1
|
Velichko NS, Kokoulin MS, Dmitrenok PS, Grinev VS, Kuchur PD, Komissarov AS, Fedonenko YP. Lipopolysaccharides of Herbaspirillum species and their relevance for bacterium-host interactions. Int J Biol Macromol 2024; 261:129516. [PMID: 38278393 DOI: 10.1016/j.ijbiomac.2024.129516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/14/2023] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
The lipopolysaccharides of Herbaspirillum lusitanum P6-12T (HlP6-12T) and H. frisingense GSF30T (HfGSF30T) was isolated by phenol-water extraction from bacterial cells and was characterized using chemical analysis and SDS-PAGE. It was shown that these bacteria produce LPSs that differ in their physicochemical properties and macromolecular organization. In this paper, the lipid A structure of the HlP6-12T LPS, was characterized through chemical analyses and matrix-assisted laser desorption ionization (MALDI) mass spectrometry. To prove the effect of the size of micelles on their bioavailability, we examined the activity of both LPSs toward the morphology of wheat seedlings. Analysis of the HlP6-12T and HfGSF30T genomes showed no significant differences between the operons that encode proteins involved in the biosynthesis of the lipids A and core oligosaccharides. The difference may be due to the composition of the O-antigen operon. HfGSF30T has two copies of the rfb operon, with the main one divided into two fragments. In contrast, the HlP6-12T genome contains only a single rfb-containing operon, and the other O-antigen operons are not comparable at all. The integrity of O-antigen-related genes may also affect LPS variability of. Specifically, we have observed a hairpin structure in the middle of the O-antigen glycosyltransferase gene, which led to the division of the gene into two fragments, resulting in incorrect protein synthesis and potential abnormalities in O-antigen production.
Collapse
Affiliation(s)
- Natalya S Velichko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia.
| | - Maxim S Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospekt 100 Let Vladivostoku, Vladivostok 690022, Russia
| | - Pavel S Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospekt 100 Let Vladivostoku, Vladivostok 690022, Russia
| | - Vyacheslav S Grinev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia; Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| | - Polina D Kuchur
- Applied Genomics Laboratory, SCAMT Institute, ITMO University, 9 Ulitsa Lomonosova, St. Petersburg 191002, Russia
| | - Aleksey S Komissarov
- Applied Genomics Laboratory, SCAMT Institute, ITMO University, 9 Ulitsa Lomonosova, St. Petersburg 191002, Russia
| | - Yulia P Fedonenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia; G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospekt 100 Let Vladivostoku, Vladivostok 690022, Russia
| |
Collapse
|
2
|
Lipopolysaccharide of the Yersinia pseudotuberculosis Complex. Biomolecules 2021; 11:biom11101410. [PMID: 34680043 PMCID: PMC8533242 DOI: 10.3390/biom11101410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/27/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Lipopolysaccharide (LPS), localized in the outer leaflet of the outer membrane, serves as the major surface component of the Gram-negative bacterial cell envelope responsible for the activation of the host's innate immune system. Variations of the LPS structure utilized by Gram-negative bacteria promote survival by providing resistance to components of the innate immune system and preventing recognition by TLR4. This review summarizes studies of the biosynthesis of Yersinia pseudotuberculosis complex LPSs, and the roles of their structural components in molecular mechanisms of yersiniae pathogenesis and immunogenesis.
Collapse
|
3
|
Structural and genetic characterization of the colitose-containing O-specific polysaccharide from the lipopolysaccharide of Herbaspirillum frisingense GSF30T. Int J Biol Macromol 2020; 161:891-897. [DOI: 10.1016/j.ijbiomac.2020.06.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
|
4
|
Liu MA, Morris P, Reeves PR. Wzx flippases exhibiting complex O-unit preferences require a new model for Wzx-substrate interactions. Microbiologyopen 2018; 8:e00655. [PMID: 29888516 PMCID: PMC6436433 DOI: 10.1002/mbo3.655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/26/2018] [Indexed: 11/08/2022] Open
Abstract
The Wzx flippase is a critical component of the O‐antigen biosynthesis pathway, being responsible for the translocation of oligosaccharide O units across the inner membrane in Gram‐negative bacteria. Recent studies have shown that Wzx has a strong preference for its cognate O unit, but the types of O‐unit structural variance that a given Wzx can accommodate are poorly understood. In this study, we identified two Yersinia pseudotuberculosis Wzx that can distinguish between different terminal dideoxyhexose sugars on a common O‐unit main‐chain, despite both being able to translocate several other structurally‐divergent O units. We also identified other Y. pseudotuberculosis Wzx that can translocate a structurally divergent foreign O unit with high efficiency, and thus exhibit an apparently relaxed substrate preference. It now appears that Wzx substrate preference is more complex than previously suggested, and that not all O‐unit residues are equally important determinants of translocation efficiency. We propose a new “Structure‐Specific Triggering” model in which Wzx translocation proceeds at a low level for a wide variety of substrates, with high‐frequency translocation only being triggered by Wzx interacting with one or more preferred O‐unit structural elements found on its cognate O unit(s).
Collapse
Affiliation(s)
- Michael A Liu
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Paraskevi Morris
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter R Reeves
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Kenyon JJ, Cunneen MM, Reeves PR. Genetics and evolution of Yersinia pseudotuberculosis O-specific polysaccharides: a novel pattern of O-antigen diversity. FEMS Microbiol Rev 2017; 41:200-217. [PMID: 28364730 PMCID: PMC5399914 DOI: 10.1093/femsre/fux002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/02/2017] [Indexed: 11/29/2022] Open
Abstract
O-antigen polysaccharide is a major immunogenic feature of the lipopolysaccharide of Gram-negative bacteria, and most species produce a large variety of forms that differ substantially from one another. There are 18 known O-antigen forms in the Yersinia pseudotuberculosis complex, which are typical in being composed of multiple copies of a short oligosaccharide called an O unit. The O-antigen gene clusters are located between the hemH and gsk genes, and are atypical as 15 of them are closely related, each having one of five downstream gene modules for alternative main-chain synthesis, and one of seven upstream modules for alternative side-branch sugar synthesis. As a result, many of the genes are in more than one gene cluster. The gene order in each module is such that, in general, the earlier a gene product functions in O-unit synthesis, the closer the gene is to the 5΄ end for side-branch modules or the 3΄ end for main-chain modules. We propose a model whereby natural selection could generate the observed pattern in gene order, a pattern that has also been observed in other species.
Collapse
Affiliation(s)
- Johanna J. Kenyon
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology. Brisbane, QLD 4001, Australia
| | - Monica M. Cunneen
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter R. Reeves
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Wu Z, Zhao G, Li T, Qu J, Guan W, Wang J, Ma C, Li X, Zhao W, Wang PG, Li L. Biochemical characterization of an α1,2-colitosyltransferase from Escherichia coli O55:H7. Glycobiology 2015; 26:493-500. [PMID: 26703456 DOI: 10.1093/glycob/cwv169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/16/2015] [Indexed: 01/17/2023] Open
Abstract
Colitose, also known as 3,6-dideoxy-L-galactose or 3-deoxy-L-fucose, is one of only five naturally occurring 3,6-dideoxyhexoses. Colitose was found in lipopolysaccharide of a number of infectious bacteria, including Escherichia coli O55 & O111 and Vibrio cholera O22 & O139. To date, no colitosyltransferase (ColT) has been characterized, probably due to the inaccessibility of the sugar donor, GDP-colitose. In this study, starting with chemically prepared colitose, 94.6 mg of GDP-colitose was prepared via a facile and efficient one-pot two-enzyme system involving an L-fucokinase/GDP-L-Fuc pyrophosphorylase and an inorganic pyrophosphatase (EcPpA). WbgN, a putative ColT from E. coliO55:H5 was then cloned, overexpressed, purified and biochemically characterized by using GDP-colitose as a sugar donor. Activity assay and structural identification of the synthetic product clearly demonstrated that wbgN encodes an α1,2-ColT. Biophysical study showed that WbgN does not require metal ion, and is highly active at pH 7.5-9.0. In addition, acceptor specificity study indicated that WbgN exclusively recognizes lacto-N-biose (Galβ1,3-GlcNAc). Most interestingly, it was found that WbgN exhibits similar activity toward GDP-l-Fuc (kcat/Km= 9.2 min(-1)mM(-1)) as that toward GDP-colitose (kcat/Km= 12 min(-1)mM(-1)). Finally, taking advantage of this, type 1 H-antigen was successfully synthesized in preparative scale.
Collapse
Affiliation(s)
- Zhigang Wu
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Guohui Zhao
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Tiehai Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Jingyao Qu
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Wanyi Guan
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Jiajia Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 30071, China
| | - Cheng Ma
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Xu Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 30071, China
| | - Peng G Wang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 30071, China
| | | |
Collapse
|
7
|
Beczała A, Ovchinnikova OG, Datta N, Mattinen L, Knapska K, Radziejewska-Lebrecht J, Holst O, Skurnik M. Structure and genetic basis of Yersinia similis serotype O:9 O-specific polysaccharide. Innate Immun 2013; 21:3-16. [DOI: 10.1177/1753425913514783] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The O-polysaccharide (OPS, O-Ag) cap of LPS is a major virulence factor of Yersinia species and also serves as a receptor for the binding of lytic bacteriophage φR1-37. Currently, the OPS-based serotyping scheme for the Yersinia pseudotuberculosis complex includes 21 known O-serotypes that follow three distinct lineages: Y. pseudotuberculosis sensu stricto, Y. similis and the Korean group of strains. Elucidation of the Y. pseudotuberculosis complex OPS structures and characterization of the OPS genetics (altogether 18 O-serotypes studied thus far) allows a better understanding of the relationships among the various O serotypes and will facilitate the analysis of the evolutionary processes giving rise to new serotypes. Here we present the characterization of the OPS structure and gene cluster of Y. similis O:9. Bacteriophage φR1-37, which uses the Y. similis O:9 OPS as a receptor, also infects a number of Y. enterocolitica serotypes, including O:3, O:5,27, O:9 and O:50. The Y. similis O:9 OPS structure resembled none of the receptor structures of the Y. enterocolitica strains, suggesting that φR1-37 can recognize several surface receptors, thus promoting broad host specificity.
Collapse
Affiliation(s)
- Agnieszka Beczała
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Airway Research Center North (ARCN), Borstel, Germany
- Department of Microbiology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Olga G Ovchinnikova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Neeta Datta
- Department of Bacteriology and Immunology, Haartman Institute, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Laura Mattinen
- Department of Bacteriology and Immunology, Haartman Institute, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Katarzyna Knapska
- Department of Bacteriology and Immunology, Haartman Institute, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Joanna Radziejewska-Lebrecht
- Department of Microbiology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Otto Holst
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Airway Research Center North (ARCN), Borstel, Germany
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Haartman Institute, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital Laboratory Diagnostics, Helsinki, Finland
| |
Collapse
|
8
|
Kenyon JJ, Reeves PR. The Wzy O-antigen polymerase of Yersinia pseudotuberculosis O:2a has a dependence on the Wzz chain-length determinant for efficient polymerization. FEMS Microbiol Lett 2013; 349:163-70. [PMID: 24164168 DOI: 10.1111/1574-6968.12311] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/18/2013] [Accepted: 10/18/2013] [Indexed: 11/29/2022] Open
Abstract
Lipopolysaccharide is a major immunogenic structure for the pathogen Yersinia pseudotuberculosis, which contains the O-specific polysaccharide (OPS) that is presented on the cell surface. The OPS contains many repeats of the oligosaccharide O-unit and exhibits a preferred modal chain length that has been shown to be crucial for cell protection in Yersinia. It is well established that the Wzz protein determines the preferred chain length of the OPS, and in its absence, the polymerization of O units by the Wzy polymerase is uncontrolled. However, for Y. pseudotuberculosis, a wzz mutation has never been described. In this study, we examine the effect of Wzz loss in Y. pseudotuberculosis serotype O:2a and compare the lipopolysaccharide chain-length profile to that of Escherichia coli serotype O111. In the absence of Wzz, the lipopolysaccharides of the two species showed significant differences in Wzy polymerization. Yersinia pseudotuberculosis O:2a exhibited only OPS with very short chain lengths, which is atypical of wzz-mutant phenotypes that have been observed for other species. We hypothesise that the Wzy polymerase of Y. pseudotuberculosis O:2a has a unique default activity in the absence of the Wzz, revealing the requirement of Wzz to drive O-unit polymerization to greater lengths.
Collapse
Affiliation(s)
- Johanna J Kenyon
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
9
|
Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, Miyake K, Zhang J, Lee WP, Muszynski A, Forsberg LS, Carlson RW, Dixit VM. Noncanonical Inflammasome Activation by Intracellular LPS Independent of TLR4. Science 2013; 341:1246-9. [DOI: 10.1126/science.1240248] [Citation(s) in RCA: 989] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Reeves PR, Cunneen MM, Liu B, Wang L. Genetics and evolution of the Salmonella galactose-initiated set of o antigens. PLoS One 2013; 8:e69306. [PMID: 23874940 PMCID: PMC3715488 DOI: 10.1371/journal.pone.0069306] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 06/09/2013] [Indexed: 11/18/2022] Open
Abstract
This paper covers eight Salmonella serogroups, that are defined by O antigens with related structures and gene clusters. They include the serovars that are now most frequently isolated. Serogroups A, B1, B2, C2-C3, D1, D2, D3 and E have O antigens that are distinguished by having galactose as first sugar, and not N-acetyl glucosamine or N-acetyl galactosamine as in the other 38 serogroups, and indeed in most Enterobacteriaceae. The gene clusters for these galactose-initiated appear to have entered S. enterica since its divergence from E. coli, but sequence comparisons show that much of the diversification occurred long before this. We conclude that the gene clusters must have entered S. enterica in a series of parallel events. The individual gene clusters are discussed, followed by analysis of the divergence for those genes shared by two or more gene clusters, and a putative phylogenic tree for the gene clusters is presented. This set of O antigens provides a rare case where it is possible to examine in detail the relationships of a significant number of O antigens. In contrast the more common pattern of O-antigen diversity within a species is for there to be only a few cases of strains having related gene clusters, suggesting that diversity arose through gain of individual O-antigen gene clusters by lateral gene transfer, and under these circumstances the evolution of the diversity is not accessible. This paper on the galactose-initiated set of gene clusters gives new insights into the origins of O-antigen diversity generally.
Collapse
Affiliation(s)
- Peter R Reeves
- School of Molecular Bioscience, University of Sydney, Sydney, Australia.
| | | | | | | |
Collapse
|
11
|
De Castro C, Kenyon JJ, Cunneen MM, Molinaro A, Holst O, Skurnik M, Reeves PR. The O-specific polysaccharide structure and gene cluster of serotype O:12 of the Yersinia pseudotuberculosis complex, and the identification of a novel L-quinovose biosynthesis gene. Glycobiology 2012; 23:346-53. [PMID: 23077132 DOI: 10.1093/glycob/cws145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A major virulence factor for Yersinia pseudotuberculosis is lipopolysaccharide, including O-polysaccharide (OPS). Currently, the OPS based serotyping scheme for Y. pseudotuberculosis includes 21 known O-serotypes, with genetic and structural data available for 17 of them. The completion of the OPS structures and genetics of this species will enable the visualization of relationships between O-serotypes and allow for analysis of the evolutionary processes within the species that give rise to new serotypes. Here we present the OPS structure and gene cluster of serotype O:12, thus adding one more to the set of completed serotypes, and show that this serotype is present in both Y. pseudotuberculosis and the newly identified Y. similis species. The O:12 structure is shown to include two rares ugars: 4-C[(R)-1-hydroxyethyl]-3,6-dideoxy-D-xylo-hexose(D-yersiniose) and 6-deoxy-L-glucopyranose (L-quinovose).We have identified a novel putative guanine diphosphate(GDP)-L-fucose 4-epimerase gene and propose a pathway for the synthesis of GDP-L-quinovose, which extends the known GDP-L-fucose pathway.
Collapse
Affiliation(s)
- Cristina De Castro
- Department of Chemical Sciences, University Federico II of Naples, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Kondakova AN, Sevillano AM, Shaikhutdinova RZ, Lindner B, Komandrova NA, Dentovskaya SV, Shashkov AS, Anisimov AP, Skurnik M, Knirel YA. Revision of the O-polysaccharide structure of Yersinia pseudotuberculosis O:1a; confirmation of the function of WbyM as paratosyltransferase. Carbohydr Res 2012; 350:98-102. [DOI: 10.1016/j.carres.2011.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/18/2011] [Indexed: 11/28/2022]
|
13
|
Skurnik M. Yersinia surface structures and bacteriophages. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:293-301. [PMID: 22782776 DOI: 10.1007/978-1-4614-3561-7_37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mikael Skurnik
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Finland.
| |
Collapse
|