1
|
Zaccagnini G, Baci D, Tastsoglou S, Cozza I, Madè A, Voellenkle C, Nicoletti M, Ruatti C, Longo M, Perani L, Gaetano C, Esposito A, Martelli F. miR-210 overexpression increases pressure overload-induced cardiac fibrosis. Noncoding RNA Res 2025; 12:20-33. [PMID: 40034123 PMCID: PMC11874870 DOI: 10.1016/j.ncrna.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 03/05/2025] Open
Abstract
Aortic stenosis, a common valvular heart disease, can lead to left ventricular pressure overload, triggering pro-fibrotic responses in the heart. miR-210 is a microRNA that responds to hypoxia and ischemia and plays a role in immune regulation and in cardiac remodeling upon myocardial infarction. This study investigated the effects of miR-210 on cardiac fibrosis caused by pressure overload. Using a mouse model with inducible miR-210 over-expression, we subjected mice to transverse aortic constriction (TAC) to induce pressure overload. Mice with miR-210 over-expression developed eccentric hypertrophy, heightened expression of hypertrophic markers (Nppa and Nppb) and increased cross sectional area of cardiomyocytes, impacting the free wall of the left ventricle. These findings suggest that miR-210 worsens cardiac dysfunction. Furthermore, miR-210 over-expression led to a more robust and sustained inflammatory response in the heart, increased interstitial and perivascular fibrosis, and activation of myofibroblasts. miR-210 also promoted angiogenesis. In vitro, cardiac fibroblasts over-expressing miR-210 showed increased adhesion, wound healing and migration capacity. Our results demonstrate that miR-210 contributes to adverse cardiac remodeling in response to pressure overload, including eccentric hypertrophy, inflammation, and fibrosis.
Collapse
Affiliation(s)
- G. Zaccagnini
- Laboratory of Molecular Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, 20097, Italy
- Laboratory of Stem Cell Biology, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - D. Baci
- Laboratory of Molecular Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, 20097, Italy
| | - S. Tastsoglou
- Laboratory of Molecular Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, 20097, Italy
| | - I. Cozza
- Laboratory of Molecular Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, 20097, Italy
| | - A. Madè
- Laboratory of Molecular Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, 20097, Italy
| | - C. Voellenkle
- Laboratory of Molecular Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, 20097, Italy
- Laboratory of Stem Cell Biology, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - M. Nicoletti
- Laboratory of Molecular Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, 20097, Italy
| | - C. Ruatti
- Laboratory of Molecular Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, 20097, Italy
| | - M. Longo
- Laboratory of Molecular Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, 20097, Italy
| | - L. Perani
- Preclinical Imaging Facility, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - C. Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, 27100, Italy
| | - A. Esposito
- Preclinical Imaging Facility, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - F. Martelli
- Laboratory of Molecular Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, 20097, Italy
- Laboratory of Stem Cell Biology, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| |
Collapse
|
2
|
Palazzo C, Mastrantonio R, Gioelli N, Testa E, Recco F, Lucchetti D, Villari G, D'Alessio A, Sgambato A, Mignone F, Serini G, Viscomi MT, Tamagnone L. Neuropilin1-dependent paracrine signaling of cancer cells mediated by miRNA exosomal cargo. Cell Commun Signal 2025; 23:54. [PMID: 39875894 PMCID: PMC11776261 DOI: 10.1186/s12964-025-02061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Neuropilin-1 (NRP1) is a transmembrane protein involved in surface receptor complexes for a variety of extracellular signals. NRP1 expression in human cancers is associated with prominent angiogenesis and advanced progression stage. However, the molecular mechanisms underlying NRP1 activity in the tumor microenvironment remain unclear. Notably, diffusible forms of NRP1 in the extracellular space have been reported, but their functional role is poorly understood. METHODS Extracellular vesicles (EV) were isolated from conditioned media of diverse cancer cells. The quality of exosome-enriched preparations was validated by the presence of specific markers in western blotting, as well as by light scattering and nanoparticle tracking analysis. Wound healing, transwell, and digital real-time migration assays were carried out to assess the activity of cancer cell-derived exosomes in the regulation of endothelial cells. RNA interference was applied to obtain NRP1 knock-down, and cDNA transfer to achieve its overexpression, in exosome-releasing cells. The micro-RNA profile carried by exosomes was investigated by Next Generation Sequencing. miRNA-Scope in situ hybridization was used to assess the transfer of miRNA exosome cargo to target cells, and immunofluorescence analysis revealed expression regulation of targeted proteins. miRNA activity was blocked by the use of specific antago-miRs. RESULTS In this study, we show that diverse human cancer cells release NRP1 embedded in exosome-like small extracellular vesicles, which mediate a previously unknown NRP1-dependent paracrine signaling mechanism regulating endothelial cell migration. By transcriptomic analysis of the cargo of NRP1-loaded exosomes, we found a significant enrichment of miR-210-3p, known to promote tumor angiogenesis. Gene knock-down and overexpression experiments demonstrated that the loading of miR-210-3p into exosomes is dependent on NRP1. Data furthermore indicate that the exosomes released through this NRP1-driven mechanism effectively transfer miR-210-3p to human endothelial cells, causing paracrine downregulation of the regulatory cue ephrin-A3 and promotion of cell migration. The mechanistic involvement of miR-210-3p in this pathway was confirmed by applying a specific antago-miR. CONCLUSIONS In sum, we unveiled a previously unknown NRP1-dependent paracrine signaling mechanism, mediated by the loading of pro-angiogenic miR-210-3p in exosomes released by cancer cells, which underscores the relevance of NRP1 in controlling the tumor microenvironment.
Collapse
Affiliation(s)
- Claudia Palazzo
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberta Mastrantonio
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" - IRCCS, Rome, Italy
| | - Noemi Gioelli
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) - IRCCS, Candiolo, TO, Italy
| | - Erika Testa
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" - IRCCS, Rome, Italy
| | | | - Donatella Lucchetti
- Fondazione Policlinico Universitario "Agostino Gemelli" - IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Villari
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) - IRCCS, Candiolo, TO, Italy
- Department of Oncology, University of Torino School of Medicine, Candiolo, TO, Italy
| | - Alessio D'Alessio
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" - IRCCS, Rome, Italy
| | - Alessandro Sgambato
- Fondazione Policlinico Universitario "Agostino Gemelli" - IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Guido Serini
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) - IRCCS, Candiolo, TO, Italy
- Department of Oncology, University of Torino School of Medicine, Candiolo, TO, Italy
| | - Maria Teresa Viscomi
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" - IRCCS, Rome, Italy
| | - Luca Tamagnone
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Universitario "Agostino Gemelli" - IRCCS, Rome, Italy.
| |
Collapse
|
3
|
Mohammed OA, Alghamdi M, Alfaifi J, Alamri MMS, Al-Shahrani AM, Alharthi MH, Alshahrani AM, Alhalafi AH, Adam MIE, Bahashwan E, Jarallah AlQahtani AA, BinAfif WF, Abdel-Reheim MA, Abdel Mageed SS, Doghish AS. The emerging role of miRNAs in myocardial infarction: From molecular signatures to therapeutic targets. Pathol Res Pract 2024; 253:155087. [PMID: 38183820 DOI: 10.1016/j.prp.2023.155087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Globally, myocardial infarction (MI) and other cardiovascular illnesses have long been considered the top killers. Heart failure and mortality are the results of myocardial apoptosis, cardiomyocyte fibrosis, and cardiomyocyte hypertrophy, all of which are caused by MI. MicroRNAs (miRNAs) play a crucial regulatory function in the progression and advancement of heart disease following an MI. By consolidating the existing data on miRNAs, our aim is to gain a more comprehensive understanding of their role in the pathological progression of myocardial injury after MI and to identify potential crucial target pathways. Also included are the primary treatment modalities and their most recent developments. miRNAs have the ability to regulate both normal and pathological activity, including the key signaling pathways. As a result, they may exert medicinal benefits. This review presents a comprehensive analysis of the role of miRNAs in MI with a specific emphasis on their impact on the regeneration of cardiomyocytes and other forms of cell death, such as apoptosis, necrosis, and autophagy. Furthermore, the targets of pro- and anti-MI miRNAs are comparatively elucidated.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M Al-Shahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M Alshahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
4
|
Xie J, Wu S, Liao W, Ning J, Ding K. Src is a target molecule of mannose against pancreatic cancer cells growth in vitro & in vivo. Glycobiology 2023; 33:766-783. [PMID: 37658770 DOI: 10.1093/glycob/cwad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 09/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant cancer with limited treatment options. Mannose, a common monosaccharide taken up by cells through the same transporters as glucose, has been shown to induce growth retardation and enhance cell death in response to chemotherapy in several cancers, including PDAC. However, the molecular targets and mechanisms underlying mannose's action against PDAC are not well understood. In this study, we used an integrative approach of network pharmacology, bioinformatics analysis, and experimental verification to investigate the pharmacological targets and mechanisms of mannose against PDAC. Our results showed that the protein Src is a key target of mannose in PDAC. Additionally, computational analysis revealed that mannose is a highly soluble compound that meets Lipinski's rule of five and that the expression of its target molecules is correlated with survival rates and prognosis in PDAC patients. Finally, we validated our findings through in vitro and in vivo experiments. In conclusion, our study provides evidence that mannose plays a critical role in inhibiting PDAC growth by targeting Src, suggesting that it may be a promising therapeutic candidate for PDAC.
Collapse
Affiliation(s)
- Jianhao Xie
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Pudong New district, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Shengjie Wu
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Pudong New district, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Wenfeng Liao
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Pudong New district, Shanghai 201203, China
| | - Jingru Ning
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Pudong New district, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Qixia District, Nanjing 210023, China
| | - Kan Ding
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Pudong New district, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China
| |
Collapse
|
5
|
Khidr EG, Abulsoud AI, Doghish AA, El-Mahdy HA, Ismail A, Elballal MS, Sarhan OM, Abdel Mageed SS, Elsakka EGE, Elkhawaga SY, El-Husseiny AA, Abdelmaksoud NM, El-Demerdash AA, Shahin RK, Midan HM, Elrebehy MA, Mohammed OA, Abulsoud LA, Doghish AS. The potential role of miRNAs in the pathogenesis of cardiovascular diseases - A focus on signaling pathways interplay. Pathol Res Pract 2023; 248:154624. [PMID: 37348290 DOI: 10.1016/j.prp.2023.154624] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
For the past two decades since their discovery, scientists have linked microRNAs (miRNAs) to posttranscriptional regulation of gene expression in critical cardiac physiological and pathological processes. Multiple non-coding RNA species regulate cardiac muscle phenotypes to stabilize cardiac homeostasis. Different cardiac pathological conditions, including arrhythmia, myocardial infarction, and hypertrophy, are modulated by non-coding RNAs in response to stress or other pathological conditions. Besides, miRNAs are implicated in several modulatory signaling pathways of cardiovascular disorders including mitogen-activated protein kinase, nuclear factor kappa beta, protein kinase B (AKT), NOD-like receptor family pyrin domain-containing 3 (NLRP3), Jun N-terminal kinases (JNKs), Toll-like receptors (TLRs) and apoptotic protease-activating factor 1 (Apaf-1)/caspases. This review highlights the potential role of miRNAs as therapeutic targets and updates our understanding of their roles in the processes underlying pathogenic phenotypes of cardiac muscle.
Collapse
Affiliation(s)
- Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ayman A Doghish
- Department of Cardiovascular & Thoracic Surgery, Ain-Shams University Hospital, Faculty of Medicine, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Omnia M Sarhan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | | | - Aya A El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Logyna A Abulsoud
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
6
|
Zhang MX, Song Y, Xu WL, Zhang LX, Li C, Li YL. Natural Herbal Medicine as a Treatment Strategy for Myocardial Infarction through the Regulation of Angiogenesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8831750. [PMID: 35600953 PMCID: PMC9119779 DOI: 10.1155/2022/8831750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022]
Abstract
Methods We conducted a literature search on the bioactive components of medicinal plants and their effects on angiogenesis after MI. We searched for articles in Web of Science, MEDLINE, PubMed, Scopus, Google Scholar, and China National Knowledge Infrastructure databases before April 2021. Results In this article, we summarized the mechanisms by which copper ions, microRNA, Akt1, inflammation, oxidative stress, mitochondria, and pericytes are involved in angiogenesis after myocardial infarction. In addition, we reviewed the angiogenic effects of natural herbal medicines such as Salvia miltiorrhiza Bunge Bunge, Carthamus tinctorius L., Pueraria lobata, Astragalus, Panax ginseng C.A. Mey., Panax notoginseng (Burkill) F.H. Chen, Cinnamomum cassia (L.) J. Presl, Rehmannia glutinosa (Gaertn.) DC., Leonurus japonicus Houtt, Scutellaria baicalensis Georgi., and Geum macrophyllum Willd. Conclusions Some herbs have the effect of promoting angiogenesis. In the future, natural proangiogenic drugs may become candidates for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mu-xin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yu Song
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wan-li Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ling-xiao Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yun-lun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
7
|
Zaccagnini G, Greco S, Voellenkle C, Gaetano C, Martelli F. miR-210 hypoxamiR in Angiogenesis and Diabetes. Antioxid Redox Signal 2022; 36:685-706. [PMID: 34521246 DOI: 10.1089/ars.2021.0200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: microRNA-210 (miR-210) is the master hypoxia-inducible miRNA (hypoxamiR) since it has been found to be significantly upregulated under hypoxia in a wide range of cell types. Recent advances: Gene ontology analysis of its targets indicates that miR-210 modulates several aspects of cellular response to hypoxia. Due to its high pleiotropy, miR-210 not only plays a protective role by fine-tuning mitochondrial metabolism and inhibiting red-ox imbalance and apoptosis, but it can also promote cell proliferation, differentiation, and migration, substantially contributing to angiogenesis. Critical issues: As most miRNAs, modulating different gene pathways, also miR-210 can potentially lead to different and even opposite effects, depending on the physio-pathological contexts in which it acts. Future direction: The use of miRNAs as therapeutics is a fast growing field. This review aimed at highlighting the role of miR-210 in angiogenesis in the context of ischemic cardiovascular diseases and diabetes in order to clarify the molecular mechanisms underpinning miR-210 action. Particular attention will be dedicated to experimentally validated miR-210 direct targets involved in cellular processes related to angiogenesis and diabetes mellitus, such as mitochondrial metabolism, redox balance, apoptosis, migration, and adhesion. Antioxid. Redox Signal. 36, 685-706.
Collapse
Affiliation(s)
- Germana Zaccagnini
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
8
|
|
9
|
Vreeken D, Zhang H, van Zonneveld AJ, van Gils JM. Ephs and Ephrins in Adult Endothelial Biology. Int J Mol Sci 2020; 21:ijms21165623. [PMID: 32781521 PMCID: PMC7460586 DOI: 10.3390/ijms21165623] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Eph receptors and their ephrin ligands are important guidance molecules during neurological and vascular development. In recent years, it has become clear that the Eph protein family remains functional in adult physiology. A subset of Ephs and ephrins is highly expressed by endothelial cells. As endothelial cells form the first barrier between the blood and surrounding tissues, maintenance of a healthy endothelium is crucial for tissue homeostasis. This review gives an overview of the current insights of the role of ephrin ligands and receptors in endothelial function and leukocyte recruitment in the (patho)physiology of adult vascular biology.
Collapse
|
10
|
OSCC Exosomes Regulate miR-210-3p Targeting EFNA3 to Promote Oral Cancer Angiogenesis through the PI3K/AKT Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2125656. [PMID: 32695810 PMCID: PMC7368228 DOI: 10.1155/2020/2125656] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
This study is aimed at determining how oral squamous cell carcinoma (OSCC) regulates the angiogenesis of HUVECs through miR-210-3p expression and exploring the relationship among miR-210-3p, its target protein, and the possible mechanism of angiogenesis regulation. miR-210-3p expression was detected in OSCC tissues and juxta cancerous tissues (JCT), and the relationship among miR-210-3p, microvessel density (MVD), and histopathologic features was analyzed. A conditioned medium (CM) of the OSCC cell line CAL27 was collected to stimulate human umbilical vein endothelial cells (HUVECs), and the miR-210-3p levels and tube formation capability of HUVECs were measured. The target protein level of miR-210-3p was altered; then, PI3K/AKT pathway activation in HUVECs was detected. miR-210-3p was tested in exosomes separated from CAL27 CM, and the transfer of miR-210-3p from OSCC exosomes to HUVECs was verified. Then, we found that the OSCC tissues had higher miR-210-3p levels than the JCT, and miR-210-3p level was positively correlated with MVD and tumor grade. CAL27 CM was able to elevate miR-210-3p levels in HUVECs and promoted tube formation. EFNA3 was the target gene of miR-210-3p, and ephrinA3 protein level was able to influence the migration and proliferation of HUVECs. The levels of phosphorylated AKT in the HUVECs increased when ephrinA3 was downregulated, and the upregulation of ephrinA3 resulted in the suppression of the PI3K/AKT pathway. miR-210-3p was detected in exosomes isolated from the CM of CAL27 cells, and miR-210-3p level in the HUVECs was elevated after absorbing the OSCC exosomes. In conclusion, miR-210-3p was more overexpressed in OSCC tissues than in the JCT. The exosomes secreted by OSCC cells were able to upregulate miR-210-3p expression and reduce ephrinA3 expression in HUVECs and promoted tube formation through the PI3K/AKT signaling pathway.
Collapse
|
11
|
Moghiman T, Barghchi B, Esmaeili SA, Shabestari MM, Tabaee SS, Momtazi-Borojeni AA. Therapeutic angiogenesis with exosomal microRNAs: an effectual approach for the treatment of myocardial ischemia. Heart Fail Rev 2020; 26:205-213. [PMID: 32632768 DOI: 10.1007/s10741-020-10001-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Therapeutic angiogenesis presents a potential approach for treating ischemic heart diseases especially in patients who are not appropriate candidates for traditional approaches of revascularization. This approach acts through inducing the neovascularization or maturation of pre-existing collateral vessels into functional arteries to bypass the blocked arteries and restore perfusion to ischemic myocardium. Successful stimulation of local angiogenesis can be established by the cross talk between stem cells, endothelial cells, and cardiomyocytes, which is mainly mediated by paracrine communication accompanied by secreted exosomes. Exosomes are extracellular vesicles carrying a complex of signaling molecules, such as microRNAs (miRs) that can modulate the function of recipient cells. Such particles have been indicated to exert cardioprotective role through providing signaling cues for angiogenesis, an effect ascribed mainly to their miRs content. Exosomal miRs-mediated therapeutic angiogenesis has been under drastic preclinical and clinical studies. In the current review, it was aimed to summarize pro-angiogenic exosomal miRs released by various cell types mediating angiogenesis, including stem cells, endothelial cells, and cardiomyocytes, which appear to exert a therapeutic effect on the myocardial ischemia. In brief, secreted exosomal miRs including miR-210, miR-23a-3p, miR-424, let-7f, miR-30b, miR-30c, miR-126, miR-21, miR-132, miR-130a-3p, miR-214, miR-378, miR-126, miR-133, and let-7b-5p could protect against myocardial ischemia through inducing cardiac angiogenesis and vascular regeneration resulting in the increase blood flow to ischemic myocardium.
Collapse
Affiliation(s)
- Toktam Moghiman
- Atherosclerosis Prevention Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bita Barghchi
- Medical School, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyedeh Samaneh Tabaee
- Cardiology Noncommunicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Amir Abbas Momtazi-Borojeni
- Halal Research center of IRI, FDA, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Wang L, Jia Q, Xinnong C, Xie Y, Yang Y, Zhang A, Liu R, Zhuo Y, Zhang J. Role of cardiac progenitor cell-derived exosome-mediated microRNA-210 in cardiovascular disease. J Cell Mol Med 2019; 23:7124-7131. [PMID: 31557390 PMCID: PMC6815838 DOI: 10.1111/jcmm.14562] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiac progenitor cells are considered to be one of the most promising stem cells for heart regeneration and repair. The cardiac protective effect of CPCs is mainly achieved by reducing tissue damage and/or promoting tissue repair through a paracrine mechanism. Exosome is a factor that plays a major role in the paracrine effect of CPCs. By delivering microRNAs to target cells and regulating their functions, exosomes have shown significant beneficial effects in slowing down cardiac injury and promoting cardiac repair. Among them, miRNA-210 is an important anoxic-related miRNA derived from CPCs exosomes, which has great cardiac protective effect of inhibiting myocardial cell apoptosis, promoting angiogenesis and improving cardiac function. In addition, circulating miR-210 may be a useful biomarker for the prediction or diagnosis of related cardiovascular diseases. In this review, we briefly reviewed the mechanism of miR-210 derived from CPCs exosomes in cardiac protection in recent years.
Collapse
Affiliation(s)
- Lirong Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiujin Jia
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen Xinnong
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingyu Xie
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaqian Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ao Zhang
- Department of Epidemiology, College of Global Public Health, New York University, New York, NY, USA
| | - Runteng Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
13
|
Zhu H, Liu C, Hou J, Long H, Wang B, Guo D, Lei M, Wu W. Gastrodia elata Blume Polysaccharides: A Review of Their Acquisition, Analysis, Modification, and Pharmacological Activities. Molecules 2019; 24:E2436. [PMID: 31269719 PMCID: PMC6651794 DOI: 10.3390/molecules24132436] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/20/2019] [Accepted: 06/26/2019] [Indexed: 01/02/2023] Open
Abstract
Gastrodia elata Blume (G. elata) is a valuable Traditional Chinese Medicine (TCM) with a wide range of clinical applications. G. elata polysaccharides, as one of the main active ingredients of G. elata, have interesting extraction, purification, qualitative analysis, quantitative analysis, derivatization, and pharmacological activity aspects, yet a review of G. elata polysaccharides has not yet been published. Based on this, this article summarizes the progress of G. elata polysaccharides in terms of the above aspects to provide a basis for their further research and development.
Collapse
Affiliation(s)
- Haodong Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Liu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Jinjun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huali Long
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Wang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - De'an Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Lei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wanying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Chen X, Yuan L, Du J, Zhang C, Sun H. The polysaccharide from the roots of Actinidia eriantha activates RAW264.7 macrophages via regulating microRNA expression. Int J Biol Macromol 2019; 132:203-212. [DOI: 10.1016/j.ijbiomac.2019.03.158] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
|
15
|
Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis 2019; 285:1-9. [PMID: 30939341 DOI: 10.1016/j.atherosclerosis.2019.03.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/28/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022]
Abstract
The stem cell-based therapy has emerged as a promising therapeutic strategy for treating cardiovascular ischemic diseases (CVIDs), such as myocardial infarction (MI). However, some important functional shortcomings of stem cell transplantation, such as immune rejection, tumorigenicity and infusional toxicity, have overshadowed stem cell therapy in the setting of cardiovascular diseases (CVDs). Accumulating evidence suggests that the therapeutic effects of transplanted stem cells are predominately mediated by secreting paracrine factors, importantly, microRNAs (miRs) present in the secreted exosomes. Therefore, novel cell-free therapy based on the stem cell-secreted exosomal miRs can be considered as a safe and effective alternative tool to stem cell therapy for the treatment of CVDs. Stem cell-derived miRs have recently been found to transfer, via exosomes, from a transplanted stem cell into a recipient cardiac cell, where they regulate various cellular process, such as proliferation, apoptosis, stress responses, as well as differentiation and angiogenesis. The present review aimed to summarize cardioprotective exosomal miRs secreted by transplanted stem cells from various sources, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and cardiac stem/progenitor cells, which showed beneficial modulatory effects on the myocardial infracted heart. In summary, stem cell-exosomal miRs, including miR-19a, mirR-21, miR-21-5p, miR-21-a5p, miR-22 miR-24, miR-26a, miR-29, miR-125b-5p, miR-126, miR-201, miR-210, and miR-294, have been shown to have cardioprotective effects by enhancing cardiomyocyte survival and function and attenuating cardiac fibrosis. Additionally, MCS-exosomal miRs, including miR-126, miR-210, miR-21, miR-23a-3p and miR-130a-3p, are found to exert cardioprotective effects through induction of angiogenesis in ischemic heart after MI.
Collapse
|
16
|
Zhao W, Yang L, Chen X, Qian H, Zhang S, Chen Y, Luo R, Shao J, Liu H, Chen J. Phenotypic and functional characterization of tumor-derived endothelial cells isolated from primary human hepatocellular carcinoma. Hepatol Res 2018; 48:1149-1162. [PMID: 29956443 DOI: 10.1111/hepr.13225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/31/2018] [Accepted: 06/23/2018] [Indexed: 02/08/2023]
Abstract
AIMS Tumor endothelial cells (TECs) have been investigated using human tumor xenografts in mice models. In order to provide pure human TECs for the updating of clinical anti-angiogenic cancer therapy, in the present study we established a protocol of purification of TECs derived from clinical hepatocellular carcinoma (HCC) and revealed the TEC features by in vitro and in vivo assays. METHODS We isolated TECs from fresh surgical resections of HCC by magnetic-activated cell sorting and purified by flow cytometry sorting upon CD31 expression, referred to as ECDHCCs. Next, we identified cultured ECDHCCs by morphology, phenotype, genotype, and functional assays. RESULTS The ECDHCCs appeared as Weibel-Palade bodies under electron microscopy. They expressed endothelial markers, such as CD31, CD105, and vascular endothelial growth factor receptor 2, and expressed the genes that are associated with pro-angiogenesis, especially vascular endothelial growth factor, epiregulin, and programmed cell death 10. Functionally, ECDHCCs were capable of tube formation, wound healing, and Transwell migration in vitro. These in vitro behaviors were validated by in vivo Matrigel plug assay in mice. Finally, comparison of ECDHCC with the Hep-G2 liver cancer cell line showed there was no similarity of phenotype or function between these two types of cells. CONCLUSIONS Tumor endothelial cells derived from human HCC can be isolated and purified from clinical samples by flow cytometer. They have the endothelial phenotype and morphologic features and are capable of tube formation and migration. This study provides a useful model for researchers to study tumor angiogenesis and screening of candidate targets.
Collapse
Affiliation(s)
- Wenjing Zhao
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Liping Yang
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Xudong Chen
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Hongyan Qian
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Suqing Zhang
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China.,Department of Hepatobiliary Surgery, Nantong Tumor Hospital, Nantong, China
| | - Yali Chen
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Runhua Luo
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Jingjing Shao
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Huanliang Liu
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Jianguo Chen
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China.,Qidong Cancer Registry, Qidong Liver Cancer Institute, Qidong, China
| |
Collapse
|
17
|
Besnier M, Gasparino S, Vono R, Sangalli E, Facoetti A, Bollati V, Cantone L, Zaccagnini G, Maimone B, Fuschi P, Da Silva D, Schiavulli M, Aday S, Caputo M, Madeddu P, Emanueli C, Martelli F, Spinetti G. miR-210 Enhances the Therapeutic Potential of Bone-Marrow-Derived Circulating Proangiogenic Cells in the Setting of Limb Ischemia. Mol Ther 2018; 26:1694-1705. [PMID: 29908843 DOI: 10.1016/j.ymthe.2018.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 12/28/2022] Open
Abstract
Therapies based on circulating proangiogenic cells (PACs) have shown promise in ischemic disease models but require further optimization to reach the bedside. Ischemia-associated hypoxia robustly increases microRNA-210 (miR-210) expression in several cell types, including endothelial cells (ECs). In ECs, miR-210 represses EphrinA3 (EFNA3), inducing proangiogenic responses. This study provides new mechanistic evidences for a role of miR-210 in PACs. PACs were obtained from either adult peripheral blood or cord blood. miR-210 expression was modulated with either an inhibitory complementary oligonucleotide (anti-miR-210) or a miRNA mimic (pre-miR-210). Scramble and absence of transfection served as controls. As expected, hypoxia increased miR-210 in PACs. In vivo, migration toward and adhesion to the ischemic endothelium facilitate the proangiogenic actions of transplanted PACs. In vitro, PAC migration toward SDF-1α/CXCL12 was impaired by anti-miR-210 and enhanced by pre-miR-210. Moreover, pre-miR-210 increased PAC adhesion to ECs and supported angiogenic responses in co-cultured ECs. These responses were not associated with changes in extracellular miR-210 and were abrogated by lentivirus-mediated EFNA3 overexpression. Finally, ex-vivo pre-miR-210 transfection predisposed PACs to induce post-ischemic therapeutic neovascularization and blood flow recovery in an immunodeficient mouse limb ischemia model. In conclusion, miR-210 modulates PAC functions and improves their therapeutic potential in limb ischemia.
Collapse
Affiliation(s)
- Marie Besnier
- Bristol Heart Institute, School of Clinical Science, University of Bristol, Bristol, UK
| | - Stefano Gasparino
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
| | - Rosa Vono
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
| | - Elena Sangalli
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
| | - Amanda Facoetti
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Laura Cantone
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Germana Zaccagnini
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato, Italy
| | - Biagina Maimone
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato, Italy
| | - Paola Fuschi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato, Italy
| | - Daniel Da Silva
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato, Italy
| | - Michele Schiavulli
- AORN Santobono Pausilipon, Transfusion Medicine and Bone Marrow Transplantation Unit-Regional Reference Center for Coagulation Disorders, Napoli, Italy
| | - Sezin Aday
- Bristol Heart Institute, School of Clinical Science, University of Bristol, Bristol, UK
| | - Massimo Caputo
- Bristol Heart Institute, School of Clinical Science, University of Bristol, Bristol, UK
| | - Paolo Madeddu
- Bristol Heart Institute, School of Clinical Science, University of Bristol, Bristol, UK
| | - Costanza Emanueli
- Bristol Heart Institute, School of Clinical Science, University of Bristol, Bristol, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato, Italy.
| | - Gaia Spinetti
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy.
| |
Collapse
|
18
|
Characterization of a pectin from Lonicera japonica Thunb. and its inhibition effect on Aβ42 aggregation and promotion of neuritogenesis. Int J Biol Macromol 2018; 107:112-120. [DOI: 10.1016/j.ijbiomac.2017.08.154] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/07/2017] [Accepted: 08/28/2017] [Indexed: 12/15/2022]
|
19
|
Wang N, Chen C, Yang D, Liao Q, Luo H, Wang X, Zhou F, Yang X, Yang J, Zeng C, Wang WE. Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2085-2092. [PMID: 28249798 DOI: 10.1016/j.bbadis.2017.02.023] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/18/2017] [Accepted: 02/21/2017] [Indexed: 01/11/2023]
Abstract
Mesenchymal stem cells (MSCs) exert therapeutic effect on treating acute myocardial infarction. Recent evidence showed that paracrine function rather than direct differentiation predominately contributes to the beneficial effects of MSCs, but how the paracrine factors function are not fully elucidated. In the present study, we tested if extracellular vesicles (EVs) secreted by MSC promotes angiogenesis in infracted heart via microRNAs. Immunostaining of CD31 and matrigel plug assay were performed to detect angiogenesis in a mouse myocardial infarction (MI) model. The cardiac function and structure was examined with echocardiographic analysis. Capillary-like tube formation, migration and proliferation of human umbilical vein endothelial cells (HUVECs) were determined. As a result, MSC-EVs significantly improved angiogenesis and cardiac function in post-MI heart. MSC-EVs increased the proliferation, migration and tube formation capacity of HUVECs. MicroRNA (miR)-210 was found to be enriched in MSC-EVs. The EVs collected from MSCs with miR-210 silence largely lost the pro-angiogenic effect both in-vitro and in-vivo. The miR-210 target gene Efna3, which plays a role in angiogenesis, was down-regulated by MSC-EVs treatment in HUVECs. In conclusion, MSC-EVs are sufficient to improve angiogenesis and exert therapeutic effect on MI, its pro- angiogenesis effect might be associated with a miR-210-Efna3 dependent mechanism. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
Collapse
Affiliation(s)
- Na Wang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Caiyu Chen
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Dezhong Yang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Qiao Liao
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Hao Luo
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xinquan Wang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Faying Zhou
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaoli Yang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jian Yang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Chunyu Zeng
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| | - Wei Eric Wang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
20
|
Zhang L, Wang P, Qin Y, Cong Q, Shao C, Du Z, Ni X, Li P, Ding K. RN1, a novel galectin-3 inhibitor, inhibits pancreatic cancer cell growth in vitro and in vivo via blocking galectin-3 associated signaling pathways. Oncogene 2016; 36:1297-1308. [PMID: 27617577 DOI: 10.1038/onc.2016.306] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022]
Abstract
Galectin-3 (Gal-3) has been implicated in pancreatic ductal adenocarcinoma (PDAC), and its candidacy as a therapeutic target has been evaluated. Gal-3 is widely upregulated in tumors, and its expression is associated with the development and malignancy of PDAC. In the present study, we demonstrate that a polysaccharide, RN1, purified from the flower of Panax notoginseng binds to Gal-3 and suppresses its expression. In addition, RN1 markedly inhibits PDAC cells growth in vitro, in vivo and in patient-derived xenografts. Mechanistically, RN1 binds to epidermal growth factor receptor (EGFR) and Gal-3, thereby disrupting the interaction between Gal-3 and EGFR and downregulating extracellular-related kinase (ERK) phosphorylation and the transcription factor of Gal-3, Runx1 expression. Inhibiting the expression of Runx1 by RN1, suppresses Gal-3 expression and inactivates Gal-3-associated signaling pathways, including the EGFR/ERK/Runx1, BMP/smad/Id-3 and integrin/FAK/JNK signaling pathways. In addition, RN1 can also bind to bone morphogenetic protein receptors (BMPR1A and BMPR2) and block the interaction between Gal-3 and the BMPRs. Thus, our results suggest that a novel Gal-3 inhibitor RN1 may be a potential candidate for human PDAC treatment via multiple targets and multiple signaling pathways.
Collapse
Affiliation(s)
- L Zhang
- Glycochemistry & Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - P Wang
- Glycochemistry & Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Y Qin
- Glycochemistry & Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Q Cong
- Glycochemistry & Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - C Shao
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Z Du
- Glycochemistry & Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - X Ni
- Glycochemistry & Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - P Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - K Ding
- Glycochemistry & Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Ren CX, Leng RX, Fan YG, Pan HF, Wu CH, Ye DQ. MicroRNA-210 and its theranostic potential. Expert Opin Ther Targets 2016; 20:1325-1338. [PMID: 27359286 DOI: 10.1080/14728222.2016.1206890] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION MicroRNAs (miRNAs) are a set of small single-stranded noncoding RNAs with diverse biological functions. As a prototypical hypoxamir, human microRNA-210 (hsa-miR-210) is one of the most widely studied miRNAs thus far. In addition to its involvement in sophisticated regulation of numerous biological processes, miR-210 has also been shown to be associated with the development of different human diseases including various types of cancers, cardiovascular and cerebrovascular diseases, and immunological diseases. Given its multi-faceted functions, miR-210 may serve as a novel and promising theranostic target for prevention and treatment of diseases. Areas covered: This review aims to provide a comprehensive overview of miR-210, the regulation of its expression, biological functions and molecular mechanisms, with particular emphasis on its diagnostic and therapeutic potential. Expert opinion: Although the exact roles of miR-210 in various diseases have not been fully clarified, targeting miR-210 may be a promising therapeutic strategy. Further investigations are also needed to facilitate therapeutic-clinical applications of miR-210 in human diseases.
Collapse
Affiliation(s)
- Chun-Xia Ren
- a Department of Epidemiology and Biostatistics , School of Public Health, Anhui Medical University , Hefei , Anhui , China.,b Anhui Provincial Laboratory of Population Health & Major Disease Screening and Diagnosis , Anhui Medical University , Hefei , Anhui , China.,c The First Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Rui-Xue Leng
- a Department of Epidemiology and Biostatistics , School of Public Health, Anhui Medical University , Hefei , Anhui , China.,b Anhui Provincial Laboratory of Population Health & Major Disease Screening and Diagnosis , Anhui Medical University , Hefei , Anhui , China
| | - Yin-Guang Fan
- a Department of Epidemiology and Biostatistics , School of Public Health, Anhui Medical University , Hefei , Anhui , China.,b Anhui Provincial Laboratory of Population Health & Major Disease Screening and Diagnosis , Anhui Medical University , Hefei , Anhui , China
| | - Hai-Feng Pan
- a Department of Epidemiology and Biostatistics , School of Public Health, Anhui Medical University , Hefei , Anhui , China.,b Anhui Provincial Laboratory of Population Health & Major Disease Screening and Diagnosis , Anhui Medical University , Hefei , Anhui , China
| | - Chang-Hao Wu
- d Faculty of Health and Medical Sciences , University of Surrey , Guildford , UK
| | - Dong-Qing Ye
- a Department of Epidemiology and Biostatistics , School of Public Health, Anhui Medical University , Hefei , Anhui , China.,b Anhui Provincial Laboratory of Population Health & Major Disease Screening and Diagnosis , Anhui Medical University , Hefei , Anhui , China
| |
Collapse
|
22
|
Chen C, Qin Y, Fang JP, Ni XY, Yao J, Wang HY, Ding K. WSS25, a sulfated polysaccharide, inhibits RANKL-induced mouse osteoclast formation by blocking SMAD/ID1 signaling. Acta Pharmacol Sin 2015; 36:1053-64. [PMID: 26299951 DOI: 10.1038/aps.2015.65] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/28/2015] [Indexed: 12/26/2022]
Abstract
AIM WSS25 is a sulfated polysaccharide extracted from the rhizome of Gastrodia elata BI, which has been found to bind to bone morphogenetic protein 2 (BMP-2) in hepatocellular cancer cells. Since BMP-2 may regulate both osteoclasts and osteoblasts, here we investigated the effects of WSS25 on osteoclastogenesis in vitro and bone loss in ovariectomized mice. METHODS RAW264.7 cells or mouse bone marrow macrophages (BMMs) were treated with RANKL to induce osteoclastogenesis, which was assessed using TRAP staining, actin ring formation and pit formation assays, as well as bone resorption assay. Cell viability was detected with MTT assay. The mRNA levels of osteoclastogenesis-related genetic markers (TRAP, NFATc1, MMP-9 and cathepsin K) were detected using RT-PCR, while the protein levels of p-Smad1/5/8 and Id1 were measure with Western blotting. WSS25 was administered to ovariectomized mice (100 mg·kg(-1)·d(-1), po) for 3 months. After the mice were euthanized, total bone mineral density and cortical bone density were measured. RESULTS In RAW264.7 cells and BMMs, WSS25 (2.5, 5, 10 μg/mL) did not affect the cell viability, but dose-dependently inhibited RANKL-induced osteoclastogenesis. Furthermore, WSS25 potently suppressed RANKL-induced expression of TRAP, NFATc1, MMP-9 and cathepsin K in RAW264.7 cells. Treatment of RAW264.7 cells with RANKL increased BMP-2 expression, Smad1/5/8 phosphorylation and Id1 expression, which triggered osteoclast differentiation, whereas co-treatment with WSS25 or the endogenous BMP-2 antagonist noggin suppressed the BMP-2/Smad/Id1 signaling pathway. In RAW264.7 cells, knockdown of Id1 attenuated RANKL-induced osteoclast differentiation, which was partially rescued by Id1 overexpression. In conformity to the in vitro experiments, chronic administration of WSS25 significantly reduced the bone loss in ovariectomized mice. CONCLUSION WSS25 inhibits RANKL-induced osteoclast formation in RAW264.7 cells and BMMs by blocking the BMP-2/Smad/Id1 signaling pathway. WSS25 administration reduces bone loss in ovariectomized mice, suggesting that it may be a promising therapeutic agent for osteoporosis.
Collapse
|
23
|
Gómez-Maldonado L, Tiana M, Roche O, Prado-Cabrero A, Jensen L, Fernandez-Barral A, Guijarro-Muñoz I, Favaro E, Moreno-Bueno G, Sanz L, Aragones J, Harris A, Volpert O, Jimenez B, del Peso L. EFNA3 long noncoding RNAs induced by hypoxia promote metastatic dissemination. Oncogene 2015; 34:2609-20. [PMID: 25023702 PMCID: PMC4722872 DOI: 10.1038/onc.2014.200] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 01/04/2023]
Abstract
The presence of hypoxic regions in solid tumors is an adverse prognostic factor for patient outcome. Here, we show that hypoxia induces the expression of Ephrin-A3 through a novel hypoxia-inducible factor (HIF)-mediated mechanism. In response to hypoxia, the coding EFNA3 mRNA levels remained relatively stable, but HIFs drove the expression of previously unknown long noncoding (lnc) RNAs from EFNA3 locus and these lncRNA caused Ephrin-A3 protein accumulation. Ephrins are cell surface proteins that regulate diverse biological processes by modulating cellular adhesion and repulsion. Mounting evidence implicates deregulated ephrin function in multiple aspects of tumor biology. We demonstrate that sustained expression of both Ephrin-A3 and novel EFNA3 lncRNAs increased the metastatic potential of human breast cancer cells, possibly by increasing the ability of tumor cells to extravasate from the blood vessels into surrounding tissue. In agreement, we found a strong correlation between high EFNA3 expression and shorter metastasis-free survival in breast cancer patients. Taken together, our results suggest that hypoxia could contribute to metastatic spread of breast cancer via HIF-mediated induction of EFNA3 lncRNAs and subsequent Ephrin-A3 protein accumulation.
Collapse
Affiliation(s)
- L Gómez-Maldonado
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Madrid, Spain
| | - M Tiana
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Madrid, Spain
| | - O Roche
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain
| | - A Prado-Cabrero
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Madrid, Spain
| | - L Jensen
- Department of Medicine and Health Sciences, Linköping University Linköping, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - A Fernandez-Barral
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Madrid, Spain
| | - I Guijarro-Muñoz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - E Favaro
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - G Moreno-Bueno
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Madrid, Spain
| | - L Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - J Aragones
- Research Unit, Hospital Universitario Santa Cristina, Research Institute Princesa, Autonomous University of Madrid, Madrid, Spain
| | - A Harris
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - O Volpert
- Urology Department, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - B Jimenez
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Madrid, Spain
| | - L del Peso
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
24
|
Wang P, Zhang L, Yao J, Shi Y, Li P, Ding K. An arabinogalactan from flowers of Panax notoginseng inhibits angiogenesis by BMP2/Smad/Id1 signaling. Carbohydr Polym 2015; 121:328-35. [PMID: 25659706 DOI: 10.1016/j.carbpol.2014.11.073] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/26/2014] [Accepted: 11/29/2014] [Indexed: 11/25/2022]
Abstract
Angiogenesis plays an essential role in tumor development. Blocking angiogenesis in tumor has become a promising tactic in limiting cancer progression. Here, an arabinogalactan polysaccharide, RN1 was isolated from flowers of Panax notoginseng. Its structure was determined to possess a backbone of 1,6-linked Galp branched at C3 by side 1,3-linked Galp, with branches attached at position O-3 of it. The branches mainly contained 1,5-linked, 1,3,5-linked, terminal Arabinose and terminal Galactose. RN1 could inhibit microvessel formation in the BxPC-3 pancreatic cancer cell xenograft tumor in nude mice. The antiangiogenesis assay showed that RN1 could reduce the migratory activity of endothelial cells and their ability of tube formation on matrigel, but no effect on endothelial cells growth. Further studies revealed that RN1 could inhibit BMP2/Smad1/5/8/Id1 signaling. All those data indicated the RN1 had an antiangiogenic effect via BMP2 signaling and could be a potential novel inhibitor of angiogenesis.
Collapse
Affiliation(s)
- Peipei Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Glycochemistry & Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Glycochemistry & Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Yao
- Glycochemistry & Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yikang Shi
- National Glycoengineering Research Center, Shandong University, Jinan, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Kan Ding
- Glycochemistry & Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
25
|
Cui H, Seubert B, Stahl E, Dietz H, Reuning U, Moreno-Leon L, Ilie M, Hofman P, Nagase H, Mari B, Krüger A. Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes. Oncogene 2014; 34:3640-50. [DOI: 10.1038/onc.2014.300] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022]
|
26
|
Greco S, Gaetano C, Martelli F. HypoxamiR regulation and function in ischemic cardiovascular diseases. Antioxid Redox Signal 2014; 21:1202-19. [PMID: 24053126 PMCID: PMC4142792 DOI: 10.1089/ars.2013.5403] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE MicroRNAs (miRNAs) are deregulated and play a causal role in numerous cardiovascular diseases, including myocardial infarction, coronary artery disease, hypertension, heart failure, stroke, peripheral artery disease, kidney ischemia-reperfusion. RECENT ADVANCES One crucial component of ischemic cardiovascular diseases is represented by hypoxia. Indeed, hypoxia is a powerful stimulus regulating the expression of a specific subset of miRNAs, named hypoxia-induced miRNAs (hypoxamiR). These miRNAs are fundamental regulators of the cell responses to decreased oxygen tension. Certain hypoxamiRs seem to have a particularly pervasive role, such as miR-210 that is virtually induced in all ischemic diseases tested so far. However, its specific function may change according to the physiopathological context. CRITICAL ISSUES The discovery of HypoxamiR dates back 6 years. Thus, despite a rapid growth in knowledge and attention, a deeper insight of the molecular mechanisms underpinning hypoxamiR regulation and function is needed. FUTURE DIRECTIONS An extended understanding of the function of hypoxamiR in gene regulatory networks associated with cardiovascular diseases will allow the identification of novel molecular mechanisms of disease and indicate the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Simona Greco
- 1 Molecular Cardiology Laboratory , IRCCS-Policlinico San Donato, Milan, Italy
| | | | | |
Collapse
|
27
|
Xiao F, Qiu H, Cui H, Ni X, Li J, Liao W, Lu L, Ding K. MicroRNA-885-3p inhibits the growth of HT-29 colon cancer cell xenografts by disrupting angiogenesis via targeting BMPR1A and blocking BMP/Smad/Id1 signaling. Oncogene 2014; 34:1968-78. [PMID: 24882581 DOI: 10.1038/onc.2014.134] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/04/2014] [Accepted: 03/07/2014] [Indexed: 12/14/2022]
Abstract
The previous studies in this lab discovered that microRNA-885-3p (miR-885-3p) was regulated by a sulfated polysaccharide that bound to bone morphogenetic protein receptor, type IA (BMPR1A) to inhibit angiogenesis. However, its specific role and its mechanism of action in tumor cells have not been elucidated. We show that miR-885-3p markedly suppresses angiogenesis in vitro and in vivo. MiR-885-3p inhibits Smad1/5/8 phosphorylation and downregulates DNA-binding protein inhibitor ID-1 (Id1), a proangiogenic factor, by targeting BMPR1A, leading to impaired angiogenesis. Overexpression or silencing of BMPR1A affects angiogenesis in a Smad/Id1-dependent manner. We further show that miR-885-3p impairs the growth of HT-29 colon cancer cell xenografts in nude mice by suppressing angiogenesis through disruption of BMPR1A and Smad/Id1 signaling. These results support a novel role for miR-885-3p in tumor angiogenesis by targeting BMPR1A, which regulates a proangiogenic factor, and provide new evidence that targeting miRNAs might be an effective therapeutic strategy for improving colon cancer treatment.
Collapse
Affiliation(s)
- F Xiao
- Glycochemistry and Glycobiology Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - H Qiu
- Glycochemistry and Glycobiology Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - H Cui
- Glycochemistry and Glycobiology Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - X Ni
- Glycochemistry and Glycobiology Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - J Li
- Glycochemistry and Glycobiology Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - W Liao
- Glycochemistry and Glycobiology Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - L Lu
- Glycochemistry and Glycobiology Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - K Ding
- Glycochemistry and Glycobiology Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
28
|
Huang X, Zuo J. Emerging roles of miR-210 and other non-coding RNAs in the hypoxic response. Acta Biochim Biophys Sin (Shanghai) 2014; 46:220-32. [PMID: 24395300 DOI: 10.1093/abbs/gmt141] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypoxia is a key component of the tumor microenvironment and represents a well-documented source of therapeutic failure in clinical oncology. Recent work has provided support for the idea that non-coding RNAs, and in particular, microRNAs, may play important roles in the adaptive response to low oxygen in tumors. Specifically, all published studies agree that the induction of microRNA-210 (miR-210) is a consistent feature of the hypoxic response in both normal and malignant cells. miR-210 is a robust target of hypoxia-inducible factors, and its overexpression has been detected in a variety of diseases with a hypoxic component, including most solid tumors. High levels of miR-210 have been linked to an in vivo hypoxic signature and to adverse prognosis in breast and pancreatic cancer patients. A wide variety of miR-210 targets have been identified, pointing to roles in mitochondrial metabolism, angiogenesis, DNA damage response, apoptosis, and cell survival. Such targets are suspected to affect the development of tumors in multiple ways; therefore, an increased knowledge about miR-210's functions may lead to novel diagnostic and therapeutic approaches in cancer.
Collapse
Affiliation(s)
- Xin Huang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | |
Collapse
|