1
|
Islam SN, Arif Z, Badar A, Moinuddin, Khan MA, Alam K. Glycoxidation of mammalian whole histone generates highly immunogenic aggregates: Sera of SLE patients contain autoantibodies against aggregates. Scand J Immunol 2024; 100:e13389. [PMID: 38816907 DOI: 10.1111/sji.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
Non-enzymatic glycation and oxidation of self-proteins, causing formation and accumulation of advanced glycation end products (AGEs), have been reported in an array of pathologies, including systemic lupus erythematosus (SLE). Such modifications may generate neo-epitopes, break immunological tolerance, and induce antibody response. In this study, we have first analysed the structural modifications of whole histone in the presence of deoxyribose followed by oxidation with hydroxyl radicals. Changes in the secondary and tertiary structure of the whole histone were determined by spectroscopic techniques and biochemical assays. Fluorescence spectroscopy and UPLC-MS showed the generation of AGEs such as carboxymethyl lysine and pentosidine, while DLS and TEM indicated the presence of amorphous AGE-aggregates. Moreover, rabbits immunized with these histone-AGEs exhibited enhanced immunogenicity and ELISA and western immunoblot of IgG antibodies from SLE patients' sera showed a significantly higher specificity towards modified histone-AGEs than the native histone.
Collapse
Affiliation(s)
- Shireen Naaz Islam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | - Zarina Arif
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | - Asim Badar
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | - Moinuddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | - Md Asad Khan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Khursheed Alam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| |
Collapse
|
2
|
Alhujaily M. Molecular Assessment of Methylglyoxal-Induced Toxicity and Therapeutic Approaches in Various Diseases: Exploring the Interplay with the Glyoxalase System. Life (Basel) 2024; 14:263. [PMID: 38398772 PMCID: PMC10890012 DOI: 10.3390/life14020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive exploration delves into the intricate interplay of methylglyoxal (MG) and glyoxalase 1 (GLO I) in various physiological and pathological contexts. The linchpin of the narrative revolves around the role of these small molecules in age-related issues, diabetes, obesity, cardiovascular diseases, and neurodegenerative disorders. Methylglyoxal, a reactive dicarbonyl metabolite, takes center stage, becoming a principal player in the development of AGEs and contributing to cell and tissue dysfunction. The dual facets of GLO I-activation and inhibition-unfold as potential therapeutic avenues. Activators, spanning synthetic drugs like candesartan to natural compounds like polyphenols and isothiocyanates, aim to restore GLO I function. These molecular enhancers showcase promising outcomes in conditions such as diabetic retinopathy, kidney disease, and beyond. On the contrary, GLO I inhibitors emerge as crucial players in cancer treatment, offering new possibilities in diseases associated with inflammation and multidrug resistance. The symphony of small molecules, from GLO I activators to inhibitors, presents a nuanced understanding of MG regulation. From natural compounds to synthetic drugs, each element contributes to a molecular orchestra, promising novel interventions and personalized approaches in the pursuit of health and wellbeing. The abstract concludes with an emphasis on the necessity of rigorous clinical trials to validate these findings and acknowledges the importance of individual variability in the complex landscape of health.
Collapse
Affiliation(s)
- Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| |
Collapse
|
3
|
Tarannum A, Arif Z, Mustafa M, Abul Qais F, Habib S, Uddin M, Alam K. Studies on the synergistic action of methylglyoxal and peroxynitrite on structure and function of human serum albumin. J Biomol Struct Dyn 2023; 41:67-80. [PMID: 34842044 DOI: 10.1080/07391102.2021.2003865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
Albumin, an important serum protein, is continuously exposed to various oxidizing/nitrating and glycating agents. Depending upon the nature/concentration of reactive species present, the protein may be glycated, oxidized/nitroxidized or glyco-nitro-oxidized. Peroxynitrite is a powerful nitroxidant and has been reported to damage a wide array of macromolecules. On the other hand, methylglyoxal is a very strong reactive dicarbonyl and a potent precursor for the formation of advanced glycation end products under pathological conditions. In certain pathological conditions albumin may be modified by peroxynitrite and methylglyoxal simultaneously. There is dearth of literature suggests that structural/conformational and functional alteration in albumin upon glycation and oxidation/nitroxidation, however the alterations produced by glyco-nitro-oxidation has not yet been explored. Therefore, in this study, simultaneous effect of glycation and nitroxidation on the structure and conformation, vis-a-vis function of albumin was explored. Glyco-nitro-oxidized albumin showed decreased free amino acid content together with decreased affinity of albumin towards cobalt. Molecular docking model and molecular dynamic simulations showed close interaction and formation of stable complexes between methylglyoxal, peroxynitrite and albumin. Formation of carboxymethyl lysine and 3-nitrotyrosine in glyco-nitro-oxidized albumin were confirmed by MALDI-TOF MS and UP-LC MS. Aggregate formation in glyco-nitro-oxidized albumin was visualized by transmission electron microscopy. On the basis of these results, it may be speculated that, albumin modified with endogenously generated methylglyoxal and peroxynitrite might be a driving factor in the progression of heightened inflammatory autoimmune responses. The work presents a ground to study the role of glyco-nitro-oxidized albumin in the pathogenesis and progression of various autoimmune diseases including rheumatoid arthritis. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akhlas Tarannum
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Zarina Arif
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Mustafa
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Faizan Abul Qais
- Dept of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Moin Uddin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Khursheed Alam
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
4
|
Lai SWT, Lopez Gonzalez EDJ, Zoukari T, Ki P, Shuck SC. Methylglyoxal and Its Adducts: Induction, Repair, and Association with Disease. Chem Res Toxicol 2022; 35:1720-1746. [PMID: 36197742 PMCID: PMC9580021 DOI: 10.1021/acs.chemrestox.2c00160] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Metabolism is an essential part of life that provides energy for cell growth. During metabolic flux, reactive electrophiles are produced that covalently modify macromolecules, leading to detrimental cellular effects. Methylglyoxal (MG) is an abundant electrophile formed from lipid, protein, and glucose metabolism at intracellular levels of 1-4 μM. MG covalently modifies DNA, RNA, and protein, forming advanced glycation end products (MG-AGEs). MG and MG-AGEs are associated with the onset and progression of many pathologies including diabetes, cancer, and liver and kidney disease. Regulating MG and MG-AGEs is a potential strategy to prevent disease, and they may also have utility as biomarkers to predict disease risk, onset, and progression. Here, we review recent advances and knowledge surrounding MG, including its production and elimination, mechanisms of MG-AGEs formation, the physiological impact of MG and MG-AGEs in disease onset and progression, and the latter in the context of its receptor RAGE. We also discuss methods for measuring MG and MG-AGEs and their clinical application as prognostic biomarkers to allow for early detection and intervention prior to disease onset. Finally, we consider relevant clinical applications and current therapeutic strategies aimed at targeting MG, MG-AGEs, and RAGE to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Edwin De Jesus Lopez Gonzalez
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Tala Zoukari
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Priscilla Ki
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| |
Collapse
|
5
|
Gupta A, Khursheed M, Arif Z, Badar A, Alam K. Methylglyoxal-induces multiple stable changes in human serum albumin before forming nephrotoxic advanced glycation end-products: Injury demonstration in human embryonic kidney cells. Int J Biol Macromol 2022; 214:252-263. [PMID: 35716786 DOI: 10.1016/j.ijbiomac.2022.06.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Accepted: 06/12/2022] [Indexed: 11/05/2022]
Abstract
The minor fraction of methylglyoxal that is not metabolized in healthy humans reacts with macromolecules to form AGEs. In diabetics, the formation of MG is accelerated; its level may be enhanced multifold. The glyoxalase enzymes responsible for the regular and effective clearance of excess methylglyoxal may become defective in diabetes mellitus leading to its retention in cells and plasma. The methylglyoxal-modified-HSA was prepared, characterised by multiple biophysical techniques and biochemical (s) and its damaging effect was examined on embryonic kidney cell line HEK 293. The UV results showed hyperchromicity in MG-modified-HSA while nitroblue tetrazolium and fluorescence data suggested AGEs formation in comparison to control HSA. Upward shift of negative peaks in CD suggested reduction in α-helicity. Accelerated mobility and diffused broad bands observed in native and SDS polyacrylamide gel, respectively suggest neutralization of some of the positive charges on MG-modified-HSA as well as generation of cross-links. As observed by trypan blue assay, MTT, LDH activity assay, acridine orange, propidium iodide, ethidium bromide, 4',6-diamidino-2-phenylindole (DAPI) staining and ROS measurements, the MG-HSA AGEs caused damage to human embryonic kidney cells. The data suggest that MG-HSA AGEs may trigger powerful inflammatory responses at cellular level which might set the stage for nephrotoxicity in diabetics.
Collapse
Affiliation(s)
- Akankcha Gupta
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, U.P., India
| | - Manal Khursheed
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, U.P., India
| | - Zarina Arif
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, U.P., India
| | - Asim Badar
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, U.P., India
| | - Khursheed Alam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, U.P., India.
| |
Collapse
|
6
|
Dawood M, Younus ZM, Alnori M, Mahmood S. The Biological Role of Advanced Glycation End Products in the Development and Progression of Colorectal Cancer. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
“Colorectal cancer” (CRC) is one of the most prevalent cancers, posing a scientific challenge and serving as a model for investigating the molecular pathways underlying its development. “Advanced glycation end products” (AGEs) have drawn interest in this context. The buildup of these diverse, chemically complex groups, which are formed by a “non-enzymatic interaction” between reducing sugar and a range of macromolecules, significantly increases “inflammation and oxidative stress” in the body, which has long been associated to cancer formation. The traditional pathways that promote AGE formation, as well as the significance of AGEs’ interaction with the receptor for “advanced glycation end products” (RAGE) and other means involved in CRC initiation and progression, are discussed in this review.
Collapse
|
7
|
Hernandez-Castillo C, Shuck SC. Diet and Obesity-Induced Methylglyoxal Production and Links to Metabolic Disease. Chem Res Toxicol 2021; 34:2424-2440. [PMID: 34851609 DOI: 10.1021/acs.chemrestox.1c00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The obesity rate in the United States is 42.4% and has become a national epidemic. Obesity is a complex condition that is influenced by socioeconomic status, ethnicity, genetics, age, and diet. Increased consumption of a Western diet, one that is high in processed foods, red meat, and sugar content, is associated with elevated obesity rates. Factors that increase obesity risk, such as socioeconomic status, also increase consumption of a Western diet because of a limited access to healthier options and greater affordability of processed foods. Obesity is a public health threat because it increases the risk of several pathologies, including atherosclerosis, diabetes, and cancer. The molecular mechanisms linking obesity to disease onset and progression are not well understood, but a proposed mechanism is physiological changes caused by altered lipid peroxidation, glycolysis, and protein metabolism. These metabolic pathways give rise to reactive molecules such as the abundant electrophile methylglyoxal (MG), which covalently modifies nucleic acids and proteins. MG-adducts are associated with obesity-linked pathologies and may have potential for biomonitoring to determine the risk of disease onset and progression. MG-adducts may also play a role in disease progression because they are mutagenic and directly impact protein stability and function. In this review, we discuss how obesity drives metabolic alterations, how these alterations lead to MG production, the association of MG-adducts with disease, and the potential impact of MG-adducts on cellular function.
Collapse
Affiliation(s)
- Carlos Hernandez-Castillo
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| |
Collapse
|
8
|
Mir AR, Habib S, Uddin M. Recent advances in histone glycation: emerging role in diabetes and cancer. Glycobiology 2021; 31:1072-1079. [PMID: 33554241 DOI: 10.1093/glycob/cwab011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Ever increasing information on genome and proteome has offered fascinating details and new opportunities to understand the molecular biology. It is now known that histone proteins surrounding the DNA play a crucial role in the chromatin structure and function. Histones undergo a plethora of posttranslational enzymatic modifications that influence nucleosome dynamics and affect DNA activity. Earlier research offered insights into the enzymatic modifications of histones; however, attention has been diverted to histone modifications induced by by-products of metabolism without enzymatic engagement in the last decade. Nonenzymatic modifications of histones are believed to be crucial for epigenetic landscape, cellular fate and for role in human diseases. Glycation of histone proteins constitutes the major nonenzymatic modifications of nuclear proteins that have implications in diabetes and cancer. It has emerged that glycation damages nuclear proteins, modifies amino acids of histones at crucial locations, generates adducts affecting histone chromatin interaction, develops neo-epitopes inducing specific immune response and impacts cell function. Presence of circulating antibodies against glycated histone proteins in diabetes and cancer has shown immunological implications with diagnostic relevance. These crucial details make histone glycation an attractive focus for investigators. This review article, therefore, makes an attempt to exclusively summarize the recent research in histone glycation, its impact on structural integrity of chromatin and elaborates on its role in diabetes and cancer. The work offers insights for future scientists who investigate the link between metabolism, biomolecular structures, glycobiology, histone-DNA interactions in relation to diseases in humans.
Collapse
Affiliation(s)
- Abdul Rouf Mir
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002 India
| | - Safia Habib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002 India
| | - Moin Uddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002 India
| |
Collapse
|
9
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
10
|
Rehman S, Faisal M, Alatar AA, Ahmad S. Physico-chemical Changes Induced in the Serum Proteins Immunoglobulin G and Fibrinogen Mediated by Methylglyoxal. Curr Protein Pept Sci 2021; 21:916-923. [PMID: 31244422 DOI: 10.2174/1389203720666190618095719] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Non-enzymatic glycation of proteins plays a significant role in the pathogenesis of secondary diabetic complications via the formation of advanced glycation end products (AGEs) and increased oxidative stress. Methylglyoxal (MG), a highly reactive dicarbonyl of class α-oxoaldehyde that generates during glucose oxidation and lipid peroxidation, contributes to glycation. OBJECTIVE This comparative study focuses on methylglyoxal induced glycoxidative damage suffered by immunoglobulin G (IgG) and fibrinogen, and to unveil implication of structural modification of serum proteins in diabetes-associated secondary complications. METHODS The methylglyoxal induced structural alterations in IgG and fibrinogen were analyzed by UVvis, fluorescence, circular dichroism and Fourier transform infrared (FT-IR) spectroscopy. Ketoamine moieties, carbonyl contents, 5-Hydroxymethylfurfural (HMF) and malondyaldehyde were also quantified. Free lysine and arginine estimation, detection of non-fluorogenic carboxymethyllysine (CML) and fibril formation were confirmed by thioflavin T (ThT) assay. RESULTS Structural alterations, increased carbonyl contents and ketoamines were reported in MG glycated IgG and fibrinogen against their native analogues. CONCLUSION The experiment results validate structural modifications, increased oxidative stress and AGEs formation. Thus, we can conclude that IgG-AGEs and Fib-AGEs formed during MG induced glycation of IgG and fibrinogen could impede normal physiology and might initiates secondary complications in diabetic patients.
Collapse
Affiliation(s)
- Shahnawaz Rehman
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh-226026, India
| | - Mohammad Faisal
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A Alatar
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh-226026, India
| |
Collapse
|
11
|
Harjivan SG, Charneira C, Martins IL, Pereira SA, Espadas G, Sabidó E, Beland FA, Marques MM, Antunes AMM. Covalent Histone Modification by an Electrophilic Derivative of the Anti-HIV Drug Nevirapine. Molecules 2021; 26:1349. [PMID: 33802579 PMCID: PMC7961589 DOI: 10.3390/molecules26051349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Nevirapine (NVP), a non-nucleoside reverse transcriptase inhibitor widely used in combined antiretroviral therapy and to prevent mother-to-child transmission of the human immunodeficiency virus type 1, is associated with several adverse side effects. Using 12-mesyloxy-nevirapine, a model electrophile of the reactive metabolites derived from the NVP Phase I metabolite, 12-hydroxy-NVP, we demonstrate that the nucleophilic core and C-terminal residues of histones are targets for covalent adduct formation. We identified multiple NVP-modification sites at lysine (e.g., H2BK47, H4K32), histidine (e.g., H2BH110, H4H76), and serine (e.g., H2BS33) residues of the four histones using a mass spectrometry-based bottom-up proteomic analysis. In particular, H2BK47, H2BH110, H2AH83, and H4H76 were found to be potential hot spots for NVP incorporation. Notably, a remarkable selectivity to the imidazole ring of histidine was observed, with modification by NVP detected in three out of the 11 histidine residues of histones. This suggests that NVP-modified histidine residues of histones are prospective markers of the drug's bioactivation and/or toxicity. Importantly, NVP-derived modifications were identified at sites known to determine chromatin structure (e.g., H4H76) or that can undergo multiple types of post-translational modifications (e.g., H2BK47, H4H76). These results open new insights into the molecular mechanisms of drug-induced adverse reactions.
Collapse
Affiliation(s)
- Shrika G. Harjivan
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (S.G.H.); (C.C.); (I.L.M.); (M.M.M.)
| | - Catarina Charneira
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (S.G.H.); (C.C.); (I.L.M.); (M.M.M.)
| | - Inês L. Martins
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (S.G.H.); (C.C.); (I.L.M.); (M.M.M.)
| | - Sofia A. Pereira
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal;
| | - Guadalupe Espadas
- Proteomics Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; (G.E.); (E.S.)
- Proteomics Unit, Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; (G.E.); (E.S.)
- Proteomics Unit, Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Frederick A. Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
| | - M. Matilde Marques
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (S.G.H.); (C.C.); (I.L.M.); (M.M.M.)
| | - Alexandra M. M. Antunes
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (S.G.H.); (C.C.); (I.L.M.); (M.M.M.)
| |
Collapse
|
12
|
Modification of proteins by reactive lipid oxidation products and biochemical effects of lipoxidation. Essays Biochem 2020; 64:19-31. [PMID: 31867621 DOI: 10.1042/ebc20190058] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
Lipid oxidation results in the formation of many reactive products, such as small aldehydes, substituted alkenals, and cyclopentenone prostaglandins, which are all able to form covalent adducts with nucleophilic residues of proteins. This process is called lipoxidation, and the resulting adducts are called advanced lipoxidation end products (ALEs), by analogy with the formation of advanced glycoxidation end products from oxidized sugars. Modification of proteins by reactive oxidized lipids leads to structural changes such as increased β-sheet conformation, which tends to result in amyloid-like structures and oligomerization, or unfolding and aggregation. Reaction with catalytic cysteines is often responsible for the loss of enzymatic activity in lipoxidized proteins, although inhibition may also occur through conformational changes at more distant sites affecting substrate binding or regulation. On the other hand, a few proteins are activated by lipoxidation-induced oligomerization or interactions, leading to increased downstream signalling. At the cellular level, it is clear that some proteins are much more susceptible to lipoxidation than others. ALEs affect cell metabolism, protein-protein interactions, protein turnover via the proteasome, and cell viability. Evidence is building that they play roles in both physiological and pathological situations, and inhibiting ALE formation can have beneficial effects.
Collapse
|
13
|
Bai S, Chaurasiya AH, Banarjee R, Walke PB, Rashid F, Unnikrishnan AG, Kulkarni MJ. CD44, a Predominant Protein in Methylglyoxal-Induced Secretome of Muscle Cells, is Elevated in Diabetic Plasma. ACS OMEGA 2020; 5:25016-25028. [PMID: 33043179 PMCID: PMC7542587 DOI: 10.1021/acsomega.0c01318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Methylglyoxal (MG), a glycolytic intermediate and reactive dicarbonyl, is responsible for exacerbation of insulin resistance and diabetic complication. In this study, MG-induced secretome of rat muscle cells was identified and relatively quantified by SWATH-MS. A total of 643 proteins were identified in MG-induced secretome, of which 82 proteins were upregulated and 99 proteins were downregulated by more than 1.3-fold in SWATH analysis. Further, secretory proteins from the classical secretory pathway and nonclassical secretory pathway were identified using SignalP and SecretomeP, respectively. A total of 180 proteins were identified with SignalP, and 113 proteins were identified with SecretomeP. The differentially expressed proteins were functionally annotated by KEGG pathway analysis using Cytoscape software with plugin clusterMaker. The differentially expressed proteins were found to be involved in various pathways like extracellular matrix (ECM)-receptor interaction, leukocyte transendothelial migration, fluid shear stress and atherosclerosis, complement and coagulation cascades, and lysosomal pathway. Since the MG levels are high in diabetic conditions, the presence of MG-induced secreted proteins was inspected by profiling human plasma of healthy and diabetic subjects (n = 10 each). CD44, a predominant MG-induced secreted protein, was found to be elevated in the diabetic plasma and to have a role in the development of insulin resistance.
Collapse
Affiliation(s)
- Shakuntala Bai
- Proteomics
Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Arvindkumar H. Chaurasiya
- Proteomics
Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Reema Banarjee
- Proteomics
Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Prachi B. Walke
- Proteomics
Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Faraz Rashid
- Sciex, 121 DHR, Udyog Vihar, Phase IV, Gurugram 122015, Haryana, India
| | | | - Mahesh J. Kulkarni
- Proteomics
Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
14
|
Tarannum A, Arif Z, Alam K, Moinuddin. Glycation, nitro-oxidation and glyco-nitro-oxidation of human serum albumin: A physico-chemical study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Siddiqui Z, Faisal M, Alatar AR, Ahmad S. Prevalence of auto-antibodies against D-ribose-glycated-hemoglobin in diabetes mellitus. Glycobiology 2019; 29:409-418. [PMID: 30834437 DOI: 10.1093/glycob/cwz012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023] Open
Abstract
Glycation of biological macromolecules, due to hyperglycemia, promotes the formation of advanced glycation end products (AGEs). It is accelerated in diabetic patients and is responsible for the pathophysiology and progression of diabetes. Previous reports have shown that amount of AGEs formation and glycation-induced structural damage is higher in hemoglobin (Hb) than other proteins present in blood. In our previous study, we have shown structural changes in Hb by D-ribose which may result into the generation of immunogenic neo-epitopes. Thus, we hypothesized that D-ribose induced structural perturbations in Hb, could result in the formation of neo-epitopes which may provoke an auto-immune response and may also be involved in the immuno-pathogenesis of diabetes type-2 associated complications. Therefore, in the current study, we analyzed the prevalence of autoantibodies in diabetic patient's sera against D-ribose glycated-Hb by direct binding and competitive ELISA. Direct binding ELISA confirmed that autoantibodies in diabetic patients exhibit significantly high binding with D-ribose glycated-Hb as compared to its native form. The antigen binding specificity of these antibodies was also screened by competitive inhibition ELISA. We also used D-glucose glycated-Hb as a positive control to detect the presence of auto-antibodies by direct binding and inhibiton ELISA. We found that D-glucose glycated-Hb binds with T2DM samples but the affinity to binding is lower than D-ribose glycated-Hb. The overall findings of this study suggest the prevalence of circulating autoantibodies against D-ribose glycated-Hb in diabetic patients and thus, the level of these autoantibodies may be used as biomarker for progression of diabetes.
Collapse
Affiliation(s)
- Zeba Siddiqui
- Department of Biosciences, Integral University, Lucknow, India.,IIRC-1 Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Rahman Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Biosciences, Integral University, Lucknow, India.,IIRC-1 Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India
| |
Collapse
|
16
|
Characterization of methylglyoxal induced advanced glycation end products and aggregates of human transferrin: Biophysical and microscopic insight. Int J Biol Macromol 2019; 138:718-724. [PMID: 31351151 DOI: 10.1016/j.ijbiomac.2019.07.140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/24/2022]
Abstract
Protein aggregation and glycation is gaining increased attention in recent times as protein aggregates and advanced glycation end products (AGEs) play a pivotal role in many disorders. The purpose of our study was to have an insight into AGEs and aggregates formation of human transferrin (hTF) in the presence of methylglyoxal (MG) employing intrinsic, ANS, Thioflavin T fluorescence, circular dichroism (CD) spectroscopy, docking studies and microscopy. In our study, effect of varying concentration of MG was observed on hTF retorting multispectroscopic, in silico and microscopic approach. Intrinsic fluorescence showed an increase in fluorescence of hTF in presence of MG. The obtained AGEs of hTF in the presence of MG were characterized with respect to fluorescence of AGEs specific adducts. Further, aggregates of hTF were characterized employing ThT fluorescence, transmission electron microscopy (TEM) and fluorescence microscopy. Fluorescence microscopy and TEM confirmed the presence of hTF aggregates in the presence of 50 mM MG; aggregates to be globular in nature. Molecular docking was also employed highlighting the important residues playing a pivotal role in this interaction. Thus, our study characterized the AGEs and aggregates of clinically important protein, hTF; level of MG increases in various pathological conditions giving our study clinical perspective.
Collapse
|
17
|
Kosmachevskaya OV, Shumaev KB, Topunov AF. Electrophilic Signaling: The Role of Reactive Carbonyl Compounds. BIOCHEMISTRY (MOSCOW) 2019; 84:S206-S224. [PMID: 31213203 DOI: 10.1134/s0006297919140128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reactive carbonyl compounds (RCC) are a group of compounds with clearly pronounced electrophilic properties that facilitate their spontaneous reactions with numerous nucleophilic reaction sites in proteins, lipids, and nucleic acids. The biological functions of RCC are determined by their concentration and governed by the hormesis (biphasic reaction) principle. At low concentrations, RCC act as signaling molecules activating defense systems against xenobiotics and oxidizers, and at high concentrations, they exhibit the cytotoxic effect. RCC participate in the formation of cell adaptive response via intracellular signaling pathways involving regulation of gene expression and cytoplasmic mechanisms related to the structure-functional rearrangements of proteins. Special attention in this review is given to the functioning of electrophiles as mediators of cell general adaption syndrome manifested as the biphasic response. The hypothesis is proposed that electrophilic signaling can be a proto-signaling system.
Collapse
Affiliation(s)
- O V Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - K B Shumaev
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - A F Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
18
|
Marinho AT, Miranda JP, Caixas U, Charneira C, Gonçalves-Dias C, Marques MM, Monteiro EC, Antunes AMM, Pereira SA. Singularities of nevirapine metabolism: from sex-dependent differences to idiosyncratic toxicity. Drug Metab Rev 2019; 51:76-90. [PMID: 30712401 DOI: 10.1080/03602532.2019.1577891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nevirapine (NVP) is a first-generation non-nucleoside reverse transcriptase inhibitor widely used for the treatment and prophylaxis of human immunodeficiency virus infection. The drug is taken throughout the patient's life and, due to the availability of an extended-release formulation, it is administered once daily. This antiretroviral is one of the scarce examples of drugs with prescription criteria based on sex, in order to prevent adverse reactions. The therapy with NVP has been associated with potentially life-threatening liver and idiosyncratic skin toxicity. Multiple evidence has emerged regarding the formation of electrophilic NVP metabolites as crucial for adverse idiosyncratic reactions. The formation of reactive metabolites that yield covalent adducts with proteins has been demonstrated in patients under NVP-based treatment. Interestingly, several pharmacogenetic- and sex-related factors associated with NVP toxicity can be mechanistically explained by an imbalance toward increased formation of NVP-derived reactive metabolites and/or impaired detoxification capability. Moreover, the haptenation of self-proteins by these reactive species provides a plausible link between NVP bioactivation and immunotoxicity, further supporting the relevance of this toxicokinetics hypothesis. In the current paper, we review the existing knowledge and recent developments on NVP metabolism and their relation to NVP toxicity.
Collapse
Affiliation(s)
- Aline T Marinho
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal
| | - Joana P Miranda
- b Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , Universidade de Lisboa , Lisboa , Portugal
| | - Umbelina Caixas
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal.,c Centro Hospitalar de Lisboa Central (CHLC) , Lisboa , Portugal
| | - Catarina Charneira
- d Centro de Química Estrutural (CQE) , Instituto Superior Técnico, ULisboa , Lisboa , Portugal
| | - Clara Gonçalves-Dias
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal
| | - M Matilde Marques
- d Centro de Química Estrutural (CQE) , Instituto Superior Técnico, ULisboa , Lisboa , Portugal
| | - Emília C Monteiro
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal
| | - Alexandra M M Antunes
- d Centro de Química Estrutural (CQE) , Instituto Superior Técnico, ULisboa , Lisboa , Portugal
| | - Sofia A Pereira
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal
| |
Collapse
|
19
|
Siddiqui Z, Faisal M, Alatar AA, Ahmad S. Glycation of hemoglobin leads to the immunogenicity as a result of neo-epitope generation. Int J Biol Macromol 2018; 123:427-435. [PMID: 30445080 DOI: 10.1016/j.ijbiomac.2018.11.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/11/2018] [Accepted: 11/11/2018] [Indexed: 02/08/2023]
Abstract
Non-enzymatic glycation occurs rapidly which ultimately leads to the formation of advanced glycation endproducts (AGEs). These AGEs have shown to associated with the development of many diseases such as diabetes-mellitus. This study is focused on immunological characterization of glycated-Hb induced by d-ribose. Here, we analysed the immunogenicity of glycated-Hb by direct binding and competitive inhibition ELISA. Direct binding ELISA confirmed that glycated-Hb was highly immunogenic and induced high titre antibodies as compared to native-Hb. The antigen binding specificity and cross reactivity of these antibodies were also screened by competitive inhibition ELISA. The IgG from rabbit sera showed enhanced binding of glycated-Hb than native-Hb. Thus, it is possible that alterations in Hb induced by d-ribose could have generated highly immunogenic neoepitopes. Moreover, induced antibodies were also found to cross-react with other modified/native proteins. On the basis of the results of this study, we presume that this type of structural perturbations in Hb in vivo by d-ribose might take place in untreated diabetic condition that could induce such type of immunogenic auto-antibodies. Furthermore, increased level of these auto-antibodies could serve as a biomarker in diabetes and its progression.
Collapse
Affiliation(s)
- Zeba Siddiqui
- Department of Biosciences, Integral University, Lucknow 226026, India; IIRC-1 Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow 26026, India
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saheem Ahmad
- Department of Biosciences, Integral University, Lucknow 226026, India; IIRC-1 Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow 26026, India.
| |
Collapse
|
20
|
Islam S, Mir AR, Arfat MY, Khan F, Zaman M, Ali A. Structural and immunological characterization of hydroxyl radical modified human IgG: Clinical correlation in rheumatoid arthritis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 194:194-201. [PMID: 29351859 DOI: 10.1016/j.saa.2018.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/28/2017] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
Structural alterations in proteins under oxidative stress have been widely implicated in the immuno-pathology of various disorders. This study has evaluated the extent of damage in the conformational characteristics of IgG by hydroxyl radical (OH) and studied its implications in the immuno-pathology of rheumatoid arthritis (RA). Using various biophysical and biochemical techniques, changes in aromatic microenvironment of the IgG and the protein aggregation became evident after treatment with OH. The SDS-PAGE study confirmed the protein aggregation while far ultraviolet circular dichroism spectroscopy (Far-UV CD) and fourier transform infrared spectroscopy (FTIR) inferred towards the alterations in secondary structure of IgG under OH stress. Dynamic light scattering showed that the modification increased the hydrodynamic radius and polydispersity of IgG. The free arginine and lysine content reduced upon modification. OH induced aggregation was confirmed by enhanced thioflavin-T (ThT) fluorescence and red shift in the congo red (CR) absorbance. The study on experimental animals reiterates the earlier findings of enhanced immunogenicity of OH treated IgG (OH-IgG) compared to that of native IgG. OH-IgG strongly interacted with the antibodies derived from the serum of 80 rheumatoid arthritis (RA) patients. The overwhelming and strong tendency of OH-IgG to bind the antibodies derived from the serum of RA patients points towards the modification of IgG under patho-physiological conditions in RA that generate neo-epitopes and eventually cause the generation of auto antibodies that circulate in the patient sera. Further studies on this aspect may possibly lead to the development of a biomarker for RA.
Collapse
Affiliation(s)
- Sidra Islam
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Abdul Rouf Mir
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Mir Yasir Arfat
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Farzana Khan
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Masihuz Zaman
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Asif Ali
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| |
Collapse
|
21
|
Probing Protein Glycation by Chromatography and Mass Spectrometry: Analysis of Glycation Adducts. Int J Mol Sci 2017; 18:ijms18122557. [PMID: 29182540 PMCID: PMC5751160 DOI: 10.3390/ijms18122557] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
Glycation is a non-enzymatic post-translational modification of proteins, formed by the reaction of reducing sugars and α-dicarbonyl products of their degradation with amino and guanidino groups of proteins. Resulted early glycation products are readily involved in further transformation, yielding a heterogeneous group of advanced glycation end products (AGEs). Their formation is associated with ageing, metabolic diseases, and thermal processing of foods. Therefore, individual glycation adducts are often considered as the markers of related pathologies and food quality. In this context, their quantification in biological and food matrices is required for diagnostics and establishment of food preparation technologies. For this, exhaustive protein hydrolysis with subsequent amino acid analysis is the strategy of choice. Thereby, multi-step enzymatic digestion procedures ensure good recoveries for the most of AGEs, whereas tandem mass spectrometry (MS/MS) in the multiple reaction monitoring (MRM) mode with stable isotope dilution or standard addition represents “a gold standard” for their quantification. Although the spectrum of quantitatively assessed AGE structures is continuously increases, application of untargeted profiling techniques for identification of new products is desired, especially for in vivo characterization of anti-glycative systems. Thereby, due to a high glycative potential of plant metabolites, more attention needs to be paid on plant-derived AGEs.
Collapse
|
22
|
Ahmad S, Akhter F, Shahab U, Rafi Z, Khan MS, Nabi R, Khan MS, Ahmad K, Ashraf JM. Do all roads lead to the Rome? The glycation perspective! Semin Cancer Biol 2017; 49:9-19. [PMID: 29113952 DOI: 10.1016/j.semcancer.2017.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022]
Abstract
Oxidative, carbonyl, and glycative stress have gained substantial attention recently for their alleged influence on cancer progression. Oxidative stress can trigger variable transcription factors, such as nuclear factor erythroid-2-related factor (Nrf2), nuclear factor kappa B (NF-κB), protein-53 (p-53), activating protein-1 (AP-1), hypoxia-inducible factor-1α (HIF-1α), β-catenin/Wnt and peroxisome proliferator-activated receptor-γ (PPAR-γ). Activated transcription factors can lead to approximately 500 different alterations in gene expression, and can alter expression patterns of inflammatory cytokines, growth factors, regulatory cell cycle molecules, and anti-inflammatory molecules. These alterations of gene expression can induce a normal cell to become a tumor cell. Glycative stress resulting from advanced glycation end products (AGEs) and reactive dicarbonyls can significantly affect cancer progression. AGEs are fashioned from the multifaceted chemical reaction of reducing sugars with a compound containing an amino group. AGEs bind to and trigger the receptor for AGEs (RAGE) through AGE-RAGE interaction, which is a major modulator of inflammation allied tumors. Dicarbonyls like, GO (glyoxal), MG (methylglyoxal) and 3-DG (3-deoxyglucosone) fashioned throughout lipid peroxidation, glycolysis, and protein degradation are viewed as key precursors of AGEs. These dicarbonyls lead to the carbonyl stress in living organisms, possibly resulting in carbonyl impairment of proteins, carbohydrates, DNA, and lipoproteins. The damage caused by carbonyls results in numerous lesions, some of which are involved in cancer pathogenesis. In this review, the effects of oxidative, carbonyl and glycative stress on cancer initiation and progression are thoroughly discussed, including probable signaling pathways and the effects on tumorigenesis.
Collapse
Affiliation(s)
- Saheem Ahmad
- IIRC-1 Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India; Department of Biosciences, Integral University, Lucknow, India.
| | - Firoz Akhter
- IIRC-1 Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India; Department of Pharmacology and Toxicology, Higuchi Biosciences Center, University of Kansas, KS, USA.
| | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, India
| | - Zeeshan Rafi
- Department of Bioengineering, Integral University, Lucknow, India
| | - Mohd Sajid Khan
- Department of Biosciences, Integral University, Lucknow, India
| | - Rabia Nabi
- Department of Biosciences, Integral University, Lucknow, India
| | | | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of South Korea
| | | |
Collapse
|
23
|
Islam S, Moinuddin, Mir AR, Arfat MY, Alam K, Ali A. Studies on glycoxidatively modified human IgG: Implications in immuno-pathology of type 2 diabetes mellitus. Int J Biol Macromol 2017; 104:19-29. [DOI: 10.1016/j.ijbiomac.2017.05.190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/31/2017] [Indexed: 01/07/2023]
|
24
|
Kosmachevskaya OV, Shumaev KB, Topunov AF. Signal and regulatory effects of methylglyoxal in eukaryotic cells (review). APPL BIOCHEM MICRO+ 2017; 53:273-289. [DOI: 10.1134/s0003683817030103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Mir AR, Moinuddin, Habib S. Amorphous aggregate adducts of linker histone H1 turn highly immunologic in the cancers of oesophagus, stomach, gall bladder and ovary. Int J Biol Macromol 2017; 96:507-517. [PMID: 28027900 DOI: 10.1016/j.ijbiomac.2016.12.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 01/13/2023]
Abstract
Hyperglycaemic influence on carcinogenesis and tumour progression is emerging as a link between diabetes and cancer. This work establishes the disturbed structural integrity of nucleosomal linker histone H1 by methyglyoxal (MG) and then correlates the role of modified H1 in the auto-immunopathogenesis of multiple cancers. MG modification caused a loss of free ε-amino groups in H1 and raised its β-sheet structural component with a consequence of non amyloid aggregation. It changed the folding-unfolding denaturation pattern of H1 and attached itself to the lysine residues of the protein eventually making up Nε-(carboxyethyl) lysine. The structural variations act as extra antigenic determinants on H1 that yield aggressive antibody response, when immunised in rabbits. The ELISA tests proved the immunoglobulin response very specific and gel based studies established the preferential binding of antibodies generated against MG-H1 with the modified protein. Cross reaction analysis inferred the multiple specific natures of immunoglobulins with binding tendencies against different inhibitors. The immunoglobulin content in blood sera derived from human subjects with tumours of oesophagus, stomach, gall bladder and ovary confirmed the antibody presence against MG-H1 and competitive ELISA showed their high specificity. This may suggest a link between nucleosomal linker H1, hyperglycaemia, glycoxidation and cancer.
Collapse
Affiliation(s)
- Abdul Rouf Mir
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| | - Moinuddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
26
|
Islam S, Mir AR, Raghav A, Khan F, Alam K, Ali A, Uddin M. Neo-Epitopes Generated on Hydroxyl Radical Modified GlycatedIgG Have Role in Immunopathology of Diabetes Type 2. PLoS One 2017; 12:e0169099. [PMID: 28046123 PMCID: PMC5207762 DOI: 10.1371/journal.pone.0169099] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/11/2016] [Indexed: 02/02/2023] Open
Abstract
Glycoxidation plays a crucial role in diabetes and its associated complications. Among the glycoxidation agents, methylglyoxal (MG) is known to have very highglycationpotential witha concomitant generation of reactive oxygen species (ROS) during its synthesis and degradation. The presentstudy probes the MG and ROSinduced structural damage to immunoglobulin G (IgG) and alterations in its immunogenicity in diabetes type 2 patients (T2DM). Human IgG was first glycated with MG followed by hydroxyl radical (OH•) modification. Glycoxidation mediated effects on IgG were evaluated by various physicochemical techniques likeultraviolet (UV) and fluorescence spectroscopy, 8-anilinonaphthalene-1-sulfonic acid (ANS) binding studies, carbonyl andfree sulfhydryl groups assay, matrix assisted laser desorption ionization mass spectrometry-time of flight (MALDI-TOF), red blood cell (RBC) haemolysis assay, Congored (CR) staining analysis and scanning electron microscopy (SEM). The results revealed hyperchromicityin UV, advanced glycation end product (AGE)specific and ANS fluorescence, quenching in tyrosine and tryptophan fluorescence intensity,enhanced carbonyl content,reduction in free sulfhydryl groups,pronounced shift in m/z value of IgGand decrease in antioxidant activity in RBC induced haemolysis assayupon glycoxidation. SEM and CRstaining assay showed highly altered surface morphology in glycoxidised sample as compared to the native. Enzyme linked immunosorbent assay (ELISA) and band shift assay were performed to assess the changes in immunogenicity of IgG upon glyoxidation and its role in T2DM. The serum antibodies derived from T2DM patients demonstrated strong affinity towards OH• treated MG glycatedIgG (OH•-MG-IgG) when compared to native IgG (N-IgG) or IgGs treated with MG alone (MG-IgG) or OH• alone (OH•-IgG). This study shows the cumulating effect of OH• on the glycation potential of MG. The results point towards the modification of IgG in diabetes patients under the effect of glycoxidative stress, leading to the generation of neo-epitopes on theIgG molecule and rendering it immunogenic.
Collapse
Affiliation(s)
- Sidra Islam
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Abdul Rouf Mir
- Department of Biotechnology, Government Degree College Baramulla, University of Kashmir, Jammu and Kashmir, India
| | - Alok Raghav
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Farzana Khan
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Khursheed Alam
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Asif Ali
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Moin Uddin
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
- * E-mail: ,
| |
Collapse
|
27
|
Tsekovska R, Sredovska-Bozhinov A, Niwa T, Ivanov I, Mironova R. Maillard reaction and immunogenicity of protein therapeutics. World J Immunol 2016; 6:19-38. [DOI: 10.5411/wji.v6.i1.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 11/24/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023] Open
Abstract
The recombinant DNA technology enabled the production of a variety of human therapeutic proteins. Accumulated clinical experience, however, indicates that the formation of antibodies against such proteins is a general phenomenon rather than an exception. The immunogenicity of therapeutic proteins results in inefficient therapy and in the development of undesired, sometimes life-threatening, side reactions. The human proteins, designed for clinical application, usually have the same amino acid sequence as their native prototypes and it is not yet fully clear what the reasons for their immunogenicity are. In previous studies we have demonstrated for the first time that interferon-β (IFN-β) pharmaceuticals, used for treatment of patients with multiple sclerosis, do contain advanced glycation end products (AGEs) that contribute to IFN-β immunogenicity. AGEs are the final products of a chemical reaction known as the Maillard reaction or glycation, which implication in protein drugs’ immunogenicity has been overlooked so far. Therefore, the aim of the present article is to provide a comprehensive overview on the Maillard reaction with emphasis on experimental data and theoretical consideration telling us why the Maillard reaction warrants special attention in the context of the well-documented protein drugs’ immunogenicity.
Collapse
|