1
|
Angulo J, Ardá A, Bertuzzi S, Canales A, Ereño-Orbea J, Gimeno A, Gomez-Redondo M, Muñoz-García JC, Oquist P, Monaco S, Poveda A, Unione L, Jiménez-Barbero J. NMR investigations of glycan conformation, dynamics, and interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:97-152. [PMID: 39645352 DOI: 10.1016/j.pnmrs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/09/2024]
Abstract
Glycans are ubiquitous in nature, decorating our cells and serving as the initial points of contact with any visiting entities. These glycan interactions are fundamental to host-pathogen recognition and are related to various diseases, including inflammation and cancer. Therefore, understanding the conformations and dynamics of glycans, as well as the key features that regulate their interactions with proteins, is crucial for designing new therapeutics. Due to the intrinsic flexibility of glycans, NMR is an essential tool for unravelling these properties. In this review, we describe the key NMR parameters that can be extracted from the different experiments, and which allow us to deduce the necessary geometry and molecular motion information, with a special emphasis on assessing the internal motions of the glycosidic linkages. We specifically address the NMR peculiarities of various natural glycans, from histo-blood group antigens to glycosaminoglycans, and also consider the special characteristics of their synthetic analogues (glycomimetics). Finally, we discuss the application of NMR protocols to study glycan-related molecular recognition events, both from the carbohydrate and receptor perspectives, including the use of stable isotopes and paramagnetic NMR methods to overcome the inherent degeneracy of glycan chemical shifts.
Collapse
Affiliation(s)
- Jesús Angulo
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Ana Ardá
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Sara Bertuzzi
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Angeles Canales
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - June Ereño-Orbea
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ana Gimeno
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Marcos Gomez-Redondo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Juan C Muñoz-García
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Paola Oquist
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR47TJ Norwich, UK
| | - Ana Poveda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Luca Unione
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain; Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain.
| |
Collapse
|
2
|
Slivka EV, Shilova NV, Obraztsova EA, Kapustkina DS, Khaidukov SV, Nokel AY, Ryzhov IM, Henry SM, Bovin NV, Rapoport EM. Surface Glycans of Microvesicles Derived from Endothelial Cells, as Probed Using Plant Lectins. Int J Mol Sci 2024; 25:5725. [PMID: 38891913 PMCID: PMC11171894 DOI: 10.3390/ijms25115725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Glycans of MVs are proposed to be candidates for mediating targeting specificity or at least promoting it. In contrast to exosomes, glycomic studies of MVs are largely absent. We studied the glycoprofile of endothelial cell-derived MVs using 21 plant lectins, and the results show the dominance of oligolactosamines and their α2-6-sialylated forms as N-glycans and low levels of α2-3-sialylated glycans. The low levels of α2-3-sialosides could not be explained by the action of extracellular glycosidases. Additionally, the level of some Man-containing glycans was also decreased in MVs. Spatial masking as the causative relationship between these low level glycans (as glycosphingolipids) by integral proteins or proteoglycans (thus, their lack of interaction with lectins) seems unlikely. The results suggest that integral proteins do not pass randomly into MVs, but instead only some types, differing in terms of their specific glycosylation, are integrated into MVs.
Collapse
Affiliation(s)
- Ekaterina V. Slivka
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| | - Nadezhda V. Shilova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, 4 Oparina Str., Moscow 117997, Russia
| | - Ekaterina A. Obraztsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| | - Daria S. Kapustkina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| | - Sergey V. Khaidukov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, 4 Oparina Str., Moscow 117997, Russia
| | - Alexey Yu. Nokel
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| | - Ivan M. Ryzhov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| | - Stephen M. Henry
- School of Engineering, Auckland University of Technology, Auckland 1010, New Zealand;
| | - Nicolai V. Bovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| | - Eugenia M. Rapoport
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| |
Collapse
|
3
|
Garbagnoli M, Linciano P, Listro R, Rossino G, Vasile F, Collina S. Biophysical Assays for Investigating Modulators of Macromolecular Complexes: An Overview. ACS OMEGA 2024; 9:17691-17705. [PMID: 38680367 PMCID: PMC11044174 DOI: 10.1021/acsomega.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Drug discovery is a lengthy and intricate process, and in its early stage, crucial steps are the selection of the therapeutic target and the identification of novel ligands. Most targets are dysregulated in pathogenic cells; typically, their activation or deactivation leads to the desired effect, while in other cases, interfering with the target-natural binder complex achieves the therapeutic results. Biophysical assays are a suitable strategy for finding new ligands or interferent agents, being able to evaluate ligand-protein interactions and assessing the effect of small molecules (SMols) on macromolecular complexes. This mini-review provides a detailed analysis of widely used biophysical methods, including fluorescence-based approaches, circular dichroism, isothermal titration calorimetry, microscale thermophoresis, and NMR spectroscopy. After a brief description of the methodologies, examples of interaction and competition experiments are described, together with an analysis of the advantages and disadvantages of each technique. This mini-review provides an overview of the most relevant biophysical technologies that can help in identifying SMols able not only to bind proteins but also to interfere with macromolecular complexes.
Collapse
Affiliation(s)
- Martina Garbagnoli
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| | - Pasquale Linciano
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| | - Roberta Listro
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| | - Giacomo Rossino
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| | - Francesca Vasile
- Department
of Chemistry, University of Milan, Via Golgi 19, Milano 20133, Italy
| | - Simona Collina
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
4
|
Au CW, Manfield I, Webb ME, Paci E, Turnbull WB, Ross JF. The Mutagenic Plasticity of the Cholera Toxin B-Subunit Surface Residues: Stability and Affinity. Toxins (Basel) 2024; 16:133. [PMID: 38535799 PMCID: PMC10974167 DOI: 10.3390/toxins16030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 04/01/2024] Open
Abstract
Mastering selective molecule trafficking across human cell membranes poses a formidable challenge in healthcare biotechnology while offering the prospect of breakthroughs in drug delivery, gene therapy, and diagnostic imaging. The cholera toxin B-subunit (CTB) has the potential to be a useful cargo transporter for these applications. CTB is a robust protein that is amenable to reengineering for diverse applications; however, protein redesign has mostly focused on modifications of the N- and C-termini of the protein. Exploiting the full power of rational redesign requires a detailed understanding of the contributions of the surface residues to protein stability and binding activity. Here, we employed Rosetta-based computational saturation scans on 58 surface residues of CTB, including the GM1 binding site, to analyze both ligand-bound and ligand-free structures to decipher mutational effects on protein stability and GM1 affinity. Complimentary experimental results from differential scanning fluorimetry and isothermal titration calorimetry provided melting temperatures and GM1 binding affinities for 40 alanine mutants among these positions. The results showed that CTB can accommodate diverse mutations while maintaining its stability and ligand binding affinity. These mutations could potentially allow modification of the oligosaccharide binding specificity to change its cellular targeting, alter the B-subunit intracellular routing, or impact its shelf-life and in vivo half-life through changes to protein stability. We anticipate that the mutational space maps presented here will serve as a cornerstone for future CTB redesigns, paving the way for the development of innovative biotechnological tools.
Collapse
Affiliation(s)
- Cheuk W. Au
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Iain Manfield
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Michael E. Webb
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Emanuele Paci
- Dipartimento di Fisica e Astronomia “Augusto Righi”, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - W. Bruce Turnbull
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - James F. Ross
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
5
|
Singla A, Boucher A, Wallom KL, Lebens M, Kohler JJ, Platt FM, Yrlid U. Cholera intoxication of human enteroids reveals interplay between decoy and functional glycoconjugate ligands. Glycobiology 2023; 33:801-816. [PMID: 37622990 PMCID: PMC10629719 DOI: 10.1093/glycob/cwad069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Prior research on cholera toxin (CT) binding and intoxication has relied on human colonic cancer derived epithelial cells. While these transformed cell lines have been beneficial, they neither derive from small intestine where intoxication occurs, nor represent the diversity of small intestinal epithelial cells (SI-ECs) and variation in glycoconjugate expression among individuals. Here, we used human enteroids, derived from jejunal biopsies of multipledonors to study CT binding and intoxication of human non-transformed SI-ECs. We modulated surface expression of glycosphingolipids, glycoproteins and specific glycans to distinguish the role of each glycan/glycoconjugate. Cholera-toxin-subunit-B (CTB) mutants were generated to decipher the preference of each glycoconjugate to different binding sites and the correlation between CT binding and intoxication. Human enteroids contain trace amounts of GM1, but other glycosphingolipids may be contributing to CT intoxication. We discovered that inhibition of either fucosylation or O-glycosylation sensitize enteroids to CT-intoxication. This can either be a consequence of the removal of fucosylated "decoy-like-ligands" binding to CTB's non-canonical site and/or increase in the availability of Gal/GalNAc-terminating glycoconjugates binding to the canonical site. Furthermore, simultaneous inhibition of fucosylation and O-glycosylation increased the availability of additional Gal/GalNAc-terminating glycoconjugates but counteracted the sensitization in CT intoxication caused by inhibiting O-glycosylation because of reduction in fucose. This implies a dual role of fucose as a functional glycan and a decoy, the interplay of which influences CT binding and intoxication. Finally, while the results were similar for enteroids from different donors, they were not identical, pointing to a role for human genetic variation in determining sensitivity to CT.
Collapse
Affiliation(s)
- Akshi Singla
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
| | - Andrew Boucher
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
| | - Kerri-Lee Wallom
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Michael Lebens
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9185, United States
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
| |
Collapse
|
6
|
Quintana JI, Atxabal U, Unione L, Ardá A, Jiménez-Barbero J. Exploring multivalent carbohydrate-protein interactions by NMR. Chem Soc Rev 2023; 52:1591-1613. [PMID: 36753338 PMCID: PMC9987413 DOI: 10.1039/d2cs00983h] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Indexed: 02/09/2023]
Abstract
Nuclear Magnetic Resonance (NMR) has been widely employed to assess diverse features of glycan-protein molecular recognition events. Different types of qualitative and quantitative information at different degrees of resolution and complexity can be extracted from the proper application of the available NMR-techniques. In fact, affinity, structural, kinetic, conformational, and dynamic characteristics of the binding process are available. Nevertheless, except in particular cases, the affinity of lectin-sugar interactions is weak, mostly at the low mM range. This feature is overcome in biological processes by using multivalency, thus augmenting the strength of the binding. However, the application of NMR methods to monitor multivalent lectin-glycan interactions is intrinsically challenging. It is well known that when large macromolecular complexes are formed, the NMR signals disappear from the NMR spectrum, due to the existence of fast transverse relaxation, related to the large size and exchange features. Indeed, at the heart of the molecular recognition event, the associated free-bound chemical exchange process for both partners takes place in a particular timescale. Thus, these factors have to be considered and overcome. In this review article, we have distinguished, in a subjective manner, the existence of multivalent presentations in the glycan or in the lectin. From the glycan perspective, we have also considered whether multiple epitopes of a given ligand are presented in the same linear chain of a saccharide (i.e., poly-LacNAc oligosaccharides) or decorating different arms of a multiantennae scaffold, either natural (as in multiantennae N-glycans) or synthetic (of dendrimer or polymer nature). From the lectin perspective, the presence of an individual binding site at every monomer of a multimeric lectin may also have key consequences for the binding event at different levels of complexity.
Collapse
Affiliation(s)
- Jon I Quintana
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
| | - Unai Atxabal
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
| | - Luca Unione
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
| | - Ana Ardá
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
- Department of Organic Chemistry, II Faculty of Science and Technology, EHU-UPV, 48940 Leioa, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
7
|
Wu HJ, Singla A, Weatherston JD. Nanocube-Based Fluidic Glycan Array. Methods Mol Biol 2022; 2460:45-63. [PMID: 34972930 DOI: 10.1007/978-1-0716-2148-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The nature of cell membrane fluidity permits glycans, which are attached to membrane proteins and lipids, to freely diffuse on cell surfaces. Through such two-dimensional motion, some weakly binding glycans can participate in lectin binding processes, eventually changing lectin binding behaviors. This chapter discusses a plasmonic nanocube sensor that allows users to detect lectin binding kinetics in a cell membrane mimicking environment. This assay only requires standard laboratory spectrometers, including microplate readers. We describe the basics of the technology in detail, including sensor fabrication, sensor calibration, data processing, a general protocol for detecting lectin-glycan interactions, and a troubleshooting guide.
Collapse
Affiliation(s)
- Hung-Jen Wu
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
| | - Akshi Singla
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Joshua D Weatherston
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
8
|
Kenworthy AK, Schmieder SS, Raghunathan K, Tiwari A, Wang T, Kelly CV, Lencer WI. Cholera Toxin as a Probe for Membrane Biology. Toxins (Basel) 2021; 13:543. [PMID: 34437414 PMCID: PMC8402489 DOI: 10.3390/toxins13080543] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022] Open
Abstract
Cholera toxin B-subunit (CTxB) has emerged as one of the most widely utilized tools in membrane biology and biophysics. CTxB is a homopentameric stable protein that binds tightly to up to five GM1 glycosphingolipids. This provides a robust and tractable model for exploring membrane structure and its dynamics including vesicular trafficking and nanodomain assembly. Here, we review important advances in these fields enabled by use of CTxB and its lipid receptor GM1.
Collapse
Affiliation(s)
- Anne K. Kenworthy
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (A.T.); (T.W.)
| | - Stefanie S. Schmieder
- Division of Gastroenterology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Digestive Diseases Center, Boston, MA 02115, USA
| | - Krishnan Raghunathan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA;
| | - Ajit Tiwari
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (A.T.); (T.W.)
| | - Ting Wang
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (A.T.); (T.W.)
| | - Christopher V. Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA
| | - Wayne I. Lencer
- Division of Gastroenterology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Digestive Diseases Center, Boston, MA 02115, USA
| |
Collapse
|
9
|
Sojitra M, Sarkar S, Maghera J, Rodrigues E, Carpenter EJ, Seth S, Ferrer Vinals D, Bennett NJ, Reddy R, Khalil A, Xue X, Bell MR, Zheng RB, Zhang P, Nycholat C, Bailey JJ, Ling CC, Lowary TL, Paulson JC, Macauley MS, Derda R. Genetically encoded multivalent liquid glycan array displayed on M13 bacteriophage. Nat Chem Biol 2021; 17:806-816. [PMID: 33958792 PMCID: PMC8380037 DOI: 10.1038/s41589-021-00788-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
The central dogma of biology does not allow for the study of glycans using DNA sequencing. We report a liquid glycan array (LiGA) platform comprising a library of DNA 'barcoded' M13 virions that display 30-1,500 copies of glycans per phage. A LiGA is synthesized by acylation of the phage pVIII protein with a dibenzocyclooctyne, followed by ligation of azido-modified glycans. Pulldown of the LiGA with lectins followed by deep sequencing of the barcodes in the bound phage decodes the optimal structure and density of the recognized glycans. The LiGA is target agnostic and can measure the glycan-binding profile of lectins, such as CD22, on cells in vitro and immune cells in a live mouse. From a mixture of multivalent glycan probes, LiGAs identify the glycoconjugates with optimal avidity necessary for binding to lectins on living cells in vitro and in vivo.
Collapse
Affiliation(s)
- Mirat Sojitra
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jasmine Maghera
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Emily Rodrigues
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Eric J Carpenter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shaurya Seth
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Nicholas J Bennett
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Revathi Reddy
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Amira Khalil
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El Sherouk, Egypt
| | - Xiaochao Xue
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael R Bell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Ping Zhang
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Corwin Nycholat
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Justin J Bailey
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Da'an, Taipei, Taiwan
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
10
|
Bourgeat L, Pacini L, Serghei A, Lesieur C. Experimental diagnostic of sequence-variant dynamic perturbations revealed by broadband dielectric spectroscopy. Structure 2021; 29:1419-1429.e3. [PMID: 34051139 DOI: 10.1016/j.str.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/23/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023]
Abstract
Genetic diversity leads to protein robustness, adaptability, and failure. Some sequence variants are structurally robust but functionally disturbed because mutations bring the protein onto unfolding/refolding routes resulting in misfolding diseases (e.g., Parkinson). We assume dynamic perturbations introduced by mutations foster the alternative unfolding routes and test this possibility by comparing the unfolding dynamics of the heat-labile enterotoxin B pentamers and the cholera toxin B pentamers, two pentamers structurally and functionally related and robust to 17 sequence variations. The B-subunit thermal unfolding dynamics are monitored by broadband dielectric spectroscopy in nanoconfined and weakly hydrated conditions. Distinct dielectric signals reveal the different B-subunits unfolding dynamics. Combined with network analyses, the experiments pinpoint the role of three mutations A1T, E7D, and E102A, in diverting LTB5 to alternative unfolding routes that protect LTB5 from dissociation. Altogether, the methodology diagnoses dynamics faults that may underlie functional disorder, drug resistance, or higher virulence of sequence variants.
Collapse
Affiliation(s)
- Laëtitia Bourgeat
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69622 Villeurbanne, France; Univ Lyon, CNRS, IMP, 69622, Villeurbanne, France
| | - Lorenza Pacini
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69622 Villeurbanne, France; Institut Rhônalpin des systèmes complexes, IXXI-ENS-Lyon, 69007, Lyon, France
| | | | - Claire Lesieur
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69622 Villeurbanne, France; Institut Rhônalpin des systèmes complexes, IXXI-ENS-Lyon, 69007, Lyon, France.
| |
Collapse
|
11
|
Cervin J, Boucher A, Youn G, Björklund P, Wallenius V, Mottram L, Sampson NS, Yrlid U. Fucose-Galactose Polymers Inhibit Cholera Toxin Binding to Fucosylated Structures and Galactose-Dependent Intoxication of Human Enteroids. ACS Infect Dis 2020; 6:1192-1203. [PMID: 32134631 PMCID: PMC7227030 DOI: 10.1021/acsinfecdis.0c00009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
A promising strategy to limit cholera
severity involves blockers
mimicking the canonical cholera toxin ligand (CT) ganglioside GM1.
However, to date the efficacies of most of these blockers have been
evaluated in noncellular systems that lack ligands other than GM1.
Importantly, the CT B subunit (CTB) has a noncanonical site that binds
fucosylated structures, which in contrast to GM1 are highly expressed
in the human intestine. Here we evaluate the capacity of norbornene
polymers displaying galactose and/or fucose to block CTB binding to
immobilized protein-linked glycan structures and also to primary human
and murine small intestine epithelial cells (SI ECs). We show that
the binding of CTB to human SI ECs is largely dependent on the noncanonical
binding site, and interference with the canonical site has a limited
effect while the opposite is observed with murine SI ECs. The galactose–fucose
polymer blocks binding to fucosylated glycans but not to GM1. However,
the preincubation of CT with the galactose–fucose polymer only
partially blocks toxic effects on cultured human enteroid cells, while
preincubation with GM1 completely blocks CT-mediated secretion. Our
results support a model whereby the binding of fucose to the noncanonical
site places CT in close proximity to scarcely expressed galactose
receptors such as GM1 to enable binding via the canonical site leading
to CT internalization and intoxication. Our finding also highlights
the importance of complementing CTB binding studies with functional
intoxication studies when assessing the efficacy inhibitors of CT.
Collapse
Affiliation(s)
- Jakob Cervin
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Andrew Boucher
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gyusaang Youn
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, United States
| | - Per Björklund
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital/Östra, 416 85 Gothenburg, Sweden
| | - Ville Wallenius
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital/Östra, 416 85 Gothenburg, Sweden
| | - Lynda Mottram
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, United States
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
12
|
Haksar D, Quarles van Ufford L, Pieters RJ. A hybrid polymer to target blood group dependence of cholera toxin. Org Biomol Chem 2020; 18:52-55. [DOI: 10.1039/c9ob02369k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
New hybrid glycopolymers were synthesized that contain two epitopes blocking GM1- and fucose-based intoxication modes of the cholera toxin.
Collapse
Affiliation(s)
- Diksha Haksar
- Department of Chemical Biology & Drug Discovery
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- 3508 TB Utrecht
- The Netherlands
| | - Linda Quarles van Ufford
- Department of Chemical Biology & Drug Discovery
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- 3508 TB Utrecht
- The Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology & Drug Discovery
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- 3508 TB Utrecht
- The Netherlands
| |
Collapse
|
13
|
Choi HK, Lee D, Singla A, Kwon JSI, Wu HJ. The influence of heteromultivalency on lectin-glycan binding behavior. Glycobiology 2019; 29:397-408. [PMID: 30824941 DOI: 10.1093/glycob/cwz010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
We recently discovered that the nature of lectin multivalency and glycolipid diffusion on cell membranes could lead to the heteromultivalent binding (i.e., a single lectin simultaneously binding to different types of glycolipid ligands). This heteromultivalent binding may even govern the lectin-glycan recognition process. To investigate this, we developed a kinetic Monte Carlo simulation, which only considers the fundamental physics/chemistry principles, to model the process of lectin binding to glycans on cell surfaces. We found that the high-affinity glycan ligands could facilitate lectin binding to other low-affinity glycan ligands, even though these low-affinity ligands are barely detectable in microarrays with immobilized glycan ligands. Such heteromultivalent binding processes significantly change lectin binding behaviors. We hypothesize that living organisms probably utilize this mechanism to regulate the downstream lectin functions. Our finding not only offers a mechanism to describe the concept that lectins are pattern recognition molecules, but also suggests that the two overlooked parameters, surface diffusion of glycan ligand and lectin binding kinetics, can play important roles in glycobiology processes. In this paper, we identified the critical parameters that influence the heteromultivalent binding process. We also discussed how our discovery can impact the current lectin-glycan analysis.
Collapse
Affiliation(s)
- Hyun-Kyu Choi
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX USA
| | - Dongheon Lee
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX USA
| | - Akshi Singla
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX USA
| | - Joseph Sang-Il Kwon
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX USA
| | - Hung-Jen Wu
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX USA
| |
Collapse
|
14
|
Crystal structures of cholera toxin in complex with fucosylated receptors point to importance of secondary binding site. Sci Rep 2019; 9:12243. [PMID: 31439922 PMCID: PMC6706398 DOI: 10.1038/s41598-019-48579-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 08/02/2019] [Indexed: 01/15/2023] Open
Abstract
Cholera is a life-threatening diarrhoeal disease caused by the human pathogen Vibrio cholerae. Infection occurs after ingestion of the bacteria, which colonize the human small intestine and secrete their major virulence factor – the cholera toxin (CT). The GM1 ganglioside is considered the primary receptor of the CT, but recent studies suggest that also fucosylated receptors such as histo-blood group antigens are important for cellular uptake and toxicity. Recently, a special focus has been on the histo-blood group antigen Lewisx (Lex), however, where and how the CT binds to Lex remains unclear. Here we report the high-resolution crystal structure (1.5 Å) of the receptor-binding B-subunits of the CT bound to the Lex trisaccharide, and complementary quantitative binding data for CT holotoxins. Lex, and also l-fucose alone, bind to the secondary binding site of the toxin, distinct from the GM1 binding site. In contrast, fucosyl-GM1 mainly binds to the primary binding site due to high-affinity interactions of its GM1 core. Lex is the first histo-blood group antigen of non-secretor phenotype structurally investigated in complex with CT. Together with the quantitative binding data, this allows unique insight into why individuals with non-secretor phenotype are more prone to severe cholera than so-called ‘secretors’.
Collapse
|
15
|
Civera M, Vasile F, Potenza D, Colombo C, Parente S, Vettraino C, Prosdocimi T, Parisini E, Belvisi L. Exploring E-cadherin-peptidomimetics interaction using NMR and computational studies. PLoS Comput Biol 2019; 15:e1007041. [PMID: 31158220 PMCID: PMC6564044 DOI: 10.1371/journal.pcbi.1007041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/13/2019] [Accepted: 04/22/2019] [Indexed: 02/02/2023] Open
Abstract
Cadherins are homophilic cell-cell adhesion molecules whose aberrant expression has often been shown to correlate with different stages of tumor progression. In this work, we investigate the interaction of two peptidomimetic ligands with the extracellular portion of human E-cadherin using a combination of NMR and computational techniques. Both ligands have been previously developed as mimics of the tetrapeptide sequence Asp1-Trp2-Val3-Ile4 of the cadherin adhesion arm, and have been shown to inhibit E-cadherin-mediated adhesion in epithelial ovarian cancer cells with millimolar potency. To sample a set of possible interactions of these ligands with the E-cadherin extracellular portion, STD-NMR experiments in the presence of two slightly different constructs, the wild type E-cadherin-EC1-EC2 fragment and the truncated E-cadherin-(Val3)-EC1-EC2 fragment, were carried out at three temperatures. Depending on the protein construct, a different binding epitope of the ligand and also a different temperature effect on STD signals were observed, both suggesting an involvement of the Asp1-Trp2 protein sequence among all the possible binding events. To interpret the experimental results at the atomic level and to probe the role of the cadherin adhesion arm in the dynamic interaction with the peptidomimetic ligand, a computational protocol based on docking calculations and molecular dynamics simulations was applied. In agreement with NMR data, the simulations at different temperatures unveil high variability/dynamism in ligand-cadherin binding, thus explaining the differences in ligand binding epitopes. In particular, the modulation of the signals seems to be dependent on the protein flexibility, especially at the level of the adhesive arm, which appears to participate in the interaction with the ligand. Overall, these results will help the design of novel cadherin inhibitors that might prevent the swap dimer formation by targeting both the Trp2 binding pocket and the adhesive arm residues. Classical cadherins are the main adhesive proteins at the intercellular junctions and play an essential role in tissue morphogenesis and homeostasis. A large number of studies have shown that cadherin aberrant expression and/or dysregulation often correlate with pathological processes, such as tumor development and progression. Notwithstanding the emerging role played by cadherins in a number of solid tumors, the rational design of small inhibitors targeting these proteins is still in its infancy, likely due to the challenges posed by the development of small drug-like molecules that modulate protein-protein interactions and to the structural complexity of the various cadherin dimerization interfaces that constantly form and disappear as the protein moves along its highly dynamic and reversible homo-dimerization trajectory. In this work, we study the interaction of two small molecules with the extracellular portion of human E-cadherin using a combination of spectroscopic and computational techniques. The availability of molecules interfering in the cadherin homophilic interactions could provide a useful tool for the investigation of cadherin function in tumors, and potentially pave the way to the development of novel alternative diagnostic and therapeutic interventions in cadherin-expressing solid tumors.
Collapse
Affiliation(s)
- Monica Civera
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
- Istituto di Scienze e Tecnologie Molecolari (ISTM), Consiglio Nazionale delle Ricerche, Milan, Italy
- * E-mail: (MC); (FV)
| | - Francesca Vasile
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
- Istituto di Scienze e Tecnologie Molecolari (ISTM), Consiglio Nazionale delle Ricerche, Milan, Italy
- * E-mail: (MC); (FV)
| | - Donatella Potenza
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Cinzia Colombo
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Sara Parente
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Como, Italy
| | - Chiara Vettraino
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Tommaso Prosdocimi
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Emilio Parisini
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
- Istituto di Scienze e Tecnologie Molecolari (ISTM), Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
16
|
Specificity of Escherichia coli Heat-Labile Enterotoxin Investigated by Single-Site Mutagenesis and Crystallography. Int J Mol Sci 2019; 20:ijms20030703. [PMID: 30736336 PMCID: PMC6386978 DOI: 10.3390/ijms20030703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/25/2022] Open
Abstract
Diarrhea caused by enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of mortality in children under five years of age and is a great burden on developing countries. The major virulence factor of the bacterium is the heat-labile enterotoxin (LT), a close homologue of the cholera toxin. The toxins bind to carbohydrate receptors in the gastrointestinal tract, leading to toxin uptake and, ultimately, to severe diarrhea. Previously, LT from human- and porcine-infecting ETEC (hLT and pLT, respectively) were shown to have different carbohydrate-binding specificities, in particular with respect to N-acetyllactosamine-terminating glycosphingolipids. Here, we probed 11 single-residue variants of the heat-labile enterotoxin with surface plasmon resonance spectroscopy and compared the data to the parent toxins. In addition we present a 1.45 Å crystal structure of pLTB in complex with branched lacto-N-neohexaose (Galβ4GlcNAcβ6[Galβ4GlcNAcβ3]Galβ4Glc). The largest difference in binding specificity is caused by mutation of residue 94, which links the primary and secondary binding sites of the toxins. Residue 95 (and to a smaller extent also residues 7 and 18) also contribute, whereas residue 4 shows no effect on monovalent binding of the ligand and may rather be important for multivalent binding and avidity.
Collapse
|
17
|
Exploration of ligand binding modes towards the identification of compounds targeting HuR: a combined STD-NMR and Molecular Modelling approach. Sci Rep 2018; 8:13780. [PMID: 30214075 PMCID: PMC6137155 DOI: 10.1038/s41598-018-32084-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022] Open
Abstract
Post-transcriptional processes have been recognised as pivotal in the control of gene expression, and impairments in RNA processing are reported in several pathologies (i.e., cancer and neurodegeneration). Focusing on RNA-binding proteins (RBPs), the involvement of Embryonic Lethal Abnormal Vision (ELAV) or Hu proteins and their complexes with target mRNAs in the aetiology of various dysfunctions, has suggested the great potential of compounds able to interfere with the complex stability as an innovative pharmacological strategy for the treatment of numerous diseases. Here, we present a rational follow-up investigation of the interaction between ELAV isoform HuR and structurally-related compounds (i.e., flavonoids and coumarins), naturally decorated with different functional groups, by means of STD-NMR and Molecular Modelling. Our results represent the foundation for the development of potent and selective ligands able to interfere with ELAV–RNA complexes.
Collapse
|
18
|
Blaum BS, Neu U, Peters T, Stehle T. Spin ballet for sweet encounters: saturation-transfer difference NMR and X-ray crystallography complement each other in the elucidation of protein-glycan interactions. Acta Crystallogr F Struct Biol Commun 2018; 74:451-462. [PMID: 30084394 PMCID: PMC6096479 DOI: 10.1107/s2053230x18006581] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/28/2018] [Indexed: 03/11/2023] Open
Abstract
Biomolecular NMR spectroscopy has limitations in the determination of protein structures: an inherent size limit and the requirement for expensive and potentially difficult isotope labelling pose considerable hurdles. Therefore, structural analysis of larger proteins is almost exclusively performed by crystallography. However, the diversity of biological NMR applications outperforms that of any other structural biology technique. For the characterization of transient complexes formed by proteins and small ligands, notably oligosaccharides, one NMR technique has recently proven to be particularly powerful: saturation-transfer difference NMR (STD-NMR) spectroscopy. STD-NMR experiments are fast and simple to set up, with no general protein size limit and no requirement for isotope labelling. The method performs best in the moderate-to-low affinity range that is of interest in most of glycobiology. With small amounts of unlabelled protein, STD-NMR experiments can identify hits from mixtures of potential ligands, characterize mutant proteins and pinpoint binding epitopes on the ligand side. STD-NMR can thus be employed to complement and improve protein-ligand complex models obtained by other structural biology techniques or by purely computational means. With a set of protein-glycan interactions from our own work, this review provides an introduction to the technique for structural biologists. It exemplifies how crystallography and STD-NMR can be combined to elucidate protein-glycan (and other protein-ligand) interactions in atomic detail, and how the technique can extend structural biology from simplified systems amenable to crystallization to more complex biological entities such as membranes, live viruses or entire cells.
Collapse
Affiliation(s)
- Bärbel S. Blaum
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Ursula Neu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Thomas Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, 23562 Lübeck, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Wands AM, Cervin J, Huang H, Zhang Y, Youn G, Brautigam CA, Matson Dzebo M, Björklund P, Wallenius V, Bright DK, Bennett CS, Wittung-Stafshede P, Sampson NS, Yrlid U, Kohler JJ. Fucosylated Molecules Competitively Interfere with Cholera Toxin Binding to Host Cells. ACS Infect Dis 2018; 4:758-770. [PMID: 29411974 DOI: 10.1021/acsinfecdis.7b00085] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cholera toxin (CT) enters host intestinal epithelia cells, and its retrograde transport to the cytosol results in the massive loss of fluids and electrolytes associated with severe dehydration. To initiate this intoxication process, the B subunit of CT (CTB) first binds to a cell surface receptor displayed on the apical surface of the intestinal epithelia. While the monosialoganglioside GM1 is widely accepted to be the sole receptor for CT, intestinal epithelial cell lines also utilize fucosylated glycan epitopes on glycoproteins to facilitate cell surface binding and endocytic uptake of the toxin. Further, l-fucose can competively inhibit CTB binding to intestinal epithelia cells. Here, we use competition binding assays with l-fucose analogs to decipher the molecular determinants for l-fucose inhibition of cholera toxin subunit B (CTB) binding. Additionally, we find that mono- and difucosylated oligosaccharides are more potent inhibitors than l-fucose alone, with the LeY tetrasaccharide emerging as the most potent inhibitor of CTB binding to two colonic epithelial cell lines (T84 and Colo205). Finally, a non-natural fucose-containing polymer inhibits CTB binding two orders of magnitude more potently than the LeY glycan when tested against Colo205 cells. This same polymer also inhibits CTB binding to T84 cells and primary human jejunal epithelial cells in a dose-dependent manner. These findings suggest the possibility that polymeric display of fucose might be exploited as a prophylactic or therapeutic approach to block the action of CT toward the human intestinal epithelium.
Collapse
Affiliation(s)
| | - Jakob Cervin
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - He Huang
- Department of Chemistry, Stony Brook University, 100 Toll Road, Stony Brook, New York 11790-3400, United States
| | - Ye Zhang
- Department of Chemistry, Stony Brook University, 100 Toll Road, Stony Brook, New York 11790-3400, United States
| | - Gyusaang Youn
- Department of Chemistry, Stony Brook University, 100 Toll Road, Stony Brook, New York 11790-3400, United States
| | | | - Maria Matson Dzebo
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Per Björklund
- Department of Gastrosurgical Research and Education, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital/Östra, SE-41345 Gothenburg, Sweden
| | - Ville Wallenius
- Department of Gastrosurgical Research and Education, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital/Östra, SE-41345 Gothenburg, Sweden
| | - Danielle K. Bright
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Clay S. Bennett
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, 100 Toll Road, Stony Brook, New York 11790-3400, United States
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | | |
Collapse
|
20
|
Vasile F, Panigada M, Siccardi A, Potenza D, Tiana G. A Combined NMR-Computational Study of the Interaction between Influenza Virus Hemagglutinin and Sialic Derivatives from Human and Avian Receptors on the Surface of Transfected Cells. Int J Mol Sci 2018; 19:E1267. [PMID: 29695047 PMCID: PMC5983646 DOI: 10.3390/ijms19051267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022] Open
Abstract
The development of small-molecule inhibitors of influenza virus Hemagglutinin could be relevant to the opposition of the diffusion of new pandemic viruses. In this work, we made use of Nuclear Magnetic Resonance (NMR) spectroscopy to study the interaction between two derivatives of sialic acid, Neu5Ac-α-(2,6)-Gal-β-(1⁻4)-GlcNAc and Neu5Ac-α-(2,3)-Gal-β-(1⁻4)-GlcNAc, and hemagglutinin directly expressed on the surface of recombinant human cells. We analyzed the interaction of these trisaccharides with 293T cells transfected with the H5 and H1 variants of hemagglutinin, which thus retain their native trimeric conformation in such a realistic environment. By exploiting the magnetization transfer between the protein and the ligand, we obtained evidence of the binding event, and identified the epitope. We analyzed the conformational features of the glycans with an approach combining NMR spectroscopy and data-driven molecular dynamics simulations, thus obtaining useful information for an efficient drug design.
Collapse
Affiliation(s)
- Francesca Vasile
- Department of Chemistry, University of Milano, Via Golgi 19, 20133 Milano, Italy.
| | - Maddalena Panigada
- Molecular Immunology Unit, San Raffaele Research Institute, via Olgettina 58, 20132 Milano, Italy.
| | - Antonio Siccardi
- Molecular Immunology Unit, San Raffaele Research Institute, via Olgettina 58, 20132 Milano, Italy.
| | - Donatella Potenza
- Department of Chemistry, University of Milano, Via Golgi 19, 20133 Milano, Italy.
| | - Guido Tiana
- Center for Complexity and Biosystems and Department of Physics, University of Milano and INFN, Via Celoria 16, 20133 Milano, Italy.
| |
Collapse
|
21
|
Kumar V, Turnbull WB. Carbohydrate inhibitors of cholera toxin. Beilstein J Org Chem 2018; 14:484-498. [PMID: 29520310 PMCID: PMC5827775 DOI: 10.3762/bjoc.14.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/08/2018] [Indexed: 01/17/2023] Open
Abstract
Cholera is a diarrheal disease caused by a protein toxin released by Vibrio cholera in the host's intestine. The toxin enters intestinal epithelial cells after binding to specific carbohydrates on the cell surface. Over recent years, considerable effort has been invested in developing inhibitors of toxin adhesion that mimic the carbohydrate ligand, with particular emphasis on exploiting the multivalency of the toxin to enhance activity. In this review we introduce the structural features of the toxin that have guided the design of diverse inhibitors and summarise recent developments in the field.
Collapse
Affiliation(s)
- Vajinder Kumar
- Department of Chemistry, Akal University, Talwandi Sabo, Punjab, India
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, UK
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, UK
| |
Collapse
|
22
|
Vasile F, Gubinelli F, Panigada M, Soprana E, Siccardi A, Potenza D. NMR interaction studies of Neu5Ac-α-(2,6)-Gal-β-(1-4)-GlcNAc with influenza-virus hemagglutinin expressed in transfected human cells. Glycobiology 2017; 28:42-49. [DOI: 10.1093/glycob/cwx092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Francesca Vasile
- Department of Chemistry, University of Milano, Via Golgi 19, 20133 Milano, Italy
| | - Francesco Gubinelli
- Molecular Immunology Unit, San Raffaele Research Istitute, via Olgettina 58, 20132 Milano, Italy
| | - Maddalena Panigada
- Molecular Immunology Unit, San Raffaele Research Istitute, via Olgettina 58, 20132 Milano, Italy
| | - Elisa Soprana
- Molecular Immunology Unit, San Raffaele Research Istitute, via Olgettina 58, 20132 Milano, Italy
| | - Antonio Siccardi
- Molecular Immunology Unit, San Raffaele Research Istitute, via Olgettina 58, 20132 Milano, Italy
| | - Donatella Potenza
- Department of Chemistry, University of Milano, Via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
23
|
Heggelund JE, Mackenzie A, Martinsen T, Heim JB, Cheshev P, Bernardi A, Krengel U. Towards new cholera prophylactics and treatment: Crystal structures of bacterial enterotoxins in complex with GM1 mimics. Sci Rep 2017; 7:2326. [PMID: 28539625 PMCID: PMC5443773 DOI: 10.1038/s41598-017-02179-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/07/2017] [Indexed: 01/08/2023] Open
Abstract
Cholera is a life-threatening disease in many countries, and new drugs are clearly needed. C-glycosidic antagonists may serve such a purpose. Here we report atomic-resolution crystal structures of three such compounds in complexes with the cholera toxin. The structures give unprecedented atomic details of the molecular interactions and show how the inhibitors efficiently block the GM1 binding site. These molecules are well suited for development into low-cost prophylactic drugs, due to their relatively easy synthesis and their resistance to glycolytic enzymes. One of the compounds links two toxin B-pentamers in the crystal structure, which may yield improved inhibition through the formation of toxin aggregates. These structures can spark the improved design of GM1 mimics, either alone or as multivalent inhibitors connecting multiple GM1-binding sites. Future developments may further include compounds that link the primary and secondary binding sites. Serving as decoys, receptor mimics may lessen symptoms while avoiding the use of antibiotics.
Collapse
Affiliation(s)
- Julie Elisabeth Heggelund
- Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315, Blindern, Norway. .,School of Biomedical Sciences, University of Leeds, LS2 9JT Leeds, UK and School of Pharmacy, University of Oslo, P.O. Box 1068, NO-0316, Blindern, Norway.
| | - Alasdair Mackenzie
- Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315, Blindern, Norway.,Alere Technologies AS, Kjelsåsveien 161, NO-0884, Oslo, Norway
| | - Tobias Martinsen
- Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315, Blindern, Norway
| | - Joel Benjamin Heim
- Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315, Blindern, Norway
| | - Pavel Cheshev
- Universita' degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133, Milano, Italy.,Skolkovo innovation center, Office 229, OC Technopark bld. 2, Lugovaya str. 4, 143026, Moscow, Russia
| | - Anna Bernardi
- Universita' degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133, Milano, Italy
| | - Ute Krengel
- Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315, Blindern, Norway.
| |
Collapse
|
24
|
Heggelund JE, Varrot A, Imberty A, Krengel U. Histo-blood group antigens as mediators of infections. Curr Opin Struct Biol 2017; 44:190-200. [PMID: 28544984 DOI: 10.1016/j.sbi.2017.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/07/2023]
Abstract
The critical first step of a microbial infection is usually the attachment of pathogens to host cell glycans. Targets on host tissues are in particular the histo-blood group antigens (HBGAs), which are present in rich diversity in the mucus layer and on the underlying mucosa. Recent structural and functional studies have revealed significant new insight into the molecular mechanisms, explaining why individuals with certain blood groups are at increased risk of some infections. The most prominent example of blood-group-associated diseases is cholera, caused by infection with Vibrio cholerae. Many other microbial pathogens, for example Pseudomonas aeruginosa infecting the airways, and enterotoxigenic Escherichia coli (ETEC) causing traveler's diarrhea, also bind to histo-blood group antigens, but show a less clear correlation with blood group phenotype. Yet other pathogens, for example norovirus and Helicobacter pylori, recognize HBGAs differently depending on the strain. In all cases, milk oligosaccharides can aid the hosts' defenses, acting as natural receptor decoys, and anti-infectious therapy can be designed along similar strategies. In this review, we focus on important infections of humans, but the molecular mechanisms are of general relevance to a broad range of microbial infections of humans and animals.
Collapse
Affiliation(s)
- Julie E Heggelund
- Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315 Blindern, Norway
| | - Annabelle Varrot
- Centre de Recherches sur les Macromolécules Végétales (CERMAV), CNRS and Université Grenoble Alpes, 38000 Grenoble, France
| | - Anne Imberty
- Centre de Recherches sur les Macromolécules Végétales (CERMAV), CNRS and Université Grenoble Alpes, 38000 Grenoble, France
| | - Ute Krengel
- Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315 Blindern, Norway.
| |
Collapse
|
25
|
Hatlem D, Heggelund JE, Burschowsky D, Krengel U, Kristiansen PE. 1H, 13C, 15N backbone assignment of the human heat-labile enterotoxin B-pentamer and chemical shift mapping of neolactotetraose binding. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:99-104. [PMID: 28243889 DOI: 10.1007/s12104-017-9728-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/16/2017] [Indexed: 06/06/2023]
Abstract
The major virulence factor of enterotoxigenic Escherichia coli is the heat-labile enterotoxin (LT), an AB5 toxin closely related to the cholera toxin. LT consists of six subunits, the catalytically active A-subunit and five B-subunits arranged as a pentameric ring (LTB), which enable the toxin to bind to the epithelial cells in the intestinal lumen. LTB has two recognized binding sites; the primary binding site is responsible for anchoring the toxin to its main receptor, the GM1-ganglioside, while the secondary binding site recognizes blood group antigens. Herein, we report the 1H, 13C, 15N main chain assignment of LTB from human isolates (hLTB; 103 a.a. per subunit, with a total molecular mass of 58.5 kDa). The secondary structure was predicted based on 13C', 13Cα, 13Cβ, 1HN and 15N chemical shifts and compared to a published crystal structure of LTB. Neolactotetraose (NEO) was titrated to hLTB and chemical shift perturbations were measured. The chemical shift perturbations were mapped onto the crystal structure, confirming that NEO binds to the primary binding site of hLTB and competes with GM1-binding. Our new data further lend support to the hypothesis that binding at the primary binding site is transmitted to the secondary binding site of the toxin, where it may influence the binding to blood group antigens.
Collapse
Affiliation(s)
- Daniel Hatlem
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, 0315, Oslo, Norway
- Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, 0316, Oslo, Norway
| | - Julie E Heggelund
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, 0315, Oslo, Norway
- School of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Daniel Burschowsky
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, 0315, Oslo, Norway
- Department of Molecular and Cell Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, 0315, Oslo, Norway.
| | - Per E Kristiansen
- Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, 0316, Oslo, Norway.
| |
Collapse
|
26
|
Abstract
Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, CA 92093-0687, USA
| |
Collapse
|
27
|
Dubreuil JD, Isaacson RE, Schifferli DM. Animal Enterotoxigenic Escherichia coli. EcoSal Plus 2016; 7:10.1128/ecosalplus.ESP-0006-2016. [PMID: 27735786 PMCID: PMC5123703 DOI: 10.1128/ecosalplus.esp-0006-2016] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors: adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17, and F18 fimbriae. Once established in the animal small intestine, ETEC produce enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes: heat-labile toxins that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This review describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics, and the identification of potential new targets by genomics are presented in the context of animal ETEC.
Collapse
Affiliation(s)
- J Daniel Dubreuil
- Faculté de Médecine Vétérinaire, Université de Montréal, Québec J2S 7C6, Canada
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
| | - Dieter M Schifferli
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
28
|
Structural diversity and biological importance of ABO, H, Lewis and secretor histo-blood group carbohydrates. Rev Bras Hematol Hemoter 2016; 38:331-340. [PMID: 27863762 PMCID: PMC5119663 DOI: 10.1016/j.bjhh.2016.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/08/2016] [Accepted: 07/21/2016] [Indexed: 12/20/2022] Open
Abstract
ABO, H, secretor and Lewis histo-blood system genes control the expression of part of the carbohydrate repertoire present in areas of the body occupied by microorganisms. These carbohydrates, besides having great structural diversity, act as potential receptors for pathogenic and non-pathogenic microorganisms influencing susceptibility and resistance to infection and illness. Despite the knowledge of some structural variability of these carbohydrate antigens and their polymorphic levels of expression in tissue and exocrine secretions, little is known about their biological importance and potential applications in medicine. This review highlights the structural diversity, the biological importance and potential applications of ABO, H, Lewis and secretor histo-blood carbohydrates.
Collapse
|
29
|
Kuhlmann FM, Santhanam S, Kumar P, Luo Q, Ciorba MA, Fleckenstein JM. Blood Group O-Dependent Cellular Responses to Cholera Toxin: Parallel Clinical and Epidemiological Links to Severe Cholera. Am J Trop Med Hyg 2016; 95:440-3. [PMID: 27162272 DOI: 10.4269/ajtmh.16-0161] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/01/2016] [Indexed: 12/25/2022] Open
Abstract
Because O blood group has been associated with more severe cholera infections, it has been hypothesized that cholera toxin (CT) may bind non-O blood group antigens of the intestinal mucosae, thereby preventing efficient interaction with target GM1 gangliosides required for uptake of the toxin and activation of cyclic adenosine monophosphate (cAMP) signaling in target epithelia. Herein, we show that after exposure to CT, human enteroids expressing O blood group exhibited marked increase in cAMP relative to cells derived from blood group A individuals. Likewise, using CRISPR/Cas9 engineering, a functional group O line (HT-29-A(-/-)) was generated from a parent group A HT-29 line. CT stimulated robust cAMP responses in HT-29-A(-/-) cells relative to HT-29 cells. These findings provide a direct molecular link between blood group O expression and differential cellular responses to CT, recapitulating clinical and epidemiologic observations.
Collapse
Affiliation(s)
- F Matthew Kuhlmann
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Srikanth Santhanam
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Pardeep Kumar
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Qingwei Luo
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Matthew A Ciorba
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri. Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, Missouri
| | - James M Fleckenstein
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri. Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, Missouri. Veterans Affairs Medical Center, Saint Louis, Missouri.
| |
Collapse
|
30
|
High-Resolution Crystal Structures Elucidate the Molecular Basis of Cholera Blood Group Dependence. PLoS Pathog 2016; 12:e1005567. [PMID: 27082955 PMCID: PMC4833353 DOI: 10.1371/journal.ppat.1005567] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/21/2016] [Indexed: 11/19/2022] Open
Abstract
Cholera is the prime example of blood-group-dependent diseases, with individuals of blood group O experiencing the most severe symptoms. The cholera toxin is the main suspect to cause this relationship. We report the high-resolution crystal structures (1.1-1.6 Å) of the native cholera toxin B-pentamer for both classical and El Tor biotypes, in complexes with relevant blood group determinants and a fragment of its primary receptor, the GM1 ganglioside. The blood group A determinant binds in the opposite orientation compared to previously published structures of the cholera toxin, whereas the blood group H determinant, characteristic of blood group O, binds in both orientations. H-determinants bind with higher affinity than A-determinants, as shown by surface plasmon resonance. Together, these findings suggest why blood group O is a risk factor for severe cholera.
Collapse
|
31
|
El-Hawiet A, Kitova EN, Klassen JS. Recognition of human milk oligosaccharides by bacterial exotoxins. Glycobiology 2015; 25:845-54. [DOI: 10.1093/glycob/cwv025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/22/2015] [Indexed: 01/09/2023] Open
|