaria, E-28040 Madrid, Spain
| | | | | | | |
Collapse
|
26
|
Das SN, Madhuprakash J, Sarma PVSRN, Purushotham P, Suma K, Manjeet K, Rambabu S, Gueddari NEE, Moerschbacher BM, Podile AR. Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants. Crit Rev Biotechnol 2013; 35:29-43. [PMID: 24020506 DOI: 10.3109/07388551.2013.798255] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Plants have evolved mechanisms to recognize a wide range of pathogen-derived molecules and to express induced resistance against pathogen attack. Exploitation of induced resistance, by application of novel bioactive elicitors, is an attractive alternative for crop protection. Chitooligosaccharide (COS) elicitors, released during plant fungal interactions, induce plant defenses upon recognition. Detailed analyses of structure/function relationships of bioactive chitosans as well as recent progress towards understanding the mechanism of COS sensing in plants through the identification and characterization of their cognate receptors have generated fresh impetus for approaches that would induce innate immunity in plants. These progresses combined with the application of chitin/chitosan/COS in disease management are reviewed here. In considering the field application of COS, however, efficient and large-scale production of desired COS is a challenging task. The available methods, including chemical or enzymatic hydrolysis and chemical or biotechnological synthesis to produce COS, are also reviewed.
Collapse
Affiliation(s)
- Subha Narayan Das
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad , Hyderabad , India and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
A glycosynthase derived from an inverting GH19 chitinase from the moss Bryum coronatum. Biochem J 2012; 444:437-43. [DOI: 10.1042/bj20120036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BcChi-A, a GH19 chitinase from the moss Bryum coronatum, is an endo-acting enzyme that hydrolyses the glycosidic bonds of chitin, (GlcNAc)n [a β-1,4-linked polysaccharide of GlcNAc (N-acetylglucosamine) with a polymerization degree of n], through an inverting mechanism. When the wild-type enzyme was incubated with α-(GlcNAc)2-F [α-(GlcNAc)2 fluoride] in the absence or presence of (GlcNAc)2, (GlcNAc)2 and hydrogen fluoride were found to be produced through the Hehre resynthesis–hydrolysis mechanism. To convert BcChi-A into a glycosynthase, we employed the strategy reported by Honda et al. [(2006) J. Biol. Chem. 281, 1426–1431; (2008) Glycobiology 18, 325–330] of mutating Ser102, which holds a nucleophilic water molecule, and Glu70, which acts as a catalytic base, producing S102A, S102C, S102D, S102G, S102H, S102T, E70G and E70Q. In all of the mutated enzymes, except S102T, hydrolytic activity towards (GlcNAc)6 was not detected under the conditions we used. Among the inactive BcChi-A mutants, S102A, S102C, S102G and E70G were found to successfully synthesize (GlcNAc)4 as a major product from α-(GlcNAc)2-F in the presence of (GlcNAc)2. The S102A mutant showed the greatest glycosynthase activity owing to its enhanced F− releasing activity and its suppressed hydrolytic activity. This is the first report on a glycosynthase that employs amino sugar fluoride as a donor substrate.
Collapse
|
28
|
Yang H, Zhang T, Masuda T, Lv C, Sun L, Qu G, Zhao G. Chitinase III in pomegranate seeds (Punica granatum Linn.): a high-capacity calcium-binding protein in amyloplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:765-76. [PMID: 21790816 DOI: 10.1111/j.1365-313x.2011.04727.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chitinases are a class of ubiquitous proteins that are widely distributed in plants. Defense is the major natural role for chitinases, primarily against fungal pathogens. Little is known regarding their non-defensive roles in seeds. In this study, a new class III chitinase from pomegranate seeds (pomegranate seed chitinase, PSC) was isolated and purified to homogeneity. The native state of PSC is a monomer with a molecular weight of approximately 30 kDa. This chitinase naturally binds calcium ions with high capacity and low affinity, suggesting that PSC is a calcium storage protein. Consistent with this idea, its amino acid sequence (inferred from cDNA) is rich in acidic amino acid residues, especially Asp, similar to reported calcium storage proteins. The presence of calcium considerably improves the stability of the protein but has little effect on its enzymatic activity. Transmission electron microscopy analyses indicate that, similar to phytoferritin, this enzyme is widely distributed in the stroma of amyloplasts of the embryonic cells, suggesting that amyloplasts in seeds could serve as an alternative plastid for calcium storage. Indeed, the transmission electron microscopy results showed that, within the embryonic cells, calcium ions are mainly distributed in the stroma of the amyloplasts, consistent with a role for PSC in calcium storage. Thus, the plant appears to have evolved a new plastid for calcium storage in seeds. During seed germination, the content of this enzyme decreases with time, suggesting that it is involved in the germination process.
Collapse
Affiliation(s)
- Haixia Yang
- CAU & ACC Joint Laboratory of Space Food, College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Lv C, Masuda T, Yang H, Sun L, Zhao G. High-capacity calcium-binding chitinase III from pomegranate seeds (Punica granatum Linn.) is located in amyloplasts. PLANT SIGNALING & BEHAVIOR 2011; 6:1963-5. [PMID: 22112454 PMCID: PMC3337188 DOI: 10.4161/psb.6.12.18147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have recently identified a new class III chitinase from pomegranate seeds (PSC). Interestingly, this new chitinase naturally binds calcium ions with high capacity and low affinity, suggesting that PSC is a Ca-storage protein. Analysis of the amino acid sequence showed that this enzyme is rich in acidic amino acid residues, especially Asp, which are responsible for calcium binding. Different from other known chitinases, PSC is located in the stroma of amyloplasts in pomegranate seeds. Transmission electron microscopy (TEM) analysis indicated that the embryonic cells of pomegranate seeds are rich in calcium ions, most of which are distributed in the stroma and the starch granule of the amyloplasts, consistent with the above idea that PSC is involved in calcium storage, a newly non-defensive function.
Collapse
Affiliation(s)
- Chenyan Lv
- CAU & ACC Joint-Laboratory of Space Food; College of Food Science & Nutritional Engineering; China Agricultural University; Key Laboratory of Functional Dairy; Beijing, China
| | - Taro Masuda
- Laboratory of Food Quality Design and Development; Division of Agronomy and Horticultural Science; Graduate School of Agriculture; Kyoto University; Kyoto, Japan
| | - Haixia Yang
- CAU & ACC Joint-Laboratory of Space Food; College of Food Science & Nutritional Engineering; China Agricultural University; Key Laboratory of Functional Dairy; Beijing, China
| | - Lei Sun
- Center for Biological Imaging; Institute of Biophysics; Chinese Academy of Sciences; Beijing, China
| | - Guanghua Zhao
- CAU & ACC Joint-Laboratory of Space Food; College of Food Science & Nutritional Engineering; China Agricultural University; Key Laboratory of Functional Dairy; Beijing, China
| |
Collapse
|
30
|
Ohnuma T, Numata T, Osawa T, Mizuhara M, Lampela O, Juffer AH, Skriver K, Fukamizo T. A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis. PLANTA 2011; 234:123-37. [PMID: 21390509 DOI: 10.1007/s00425-011-1390-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 02/21/2011] [Indexed: 05/24/2023]
Abstract
Expression of a class V chitinase gene (At4g19810, AtChiC) in Arabidopsis thaliana was examined by quantitative real-time PCR and by analyzing microarray data available at Genevestigator. The gene expression was induced by the plant stress-related hormones abscisic acid (ABA) and jasmonic acid (JA) and by the stress resulting from the elicitor flagellin, NaCl, and osmosis. The recombinant AtChiC protein was produced in E. coli, purified, and characterized with respect to the structure and function. The recombinant AtChiC hydrolyzed N-acetylglucosamine oligomers producing dimers from the non-reducing end of the substrates. The crystal structure of AtChiC was determined by the molecular replacement method at 2.0 Å resolution. AtChiC was found to adopt an (β/α)(8) fold with a small insertion domain composed of an α-helix and a five-stranded β-sheet. From docking simulation of AtChiC with pentameric substrate, the amino acid residues responsible for substrate binding were found to be well conserved when compared with those of the class V chitinase from Nicotiana tabacum (NtChiV). All of the structural and functional properties of AtChiC are quite similar to those obtained for NtChiV, and seem to be common to class V chitinases from higher plants.
Collapse
Affiliation(s)
- Takayuki Ohnuma
- Department of Advanced Bioscience, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Taira T, Mahoe Y, Kawamoto N, Onaga S, Iwasaki H, Ohnuma T, Fukamizo T. Cloning and characterization of a small family 19 chitinase from moss (Bryum coronatum). Glycobiology 2011; 21:644-54. [PMID: 21367878 DOI: 10.1093/glycob/cwq212] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chitinase-A (BcChi-A) was purified from a moss, Bryum coronatum, by several steps of column chromatography. The purified BcChi-A was found to be a molecular mass of 25 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an isoelectric point of 3.5. A cDNA encoding BcChi-A was cloned by rapid amplification of cDNA ends and polymerase chain reaction. It consisted of 1012 nucleotides and encoded an open reading frame of 228 amino acid residues. The predicted mature BcChi-A consists of 205 amino acid residues and has a molecular weight of 22,654. Sequence analysis indicated that BcChi-A is glycoside hydrolase family-19 (GH19) chitinase lacking loops I, II, IV and V, and a C-terminal loop, which are present in the catalytic domain of plant class I and II chitinases. BcChi-A is a compact chitinase that has the fewest loop regions of the GH19 chitinases. Enzymatic experiments using chitooligosaccharides showed that BcChi-A has higher activity toward shorter substrates than class II enzymes. This characteristic is likely due to the loss of the loop regions that are located at the end of the substrate-binding cleft and would be involved in substrate binding of class II enzymes. This is the first report of a chitinase from mosses, nonvascular plants.
Collapse
Affiliation(s)
- Toki Taira
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Ohnuma T, Numata T, Osawa T, Mizuhara M, Vårum KM, Fukamizo T. Crystal structure and mode of action of a class V chitinase from Nicotiana tabacum. PLANT MOLECULAR BIOLOGY 2011; 75:291-304. [PMID: 21240541 DOI: 10.1007/s11103-010-9727-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/26/2010] [Indexed: 05/30/2023]
Abstract
A class V chitinase from Nicotiana tabacum (NtChiV) with amino acid sequence similar to that of Serratia marcescens chitinase B (SmChiB) was expressed in E. coli and purified to homogeneity. When N-acetylglucosamine oligosaccharides [(NAG)(n)] were hydrolyzed by the purified NtChiV, the second glycosidic linkage from the non-reducing end was predominantly hydrolyzed in a manner similar to that of SmChiB. NtChiV was shown to hydrolyze partially N-acetylated chitosan non-processively, whereas SmChiB hydrolyzes the same substrate processively. The crystal structure of NtChiV was determined by the single-wavelength anomalous dispersion method at 1.2 Å resolution. The protein adopts a classical (β/α)₈-barrel fold (residues 1-233 and 303-348) with an insertion of a small (α + β) domain (residues 234-302). This is the first crystal structure of a plant class V chitinase. The crystal structure of the inactive mutant NtChiV E115Q complexed with (NAG)₄ was also solved and exhibited a linear conformation of the bound oligosaccharide occupying -2, +1, +2, and +3 subsites. The complex structure corresponds to an initial state of (NAG)₄ binding, which is proposed to be converted into a bent conformation through sliding of the +1, +2, and +3 sugar units to -1, +1, and +2 subsites. Although NtChiV is similar to SmChiB, the chitin-binding domain is present in the C-terminus of the latter, but not in the former. Aromatic amino acid residues found in the substrate binding cleft of SmChiB, including Trp97, are substituted with aliphatic residues in NtChiV. These structural differences appear to be responsible for NtChiV being a non-processive enzyme.
Collapse
Affiliation(s)
- Takayuki Ohnuma
- Department of Advanced Bioscience, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | | | | | | | | | | |
Collapse
|