1
|
Ancajas CF, Ricks TJ, Best MD. Metabolic labeling of glycerophospholipids via clickable analogs derivatized at the lipid headgroup. Chem Phys Lipids 2020; 232:104971. [PMID: 32898510 PMCID: PMC7606648 DOI: 10.1016/j.chemphyslip.2020.104971] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/01/2020] [Indexed: 02/09/2023]
Abstract
Metabolic labeling, in which substrate analogs containing diminutive tags can infiltrate biosynthetic pathways and generate labeled products in cells, has led to dramatic advancements in the means by which complex biomolecules can be detected and biological processes can be elucidated. Within this realm, metabolic labeling of lipid products, particularly in a manner that is headgroup-specific, brings about a number of technical challenges including the complexity of lipid metabolic pathways as well as the simplicity of biosynthetic precursors to headgroup functionality. As such, only a handful of strategies for metabolic labeling of lipids have thus far been reported. However, these approaches provide enticing examples of how strategic modifications to substrate structures, particularly by introducing clickable moieties, can enable the hijacking of lipid biosynthesis. Furthermore, early work in this field has led to an explosion in diverse applications by which these techniques have been exploited to answer key biological questions or detect and track various lipid-containing biological entities. In this article, we review these efforts and emphasize recent advancements in the development and application of lipid metabolic labeling strategies.
Collapse
Affiliation(s)
- Christelle F Ancajas
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Tanei J Ricks
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA.
| |
Collapse
|
2
|
Chen Q, Chu T. A two-step strategy to radiolabel choline phospholipids with 99mTc in S180 cell membranes via strain-promoted cyclooctyne-azide cycloaddition reaction. Bioorg Med Chem Lett 2016; 26:5472-5475. [PMID: 27777003 DOI: 10.1016/j.bmcl.2016.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 12/14/2022]
Abstract
As tumor markers, the radiolabeling of choline (Cho)-containing phospholipids in cellular membranes with 99mTc is a challenge. The conventional strategy to combine the metallic radionuclide with Cho by large ligand damages the bioactivity of Cho, resulting in low tumor-to-nontumor ratios. Pretargeting strategy based on strain-promoted cyclooctyne-azide cycloaddition (SPAAC) reaction was applied to solve this general problem. Functional click synthons were synthesized as pretargeting components: azidoethyl-choline (AECho) serves as tumor marker and azadibenzocyclooctyne (ADIBO) conjugated to bis(2-pieolyl) amine (BPA) ligand (ADIBO-BPA) as 99mTc(CO)3-labeling and azido-binding group. Both in vitro cell experiment and in vivo biodistribution experiment indicate that it is versatile to radiolabel Cho in cellular membranes via this two-step pretargeting strategy. We believe that this pretargeting strategy can indeed enhance the target-specificity and also reduce background signals to optimize imaging quality.
Collapse
Affiliation(s)
- Qingxin Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Taiwei Chu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Timm T, Grabitzki J, Severcan C, Muratoglu S, Ewald L, Yilmaz Y, Lochnit G. The PCome of Ascaris suum as a model system for intestinal nematodes: identification of phosphorylcholine-substituted proteins and first characterization of the PC-epitope structures. Parasitol Res 2016; 115:1263-74. [PMID: 26728072 DOI: 10.1007/s00436-015-4863-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/30/2015] [Indexed: 11/25/2022]
Abstract
In multicellular parasites (e.g., nematodes and protozoa), proteins and glycolipids have been found to be decorated with phosphorylcholine (PC). PC can provoke various effects on immune cells leading to an immunomodulation of the host's immune system. This immunomodulation allows long-term persistence but also prevents severe pathology due to downregulation of cellular immune responses. PC-containing antigens have been found to interfere with key proliferative signaling pathways in B and T cells, development of dendritic cells and macrophages, and mast cell degranulation. These effects contribute to the observed modulated cytokine levels and impairment of lymphocyte proliferation. In contrast to glycosphingolipids, little is known about the PC-epitopes of proteins. So far, only a limited number of PC-modified proteins from nematodes have been identified. In this project, PC-substituted proteins and glycolipids in Ascaris suum have been localized by immunohistochemistry in specific tissues of the body wall, intestine, and reproductive tract. Subsequently, we investigated the PCome of A. suum by 2D gel-based proteomics and detection by Western blotting using the PC-specific antibody TEPC-15. By peptide-mass-fingerprint matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), we could identify 59 PC-substituted proteins, which are in involved multiple cellular processes. In addition to membrane proteins like vitellogenin-6, we found proteins with structural (e.g., tubulins) and metabolic (e.g., pyruvate dehydrogenase) functions or which can act in the defense against the host's immune response (e.g., serpins). Initial characterization of the PC-epitopes revealed a predominant linkage of PC to the proteins via N-glycans. Our data form the basis for more detailed investigations of the PC-epitope structures as a prerequisite for comprehensive understanding of the molecular mechanisms of immunomodulation.
Collapse
Affiliation(s)
- Thomas Timm
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Julia Grabitzki
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Cinar Severcan
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Suzan Muratoglu
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Lisa Ewald
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Yavuz Yilmaz
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Guenter Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany.
| |
Collapse
|