1
|
Wedekind H, Beimdiek J, Rossdam C, Kats E, Wittek V, Schumann L, Sörensen-Zender I, Fenske A, Weinhold B, Schmitt R, Tiede A, Büttner FFR, Münster-Kühnel A, Abeln M. The monosialoganglioside GM1a protects against complement attack. Cell Death Discov 2023; 9:395. [PMID: 37880236 PMCID: PMC10600102 DOI: 10.1038/s41420-023-01686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
The complement system is a part of the innate immune system in the fluid phase and efficiently eliminates pathogens. However, its activation requires tight regulation on the host cell surface in order not to compromise cellular viability. Previously, we showed that loss of placental cell surface sialylation in mice in vivo leads to a maternal complement attack at the fetal-maternal interface, ultimately resulting in loss of pregnancy. To gain insight into the regulatory function of sialylation in complement activation, we here generated trophoblast stem cells (TSC) devoid of sialylation, which also revealed complement sensitivity and cell death in vitro. Glycolipid-analysis by multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence detection (xCGE-LIF) allowed us to identify the monosialoganglioside GM1a as a key element of cell surface complement regulation. Exogenously administered GM1a integrated into the plasma membrane of trophoblasts, substantially increased binding of complement factor H (FH) and was sufficient to protect the cells from complement attack and cell death. GM1a treatment also rescued human endothelial cells and erythrocytes from complement attack in a concentration dependent manner. Furthermore, GM1a significantly reduced complement mediated hemolysis of erythrocytes from a patient with Paroxysmal nocturnal hemoglobinuria (PNH). This study demonstrates the complement regulatory potential of exogenously administered gangliosides and paves the way for sialoglycotherapeutics as a novel substance class for membrane-targeted complement regulators.
Collapse
Affiliation(s)
- Henri Wedekind
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Julia Beimdiek
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Charlotte Rossdam
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Elina Kats
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Vanessa Wittek
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Lisa Schumann
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Inga Sörensen-Zender
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Arno Fenske
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Birgit Weinhold
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Roland Schmitt
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Andreas Tiede
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Falk F R Büttner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Anja Münster-Kühnel
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Markus Abeln
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Ando H, Komura N, Tanaka HN, Imamura A, Ishida H. Chemical synthesis of sialoglyco-architectures. Adv Carbohydr Chem Biochem 2022; 81:31-56. [DOI: 10.1016/bs.accb.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Dunne OM, Gao X, Nan R, Gor J, Adamson PJ, Gordon DL, Moulin M, Haertlein M, Forsyth VT, Perkins SJ. A Dimerization Site at SCR-17/18 in Factor H Clarifies a New Mechanism for Complement Regulatory Control. Front Immunol 2021; 11:601895. [PMID: 33552059 PMCID: PMC7859452 DOI: 10.3389/fimmu.2020.601895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/03/2020] [Indexed: 11/15/2022] Open
Abstract
Complement Factor H (CFH), with 20 short complement regulator (SCR) domains, regulates the alternative pathway of complement in part through the interaction of its C-terminal SCR-19 and SCR-20 domains with host cell-bound C3b and anionic oligosaccharides. In solution, CFH forms small amounts of oligomers, with one of its self-association sites being in the SCR-16/20 domains. In order to correlate CFH function with dimer formation and the occurrence of rare disease-associated variants in SCR-16/20, we identified the dimerization site in SCR-16/20. For this, we expressed, in Pichia pastoris, the five domains in SCR-16/20 and six fragments of this with one-three domains (SCR-19/20, SCR-18/20, SCR-17/18, SCR-16/18, SCR-17 and SCR-18). Size-exclusion chromatography suggested that SCR dimer formation occurred in several fragments. Dimer formation was clarified using analytical ultracentrifugation, where quantitative c(s) size distribution analyses showed that SCR-19/20 was monomeric, SCR-18/20 was slightly dimeric, SCR-16/20, SCR-16/18 and SCR-18 showed more dimer formation, and SCR-17 and SCR-17/18 were primarily dimeric with dissociation constants of ~5 µM. The combination of these results located the SCR-16/20 dimerization site at SCR-17 and SCR-18. X-ray solution scattering experiments and molecular modelling fits confirmed the dimer site to be at SCR-17/18, this dimer being a side-by-side association of the two domains. We propose that the self-association of CFH at SCR-17/18 enables higher concentrations of CFH to be achieved when SCR-19/20 are bound to host cell surfaces in order to protect these better during inflammation. Dimer formation at SCR-17/18 clarified the association of genetic variants throughout SCR-16/20 with renal disease.
Collapse
Affiliation(s)
- Orla M Dunne
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, London, United Kingdom.,Life Sciences Group, Institut Laue Langevin, Grenoble, France
| | - Xin Gao
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, London, United Kingdom.,Division of Medicine, University College London, London, United Kingdom
| | - Ruodan Nan
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Jayesh Gor
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Penelope J Adamson
- Department of Microbiology and Infectious Diseases, Flinders Medical Centre and Flinders University, Bedford Park, SA, Australia
| | - David L Gordon
- Department of Microbiology and Infectious Diseases, Flinders Medical Centre and Flinders University, Bedford Park, SA, Australia
| | - Martine Moulin
- Life Sciences Group, Institut Laue Langevin, Grenoble, France
| | | | - V Trevor Forsyth
- Life Sciences Group, Institut Laue Langevin, Grenoble, France.,Faculty of Natural Sciences, Keele University, Staffordshire, United Kingdom
| | - Stephen J Perkins
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
4
|
Dai X, Hakizimana O, Zhang X, Kaushik AC, Zhang J. Orchestrated efforts on host network hijacking: Processes governing virus replication. Virulence 2021; 11:183-198. [PMID: 32050846 PMCID: PMC7051146 DOI: 10.1080/21505594.2020.1726594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With the high pervasiveness of viral diseases, the battle against viruses has never ceased. Here we discuss five cellular processes, namely "autophagy", "programmed cell death", "immune response", "cell cycle alteration", and "lipid metabolic reprogramming", that considerably guide viral replication after host infection in an orchestrated manner. On viral infection, "autophagy" and "programmed cell death" are two dynamically synchronized cell survival programs; "immune response" is a cell defense program typically suppressed by viruses; "cell cycle alteration" and "lipid metabolic reprogramming" are two altered cell housekeeping programs tunable in both directions. We emphasize on their functionalities in modulating viral replication, strategies viruses have evolved to tune these processes for their benefit, and how these processes orchestrate and govern cell fate upon viral infection. Understanding how viruses hijack host networks has both academic and industrial values in providing insights toward therapeutic strategy design for viral disease control, offering useful information in applications that aim to use viral vectors to improve human health such as gene therapy, and providing guidelines to maximize viral particle yield for improved vaccine production at a reduced cost.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | | | - Xuanhao Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Aman Chandra Kaushik
- School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Jianying Zhang
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Department of Biological Sciences, University of Texas at El Paso, EI Paso, TX, USA
| |
Collapse
|
5
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
6
|
Schmidt CQ, Hipgrave Ederveen AL, Harder MJ, Wuhrer M, Stehle T, Blaum BS. Biophysical analysis of sialic acid recognition by the complement regulator Factor H. Glycobiology 2019; 28:765-773. [PMID: 29982679 PMCID: PMC6142864 DOI: 10.1093/glycob/cwy061] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 07/01/2018] [Indexed: 01/13/2023] Open
Abstract
Complement factor H (FH), an elongated and substantially glycosylated 20-domain protein, is a soluble regulator of the complement alternative pathway (AP). It contains several glycan binding sites which mediate recognition of α2-3-linked sialic acid (FH domain 20) and glycosaminoglycans (domains 6–8 and 19–20). FH also binds the complement C3-activation product C3b, a powerful opsonin and focal point for the formation of C3-convertases of the AP feedback loop. In freely circulating FH the C3b binding site in domains 19–20 is occluded, a phenomenon that is not fully understood and could be mediated by an intramolecular interaction between FH’s intrinsic sialylated glycosylation and its own sialic acid binding site. In order to assess this possibility, we characterized FH’s sialylation with respect to glycosidic linkage type and searched for further potential, not yet characterized sialic acid binding sites in FH and its seven-domain spanning splice variant and fellow complement regulator FH like-1 (FHL-1). We also probed FH binding to the sialic acid variant Neu5Gc which is not expressed in humans but on heterologous erythrocytes that restrict the human AP and in FH transgenic mice. We find that FH contains mostly α2-6-linked sialic acid, making an intramolecular interaction with its α2-3-sialic acid specific binding site and an associated self-lock mechanism unlikely, substantiate that there is only a single sialic acid binding site in FH and none in FHL-1, and demonstrate direct binding of FH to the nonhuman sialic acid Neu5Gc, supporting the use of FH transgenic mouse models for studies of complement-related diseases.
Collapse
Affiliation(s)
- Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Agnes L Hipgrave Ederveen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Markus J Harder
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Bärbel S Blaum
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Sialic acid as a target for the development of novel antiangiogenic strategies. Future Med Chem 2018; 10:2835-2854. [PMID: 30539670 DOI: 10.4155/fmc-2018-0298] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sialic acid is associated with glycoproteins and gangliosides of eukaryotic cells. It regulates various molecular interactions, being implicated in inflammation and cancer, where its expression is regulated by sialyltransferases and sialidases. Angiogenesis, the formation of new capillaries, takes place during inflammation and cancer, and represents the outcome of several interactions occurring at the endothelial surface among angiogenic growth factors, inhibitors, receptors, gangliosides and cell-adhesion molecules. Here, we elaborate on the evidences that many structures involved in angiogenesis are sialylated and that their interactions depend on sialic acid with implications in angiogenesis itself, inflammation and cancer. We also discuss the possibility to exploit sialic acid as a target for the development of novel antiangiogenic drugs.
Collapse
|
8
|
Abstract
Sialic acid-based glycoconjugates cover the surfaces of many different cell types, defining key properties of the cell surface such as overall charge or likely interaction partners. Because of this prominence, sialic acids play prominent roles in mediating attachment and entry to viruses belonging to many different families. In this review, we first describe how interactions between viruses and sialic acid-based glycan structures can be identified and characterized using a range of techniques. We then highlight interactions between sialic acids and virus capsid proteins in four different viruses, and discuss what these interactions have taught us about sialic acid engagement and opportunities to interfere with binding.
Collapse
Affiliation(s)
- Bärbel S Blaum
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
9
|
Blaum BS, Neu U, Peters T, Stehle T. Spin ballet for sweet encounters: saturation-transfer difference NMR and X-ray crystallography complement each other in the elucidation of protein-glycan interactions. Acta Crystallogr F Struct Biol Commun 2018; 74:451-462. [PMID: 30084394 PMCID: PMC6096479 DOI: 10.1107/s2053230x18006581] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/28/2018] [Indexed: 03/11/2023] Open
Abstract
Biomolecular NMR spectroscopy has limitations in the determination of protein structures: an inherent size limit and the requirement for expensive and potentially difficult isotope labelling pose considerable hurdles. Therefore, structural analysis of larger proteins is almost exclusively performed by crystallography. However, the diversity of biological NMR applications outperforms that of any other structural biology technique. For the characterization of transient complexes formed by proteins and small ligands, notably oligosaccharides, one NMR technique has recently proven to be particularly powerful: saturation-transfer difference NMR (STD-NMR) spectroscopy. STD-NMR experiments are fast and simple to set up, with no general protein size limit and no requirement for isotope labelling. The method performs best in the moderate-to-low affinity range that is of interest in most of glycobiology. With small amounts of unlabelled protein, STD-NMR experiments can identify hits from mixtures of potential ligands, characterize mutant proteins and pinpoint binding epitopes on the ligand side. STD-NMR can thus be employed to complement and improve protein-ligand complex models obtained by other structural biology techniques or by purely computational means. With a set of protein-glycan interactions from our own work, this review provides an introduction to the technique for structural biologists. It exemplifies how crystallography and STD-NMR can be combined to elucidate protein-glycan (and other protein-ligand) interactions in atomic detail, and how the technique can extend structural biology from simplified systems amenable to crystallization to more complex biological entities such as membranes, live viruses or entire cells.
Collapse
Affiliation(s)
- Bärbel S. Blaum
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Ursula Neu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Thomas Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, 23562 Lübeck, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Ledeen RW, Kopitz J, Abad-Rodríguez J, Gabius HJ. Glycan Chains of Gangliosides: Functional Ligands for Tissue Lectins (Siglecs/Galectins). PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:289-324. [PMID: 29747818 DOI: 10.1016/bs.pmbts.2017.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecular signals on the cell surface are responsible for adhesion and communication. Of relevance in this respect, their chemical properties endow carbohydrates with the capacity to store a maximum of information in a minimum of space. One way to present glycans on the cell surface is their covalent conjugation to a ceramide anchor. Among the resulting glycosphingolipids, gangliosides are special due to the presence of at least one sialic acid in the glycan chains. Their spatial accessibility and the dynamic regulation of their profile are factors that argue in favor of a role of glycans of gangliosides as ligands (counterreceptors) for carbohydrate-binding proteins (lectins). Indeed, as discovered first for a bacterial toxin, tissue lectins bind gangliosides and mediate contact formation (trans) and signaling (cis). While siglecs have a preference for higher sialylated glycans, certain galectins also target the monosialylated pentasaccharide of ganglioside GM1. Enzymatic interconversion of ganglioside glycans by sialidase action, relevant for neuroblastoma cell differentiation and growth control in vitro, for axonogenesis and axon regeneration, as well as for proper communication between effector and regulatory T cells, changes lectin-binding affinity profoundly. The GD1a-to-GM1 "editing" is recognized by such lectins, for example, myelin-associated glycoprotein (siglec-4) losing affinity and galectin-1 gaining reactivity, and then translated into postbinding signaling. Orchestrations of loss/gain of affinity, of ganglioside/lectin expression, and of lectin presence in a network offer ample opportunities for fine-tuning. Thus glycans of gangliosides such as GD1a and GM1 are functional counterreceptors by a pairing with tissue lectins, an emerging aspect of ganglioside and lectin functionality.
Collapse
Affiliation(s)
- Robert W Ledeen
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States.
| | - Jürgen Kopitz
- Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
11
|
Alibay I, Burusco KK, Bruce NJ, Bryce RA. Identification of Rare Lewis Oligosaccharide Conformers in Aqueous Solution Using Enhanced Sampling Molecular Dynamics. J Phys Chem B 2018; 122:2462-2474. [PMID: 29419301 DOI: 10.1021/acs.jpcb.7b09841] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Determining the conformations accessible to carbohydrate ligands in aqueous solution is important for understanding their biological action. In this work, we evaluate the conformational free-energy surfaces of Lewis oligosaccharides in explicit aqueous solvent using a multidimensional variant of the swarm-enhanced sampling molecular dynamics (msesMD) method; we compare with multi-microsecond unbiased MD simulations, umbrella sampling, and accelerated MD approaches. For the sialyl Lewis A tetrasaccharide, msesMD simulations in aqueous solution predict conformer landscapes in general agreement with the other biased methods and with triplicate unbiased 10 μs trajectories; these simulations find a predominance of closed conformer and a range of low-occupancy open forms. The msesMD simulations also suggest closed-to-open transitions in the tetrasaccharide are facilitated by changes in ring puckering of its GlcNAc residue away from the 4C1 form, in line with previous work. For sialyl Lewis X tetrasaccharide, msesMD simulations predict a minor population of an open form in solution corresponding to a rare lectin-bound pose observed crystallographically. Overall, from comparison with biased MD calculations, we find that triplicate 10 μs unbiased MD simulations may not be enough to fully sample glycan conformations in aqueous solution. However, the computational efficiency and intuitive approach of the msesMD method suggest potential for its application in glycomics as a tool for analysis of oligosaccharide conformation.
Collapse
Affiliation(s)
- Irfan Alibay
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Kepa K Burusco
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Neil J Bruce
- Heidelberg Institute for Theoretical Studies , Schloss-Wolfsbrunnenweg 35 , Heidelberg 69118 , Germany
| | - Richard A Bryce
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| |
Collapse
|
12
|
Suzuki KGN, Ando H, Komura N, Fujiwara TK, Kiso M, Kusumi A. Development of new ganglioside probes and unraveling of raft domain structure by single-molecule imaging. Biochim Biophys Acta Gen Subj 2017; 1861:2494-2506. [PMID: 28734966 DOI: 10.1016/j.bbagen.2017.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 01/13/2023]
Abstract
Gangliosides are involved in a variety of biological roles and are a component of lipid rafts found in cell plasma membranes (PMs). Gangliosides are especially abundant in neuronal PMs and are essential to their physiological functions. However, the dynamic behaviors of gangliosides have not been investigated in living cells due to a lack of fluorescent probes that behave like their parental molecules. We have recently developed, using an entirely chemical method, four new ganglioside probes (GM1, GM2, GM3, and GD1b) that act similarly to their parental molecules in terms of raft partitioning and binding affinity. Using single fluorescent-molecule imaging, we have found that ganglioside probes dynamically enter and leave rafts featuring CD59, a GPI-anchored protein. This occurs both before and after stimulation. The residency time of our ganglioside probes in rafts with CD59 oligomers was 48ms, after stimulation. The residency times in CD59 homodimer and monomer rafts were 40ms and 12ms, respectively. In this review, we introduce an entirely chemical-based ganglioside analog synthesis method and describe its application in single-molecule imaging and for the study of the dynamic behavior of gangliosides in cell PMs. Finally, we discuss how raft domains are formed, both before and after receptor engagement. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Kenichi G N Suzuki
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan; The Institute for Stem Cell Biology and Regenerative Medicine (inStem), The National Centre for Biological Sciences (NCBS), Bangalore 650056, India.
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan.
| | - Naoko Komura
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Makoto Kiso
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan; Membrane Cooperativity Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0412, Japan
| |
Collapse
|
13
|
Blaum BS. The lectin self of complement factor H. Curr Opin Struct Biol 2017; 44:111-118. [DOI: 10.1016/j.sbi.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/08/2017] [Accepted: 01/12/2017] [Indexed: 01/15/2023]
|
14
|
Rissanen S, Grzybek M, Orłowski A, Róg T, Cramariuc O, Levental I, Eggeling C, Sezgin E, Vattulainen I. Phase Partitioning of GM1 and Its Bodipy-Labeled Analog Determine Their Different Binding to Cholera Toxin. Front Physiol 2017; 8:252. [PMID: 28536532 PMCID: PMC5422513 DOI: 10.3389/fphys.2017.00252] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/10/2017] [Indexed: 12/19/2022] Open
Abstract
Driven by interactions between lipids and proteins, biological membranes display lateral heterogeneity that manifests itself in a mosaic of liquid-ordered (Lo) or raft, and liquid-disordered (Ld) or non-raft domains with a wide range of different properties and compositions. In giant plasma membrane vesicles and giant unilamellar vesicles, specific binding of Cholera Toxin (CTxB) to GM1 glycolipids is a commonly used strategy to label raft domains or Lo membrane environments. However, these studies often use acyl-chain labeled bodipy-GM1 (bdGM1), whose headgroup accessibility and membrane order or phase partitioning may differ from those of GM1, rendering the interpretation of CTxB binding data quite problematic. To unravel the molecular basis of CTxB binding to GM1 and bdGM1, we explored the partitioning and the headgroup presentation of these gangliosides in the Lo and Ld phases using atomistic molecular dynamics simulations complemented by CTxB binding experiments. The conformation of both GM1 and bdGM1 was shown to be largely similar in the Lo and Ld phases. However, bdGM1 showed reduction in receptor availability when reconstituted into synthetic bilayer mixtures, highlighting that membrane phase partitioning of the gangliosides plays a considerable role in CTxB binding. Our results suggest that the CTxB binding is predominately modulated by the partitioning of the receptor to an appropriate membrane phase. Further, given that the Lo and Ld partitioning of bdGM1 differs from those of GM1, usage of bdGM1 for studying GM1 behavior in cells can lead to invalid interpretation of experimental data.
Collapse
Affiliation(s)
- Sami Rissanen
- Department of Physics, Tampere University of TechnologyTampere, Finland
| | - Michal Grzybek
- Paul Langerhans Institute Dresden of the Helmholtz Centre Munich at the University Clinic Carl Gustav Carus, TU DresdenDresden, Germany
- German Center for Diabetes ResearchNeuherberg, Germany
| | - Adam Orłowski
- Department of Physics, Tampere University of TechnologyTampere, Finland
- Department of Physics and Energy, University of LimerickLimerick, Ireland
| | - Tomasz Róg
- Department of Physics, Tampere University of TechnologyTampere, Finland
- Department of Physics, University of HelsinkiHelsinki, Finland
| | - Oana Cramariuc
- Department of Physics, Tampere University of TechnologyTampere, Finland
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, University of Texas Health Science CenterHouston, TX, USA
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of OxfordOxford, UK
| | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of OxfordOxford, UK
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of TechnologyTampere, Finland
- Department of Physics, University of HelsinkiHelsinki, Finland
- MEMPHYS–Center for Biomembrane Physics, University of Southern DenmarkOdense, Denmark
| |
Collapse
|
15
|
Ando H, Komura N, Imamura A, Kiso M, Ishida H. A Synthetic Challenge to the Diversity of Gangliosides for Unveiling Their Biological Significance. J SYN ORG CHEM JPN 2017. [DOI: 10.5059/yukigoseikyokaishi.75.1162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University
| | - Naoko Komura
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University
| | - Makoto Kiso
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University
| | - Hideharu Ishida
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University
| |
Collapse
|