1
|
Moniaux N, Geoffre N, Deshayes A, Dos Santos A, Job S, Lacoste C, Nguyen TS, Darnaud M, Friedel-Arboleas M, Guettier C, Purhonen J, Kallijärvi J, Amouyal G, Amouyal P, Bréchot C, Vivès RR, Buendia MA, Issad T, Faivre J. Tumor suppressive role of the antimicrobial lectin REG3A targeting the O -GlcNAc glycosylation pathway. Hepatology 2025; 81:1416-1432. [PMID: 38975812 PMCID: PMC11999098 DOI: 10.1097/hep.0000000000000993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND AND AIMS Antimicrobial proteins of the regenerating family member 3 alpha (REG3A) family provide a first line of protection against infections and transformed cells. Their expression is inducible by inflammation, which makes their role in cancer biology less clear since an immune-inflammatory context may preexist or coexist with cancer, as occurs in HCC. The aim of this study is to clarify the role of REG3A in liver carcinogenesis and to determine whether its carbohydrate-binding functions are involved. APPROACH AND RESULTS This study provides evidence for a suppressive role of REG3A in HCC by reducing O -GlcNAcylation in 2 mouse models of HCC, in vitro cell studies, and clinical samples. REG3A expression in hepatocytes significantly reduced global O -GlcNAcylation and O -GlcNAcylation of c-MYC in preneoplastic and tumor livers and markedly inhibited HCC development in REG3A-c-MYC double transgenic mice and mice exposed to diethylnitrosamine. REG3A modified O -GlcNAcylation without altering the expression or activity of O-linked N-acetylglucosaminyltransferase, O-linked N-acetylglucosaminyl hydrolase, or glutamine fructose-6-phosphate amidotransferase. Reduced O -GlcNAcylation was consistent with decreased levels of UDP-GlcNAc in precancerous and cancerous livers. This effect was linked to the ability of REG3A to bind glucose and glucose-6 phosphate, suggested by a REG3A mutant unable to bind glucose and glucose-6 phosphate and alter O -GlcNAcylation. Importantly, patients with cirrhosis with high hepatic REG3A expression had lower levels of O -GlcNAcylation and longer cancer-free survival than REG3A-negative cirrhotic livers. CONCLUSIONS REG3A helps fight liver cancer by reducing O -GlcNAcylation. This study suggests a new paradigm for the regulation of O -GlcNAc signaling in cancer-related pathways through interactions with the carbohydrate-binding function of REG3A.
Collapse
Affiliation(s)
- Nicolas Moniaux
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Nicolas Geoffre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Alice Deshayes
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Sylvie Job
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Claire Lacoste
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Tung-Son Nguyen
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marion Darnaud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | | | - Catherine Guettier
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Hôpital Bicêtre, Laboratoire Anatomie Pathologique, Le Kremlin Bicêtre, France
| | - Janne Purhonen
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jukka Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | - Marie Annick Buendia
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Tarik Issad
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Medical-University Department (DMU) Biology Genetics, Université Paris-Saclay, Paul-Brousse Hospital, Villejuif, France
| |
Collapse
|
2
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
3
|
Farrokhi Yekta R, Farahani M, Koushki M, Amiri-Dashatan N. Deciphering the potential role of post-translational modifications of histones in gastrointestinal cancers: a proteomics-based review with therapeutic challenges and opportunities. Front Oncol 2024; 14:1481426. [PMID: 39497715 PMCID: PMC11532047 DOI: 10.3389/fonc.2024.1481426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Oncogenesis is a complex and multi-step process, controlled by several factors including epigenetic modifications. It is considered that histone modifications are critical components in the regulation of gene expression, protein functions, and molecular interactions. Dysregulated post-translationally modified histones and the related enzymatic systems are key players in the control of cell proliferation and differentiation, which are associated with the onset and progression of cancers. The most of traditional investigations on cancer have focused on mutations of oncogenes and tumor suppressor genes. However, increasing evidence indicates that epigenetics, especially histone post-translational modifications (PTMs) play important roles in various cancer types. Mass spectrometry-based proteomic approaches have demonstrated tremendous potential in PTMs profiling and quantitation in different biological systems. In this paper, we have made a proteomics-based review on the role of histone modifications involved in gastrointestinal cancers (GCs) tumorigenesis processes. These alterations function not only as diagnostic or prognostic biomarkers for GCs, but a deeper comprehension of the epigenetic regulation of GCs could facilitate the treatment of this prevalent malignancy through the creation of more effective targeted therapies.
Collapse
Affiliation(s)
- Reyhaneh Farrokhi Yekta
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Koushki
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
4
|
Zhou X, Hang S, Wang Q, Xu L, Wang P. Decoding the Role of O-GlcNAcylation in Hepatocellular Carcinoma. Biomolecules 2024; 14:908. [PMID: 39199296 PMCID: PMC11353135 DOI: 10.3390/biom14080908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Post-translational modifications (PTMs) influence protein functionality by modulating protein stability, localization, and interactions with other molecules, thereby controlling various cellular processes. Common PTMs include phosphorylation, acetylation, ubiquitination, glycosylation, SUMOylation, methylation, sulfation, and nitrosylation. Among these modifications, O-GlcNAcylation has been shown to play a critical role in cancer development and progression, especially in hepatocellular carcinoma (HCC). This review outlines the role of O-GlcNAcylation in the development and progression of HCC. Moreover, we delve into the underlying mechanisms of O-GlcNAcylation in HCC and highlight compounds that target O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) to improve treatment outcomes. Understanding the role of O-GlcNAcylation in HCC will offer insights into potential therapeutic strategies targeting OGT and OGA, which could improve treatment for patients with HCC.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Surgery, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.Z.); (S.H.)
| | - Sirui Hang
- Department of Surgery, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.Z.); (S.H.)
| | - Qingqing Wang
- Department of Hepatobiliary Surgery, The First Hospital of Jiaxing, Jiaxing 314051, China;
| | - Liu Xu
- Department of Hepatobiliary Surgery, The First Hospital of Jiaxing, Jiaxing 314051, China;
| | - Peter Wang
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou 310000, China
| |
Collapse
|
5
|
Mao Z, Mu J, Gao Z, Huang S, Chen L. Biological Functions and Potential Therapeutic Significance of O-GlcNAcylation in Hepatic Cellular Stress and Liver Diseases. Cells 2024; 13:805. [PMID: 38786029 PMCID: PMC11119800 DOI: 10.3390/cells13100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
O-linked-β-D-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation), which is dynamically regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), is a post-translational modification involved in multiple cellular processes. O-GlcNAcylation of proteins can regulate their biological functions via crosstalk with other post-translational modifications, such as phosphorylation, ubiquitination, acetylation, and methylation. Liver diseases are a major cause of death worldwide; yet, key pathological features of the disease, such as inflammation, fibrosis, steatosis, and tumorigenesis, are not fully understood. The dysregulation of O-GlcNAcylation has been shown to be involved in some severe hepatic cellular stress, viral hepatitis, liver fibrosis, nonalcoholic fatty acid liver disease (NAFLD), malignant progression, and drug resistance of hepatocellular carcinoma (HCC) through multiple molecular signaling pathways. Here, we summarize the emerging link between O-GlcNAcylation and hepatic pathological processes and provide information about the development of therapeutic strategies for liver diseases.
Collapse
Affiliation(s)
- Zun Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| | - Junpeng Mu
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China;
| | - Zhixiang Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| |
Collapse
|
6
|
Zhang CC, Li Y, Jiang CY, Le QM, Liu X, Ma L, Wang FF. O-GlcNAcylation mediates H 2O 2-induced apoptosis through regulation of STAT3 and FOXO1. Acta Pharmacol Sin 2024; 45:714-727. [PMID: 38191912 PMCID: PMC10943090 DOI: 10.1038/s41401-023-01218-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
The O-linked-β-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation) is a critical post-translational modification that couples the external stimuli to intracellular signal transduction networks. However, the critical protein targets of O-GlcNAcylation in oxidative stress-induced apoptosis remain to be elucidated. Here, we show that treatment with H2O2 inhibited O-GlcNAcylation, impaired cell viability, increased the cleaved caspase 3 and accelerated apoptosis of neuroblastoma N2a cells. The O-GlcNAc transferase (OGT) inhibitor OSMI-1 or the O-GlcNAcase (OGA) inhibitor Thiamet-G enhanced or inhibited H2O2-induced apoptosis, respectively. The total and phosphorylated protein levels, as well as the promoter activities of signal transducer and activator of transcription factor 3 (STAT3) and Forkhead box protein O 1 (FOXO1) were suppressed by OSMI-1. In contrast, overexpressing OGT or treating with Thiamet-G increased the total protein levels of STAT3 and FOXO1. Overexpression of STAT3 or FOXO1 abolished OSMI-1-induced apoptosis. Whereas the anti-apoptotic effect of OGT and Thiamet-G in H2O2-treated cells was abolished by either downregulating the expression or activity of endogenous STAT3 or FOXO1. These results suggest that STAT3 or FOXO1 are the potential targets of O-GlcNAcylation involved in the H2O2-induced apoptosis of N2a cells.
Collapse
Affiliation(s)
- Chen-Chun Zhang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Yuan Li
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Chang-You Jiang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Qiu-Min Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Fei-Fei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China.
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China.
| |
Collapse
|
7
|
Hu YJ, Zhang X, Lv HM, Liu Y, Li SZ. Protein O-GlcNAcylation: The sweet hub in liver metabolic flexibility from a (patho)physiological perspective. Liver Int 2024; 44:293-315. [PMID: 38110988 DOI: 10.1111/liv.15812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023]
Abstract
O-GlcNAcylation is a dynamic, reversible and atypical O-glycosylation that regulates various cellular physiological processes via conformation, stabilisation, localisation, chaperone interaction or activity of target proteins. The O-GlcNAcylation cycle is precisely controlled by collaboration between O-GlcNAc transferase and O-GlcNAcase. Uridine-diphosphate-N-acetylglucosamine, the sole donor of O-GlcNAcylation produced by the hexosamine biosynthesis pathway, is controlled by the input of glucose, glutamine, acetyl coenzyme A and uridine triphosphate, making it a sensor of the fluctuation of molecules, making O-GlcNAcylation a pivotal nutrient sensor for the metabolism of carbohydrates, amino acids, lipids and nucleotides. O-GlcNAcylation, particularly prevalent in liver, is the core hub for controlling systemic glucose homeostasis due to its nutritional sensitivity and precise spatiotemporal regulation of insulin signal transduction. The pathology of various liver diseases has highlighted hepatic metabolic disorder and dysfunction, and abnormal O-GlcNAcylation also plays a specific pathological role in these processes. Therefore, this review describes the unique features of O-GlcNAcylation and its dynamic homeostasis maintenance. Additionally, it explains the underlying nutritional sensitivity of O-GlcNAcylation and discusses its mechanism of spatiotemporal modulation of insulin signal transduction and liver metabolic homeostasis during the fasting and feeding cycle. This review emphasises the pathophysiological implications of O-GlcNAcylation in nonalcoholic fatty liver disease, nonalcoholic steatohepatitis and hepatic fibrosis, and focuses on the adverse effects of hyper O-GlcNAcylation on liver cancer progression and metabolic reprogramming.
Collapse
Affiliation(s)
- Ya-Jie Hu
- Key Laboratory of Bovine Disease Control in Northeast China of Ministry of Agriculture and Rural affairs of the People's Republic of China, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xu Zhang
- Key Laboratory of Bovine Disease Control in Northeast China of Ministry of Agriculture and Rural affairs of the People's Republic of China, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hong-Ming Lv
- Key Laboratory of Bovine Disease Control in Northeast China of Ministry of Agriculture and Rural affairs of the People's Republic of China, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yang Liu
- Key Laboratory of Bovine Disease Control in Northeast China of Ministry of Agriculture and Rural affairs of the People's Republic of China, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shi-Ze Li
- Key Laboratory of Bovine Disease Control in Northeast China of Ministry of Agriculture and Rural affairs of the People's Republic of China, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
8
|
Li Y, Qu S, Jin H, Jia Q, Li M. Role of O-GlcNAcylation in cancer biology. Pathol Res Pract 2024; 253:155001. [PMID: 38043191 DOI: 10.1016/j.prp.2023.155001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
One of the general characteristics of cancer cells is the abnormal increase of O-GlcNAcylation. Recent studies have shown that it affects the basic functions of proteins and regulates multiple phenotypes of cancer cells through key signals and metabolic pathways. O-GlcNAcylation is a covalent linkage between the β-D-N-acetylglucosamine (GlcNAc) sugar and target protein. It interacts with many other types of post-translational modifications and works together in the whole process of cancer development. For example, it regulates cell activities such as cell signal transduction, transcription, cell division, metabolism and cytoskeleton regulation. In this review, we summarized the general concept of O-GlcNAcylation and its related role in the ten major tumor phenotypes.
Collapse
Affiliation(s)
- Yuxuan Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shuhan Qu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Hai Jin
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
9
|
Dupas T, Lauzier B, McGraw S. O-GlcNAcylation: the sweet side of epigenetics. Epigenetics Chromatin 2023; 16:49. [PMID: 38093337 PMCID: PMC10720106 DOI: 10.1186/s13072-023-00523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Histones display a wide variety of post-translational modifications, including acetylation, methylation, and phosphorylation. These epigenetic modifications can influence chromatin structure and function without altering the DNA sequence. Histones can also undergo post-translational O-GlcNAcylation, a rather understudied modification that plays critical roles in almost all biological processes and is added and removed by O-linked N-acetylglucosamine transferase and O-GlcNAcase, respectively. This review provides a current overview of our knowledge of how O-GlcNAcylation impacts the histone code both directly and by regulating other chromatin modifying enzymes. This highlights the pivotal emerging role of O-GlcNAcylation as an essential epigenetic marker.
Collapse
Affiliation(s)
- Thomas Dupas
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada.
- Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada.
| | - Benjamin Lauzier
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada
- Nantes Université, CNRS, INSERM, L'institut du Thorax, 44000, Nantes, France
| | - Serge McGraw
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada.
- Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
10
|
He XF, Hu X, Wen GJ, Wang Z, Lin WJ. O-GlcNAcylation in cancer development and immunotherapy. Cancer Lett 2023; 566:216258. [PMID: 37279852 DOI: 10.1016/j.canlet.2023.216258] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023]
Abstract
O-linked β-D-N-acetylglucosamine (O-GlcNAc), as a posttranslational modification (PTM), is a reversible reaction that attaches β-N-GlcNAc to Ser/Thr residues on specific proteins by O-GlcNAc transferase (OGT). O-GlcNAcase (OGA) removes the O-GlcNAc from O-GlcNAcylated proteins. O-GlcNAcylation regulates numerous cellular processes, including signal transduction, the cell cycle, metabolism, and energy homeostasis. Dysregulation of O-GlcNAcylation contributes to the development of various diseases, including cancers. Accumulating evidence has revealed that higher expression levels of OGT and hyper-O-GlcNAcylation are detected in many cancer types and governs glucose metabolism, proliferation, metastasis, invasion, angiogenesis, migration and drug resistance. In this review, we describe the biological functions and molecular mechanisms of OGT- or O-GlcNAcylation-mediated tumorigenesis. Moreover, we discuss the potential role of O-GlcNAcylation in tumor immunotherapy. Furthermore, we highlight that compounds can target O-GlcNAcylation by regulating OGT to suppress oncogenesis. Taken together, targeting protein O-GlcNAcylation might be a promising strategy for the treatment of human malignancies.
Collapse
Affiliation(s)
- Xue-Fen He
- Department of Obstetrics and Gynecology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Xiaoli Hu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gao-Jing Wen
- Department of Obstetrics and Gynecology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wen-Jing Lin
- Department of Obstetrics and Gynecology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
11
|
Lu Q, Zhang X, Liang T, Bai X. O-GlcNAcylation: an important post-translational modification and a potential therapeutic target for cancer therapy. Mol Med 2022; 28:115. [PMID: 36104770 PMCID: PMC9476278 DOI: 10.1186/s10020-022-00544-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
O-linked β-d-N-acetylglucosamine (O-GlcNAc) is an important post-translational modification of serine or threonine residues on thousands of proteins in the nucleus and cytoplasm of all animals and plants. In eukaryotes, only two conserved enzymes are involved in this process. O-GlcNAc transferase is responsible for adding O-GlcNAc to proteins, while O-GlcNAcase is responsible for removing it. Aberrant O-GlcNAcylation is associated with a variety of human diseases, such as diabetes, cancer, neurodegenerative diseases, and cardiovascular diseases. Numerous studies have confirmed that O-GlcNAcylation is involved in the occurrence and progression of cancers in multiple systems throughout the body. It is also involved in regulating multiple cancer hallmarks, such as metabolic reprogramming, proliferation, invasion, metastasis, and angiogenesis. In this review, we first describe the process of O-GlcNAcylation and the structure and function of O-GlcNAc cycling enzymes. In addition, we detail the occurrence of O-GlcNAc in various cancers and the role it plays. Finally, we discuss the potential of O-GlcNAc as a promising biomarker and novel therapeutic target for cancer diagnosis, treatment, and prognosis.
Collapse
|
12
|
Zhang J, Xun M, Li C, Chen Y. The O-GlcNAcylation and its promotion to hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2022; 1877:188806. [PMID: 36152903 DOI: 10.1016/j.bbcan.2022.188806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/27/2022]
Abstract
O-GlcNAcylation is a posttranslational modification that attaches O-linked β-N-acetylglucosamine (O-GlcNAc) to the serine and threonine residues of proteins. Such a glycosylation would alter the activities, stabilities, and interactions of target proteins that are functional in a wide range of biological processes and diseases. Accumulating evidence indicates that O-GlcNAcylation is tightly associated with hepatocellular carcinoma (HCC) in its onset, growth, invasion and metastasis, drug resistance, and stemness. Here we summarize the discoveries of the role of O-GlcNAcylation in HCC and its function mechanism, aiming to deepen our understanding of HCC pathology, generate more biomarkers for its diagnosis and prognosis, and offer novel molecular targets for its treatment.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 410001, China
| | - Min Xun
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 410001, China
| | - Chaojie Li
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 410001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 410001, China.
| |
Collapse
|
13
|
Liu Y, Chen C, Wang X, Sun Y, Zhang J, Chen J, Shi Y. An Epigenetic Role of Mitochondria in Cancer. Cells 2022; 11:cells11162518. [PMID: 36010594 PMCID: PMC9406960 DOI: 10.3390/cells11162518] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are not only the main energy supplier but are also the cell metabolic center regulating multiple key metaborates that play pivotal roles in epigenetics regulation. These metabolites include acetyl-CoA, α-ketoglutarate (α-KG), S-adenosyl methionine (SAM), NAD+, and O-linked beta-N-acetylglucosamine (O-GlcNAc), which are the main substrates for DNA methylation and histone post-translation modifications, essential for gene transcriptional regulation and cell fate determination. Tumorigenesis is attributed to many factors, including gene mutations and tumor microenvironment. Mitochondria and epigenetics play essential roles in tumor initiation, evolution, metastasis, and recurrence. Targeting mitochondrial metabolism and epigenetics are promising therapeutic strategies for tumor treatment. In this review, we summarize the roles of mitochondria in key metabolites required for epigenetics modification and in cell fate regulation and discuss the current strategy in cancer therapies via targeting epigenetic modifiers and related enzymes in metabolic regulation. This review is an important contribution to the understanding of the current metabolic-epigenetic-tumorigenesis concept.
Collapse
Affiliation(s)
- Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xinye Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yihong Sun
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
- Correspondence: (J.C.); (Y.S.)
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China
- Correspondence: (J.C.); (Y.S.)
| |
Collapse
|
14
|
Wang G, Han JJ. Connections between metabolism and epigenetic modifications in cancer. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:199-221. [PMID: 37724300 PMCID: PMC10388788 DOI: 10.1515/mr-2021-0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/19/2021] [Indexed: 09/20/2023]
Abstract
How cells sense and respond to environmental changes is still a key question. It has been identified that cellular metabolism is an important modifier of various epigenetic modifications, such as DNA methylation, histone methylation and acetylation and RNA N6-methyladenosine (m6A) methylation. This closely links the environmental nutrient availability to the maintenance of chromatin structure and gene expression, and is crucial to regulate cellular homeostasis, cell growth and differentiation. Cancer metabolic reprogramming and epigenetic alterations are widely observed, and facilitate cancer development and progression. In cancer cells, oncogenic signaling-driven metabolic reprogramming modifies the epigenetic landscape via changes in the key metabolite levels. In this review, we briefly summarized the current evidence that the abundance of key metabolites, such as S-adenosyl methionine (SAM), acetyl-CoA, α-ketoglutarate (α-KG), 2-hydroxyglutarate (2-HG), uridine diphospho-N-acetylglucosamine (UDP-GlcNAc) and lactate, affected by metabolic reprogramming plays an important role in dynamically regulating epigenetic modifications in cancer. An improved understanding of the roles of metabolic reprogramming in epigenetic regulation can contribute to uncover the underlying mechanisms of metabolic reprogramming in cancer development and identify the potential targets for cancer therapies.
Collapse
Affiliation(s)
- Guangchao Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Jingdong J. Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| |
Collapse
|
15
|
Sun L, Lv S, Song T. O-GlcNAcylation links oncogenic signals and cancer epigenetics. Discov Oncol 2021; 12:54. [PMID: 35201498 PMCID: PMC8777512 DOI: 10.1007/s12672-021-00450-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Prevalent dysregulation of epigenetic modifications plays a pivotal role in cancer. Targeting epigenetic abnormality is a new strategy for cancer therapy. Understanding how conventional oncogenic factors cause epigenetic abnormality is of great basic and translational value. O-GlcNAcylation is a protein modification which affects physiology and pathophysiology. In mammals, O-GlcNAcylation is catalyzed by one single enzyme OGT and removed by one single enzyme OGA. O-GlcNAcylation is affected by the availability of the donor, UDP-GlcNAc, generated by the serial enzymatic reactions in the hexoamine biogenesis pathway (HBP). O-GlcNAcylation regulates a wide spectrum of substrates including many proteins involved in epigenetic modification. Like epigenetic modifications, abnormality of O-GlcNAcylation is also common in cancer. Studies have revealed substantial impact on HBP enzymes and OGT/OGA by oncogenic signals. In this review, we will first summarize how oncogenic signals regulate HBP enzymes, OGT and OGA in cancer. We will then integrate this knowledge with the up to date understanding how O-GlcNAcylation regulates epigenetic machinery. With this, we propose a signal axis from oncogenic signals through O-GlcNAcylation dysregulation to epigenetic abnormality in cancer. Further elucidation of this axis will not only advance our understanding of cancer biology but also provide new revenues towards cancer therapy.
Collapse
Affiliation(s)
- Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| | - Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
16
|
Wang L, Feng Y, Zhang C, Chen X, Huang H, Li W, Zhang J, Liu Y. Upregulation of OGT by Caveolin-1 promotes hepatocellular carcinoma cell migration and invasion. Cell Biol Int 2021; 45:2251-2263. [PMID: 34288245 DOI: 10.1002/cbin.11673] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/26/2021] [Accepted: 07/03/2021] [Indexed: 11/08/2022]
Abstract
Caveolin-1 (CAV1), a major structural protein of caveolae, is reported to exert a positive regulatory effect on tumor growth and to play a crucial role in hepatocellular carcinoma (HCC) cell metastasis by regulating glycosyltransferase expression and cellular glycosylation. However, the role of CAV1 in modulating protein glycosylation and tumor metastasis remains to be further elucidated. In the present study, we showed that CAV1 promoted the expression of O-GlcNAc transferase (OGT), which catalyzed the addition of O-GlcNAc residues to a variety of nuclear and cytoplasmic proteins. In human HCC cell lines with different metastatic potentials, high levels of OGT and cellular O-GlcNAcylation were associated with CAV1 expression and cell metastasis. Overexpression of CAV1 increased the levels of OGT and O-GlcNAcylation, and cell migration was also increased. Furthermore, CAV1 was found to reduce the expression of Runt-related transcription factor 2 (RUNX2) in HCC cells. Subsequently, this effect resulted in the attenuation of the RUNX2-induced transcription of microRNA24 (miR24), a microRNA previously shown to suppress OGT mRNA expression by targeting its 3' untranslated regions (UTR). Finally, we demonstrated that CAV1 induced cellular O-GlcNAcylation and HCC cell invasion. This study provides evidence of CAV1-mediated increases in OGT expression and O-GlcNAcylation. These data provide insight into a novel mechanism underlying HCC metastasis and suggest a novel strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Lingyan Wang
- Department of Biochemistry, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yuan Feng
- Department of Biochemistry, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Cheng Zhang
- Department of Biochemistry, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xixi Chen
- Department of Biochemistry, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Huang Huang
- Department of Biochemistry, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Wenli Li
- Department of Biochemistry, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Jianing Zhang
- Department of Biochemistry, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yubo Liu
- Department of Biochemistry, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| |
Collapse
|
17
|
Li X, Wu Z, He J, Jin Y, Chu C, Cao Y, Gu F, Wang H, Hou C, Liu X, Zou Q. OGT regulated O-GlcNAcylation promotes papillary thyroid cancer malignancy via activating YAP. Oncogene 2021; 40:4859-4871. [PMID: 34155345 DOI: 10.1038/s41388-021-01901-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
The incidence of thyroid cancer is growing rapidly during the past decades worldwide. Although most thyroid tumors are curable, some patients diagnosed with distant metastases are associated with poor prognosis. The molecular mechanisms underlying these cases are still largely unknown. Here we found that the upregulated O-Linked N-Acetylglucosamine Transferase (OGT) expression and O-GlcNAcylation (O-GlcNAc) modification in papillary thyroid cancer (PTC) were essential in tumor growth and metastasis. Mass spectrometry analysis showed that YAP was the effector protein modified by OGT. In details, YAP Ser109 O-GlcNAcylation promoted the malignant phenotypes in PTC cells by inducing YAP Ser127 dephosphorylation and activation. Our work clearly showed the critical role of OGT and YAP played in PTC tumors and made it possible for us to seek the clinical potential of manipulating OGT/YAP activity in PTC targeted therapies. These findings also confirmed OGT worked in collaboration with classical Hippo pathway kinases as an upstream regulator of YAP in PTC tumors.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhengming Wu
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jing He
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yiting Jin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chengyu Chu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yun Cao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Fei Gu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hongying Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chenjian Hou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiuping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Qiang Zou
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
18
|
Giménez-Orenga K, Oltra E. Human Endogenous Retrovirus as Therapeutic Targets in Neurologic Disease. Pharmaceuticals (Basel) 2021; 14:495. [PMID: 34073730 PMCID: PMC8225122 DOI: 10.3390/ph14060495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/16/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are ancient retroviral DNA sequences established into germline. They contain regulatory elements and encoded proteins few of which may provide benefits to hosts when co-opted as cellular genes. Their tight regulation is mainly achieved by epigenetic mechanisms, which can be altered by environmental factors, e.g., viral infections, leading to HERV activation. The aberrant expression of HERVs associates with neurological diseases, such as multiple sclerosis (MS) or amyotrophic lateral sclerosis (ALS), inflammatory processes and neurodegeneration. This review summarizes the recent advances on the epigenetic mechanisms controlling HERV expression and the pathogenic effects triggered by HERV de-repression. This article ends by describing new, promising therapies, targeting HERV elements, one of which, temelimab, has completed phase II trials with encouraging results in treating MS. The information gathered here may turn helpful in the design of new strategies to unveil epigenetic failures behind HERV-triggered diseases, opening new possibilities for druggable targets and/or for extending the use of temelimab to treat other associated diseases.
Collapse
Affiliation(s)
- Karen Giménez-Orenga
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Elisa Oltra
- School of Medicine and Health Sciences, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
19
|
Nutrient regulation of the flow of genetic information by O-GlcNAcylation. Biochem Soc Trans 2021; 49:867-880. [PMID: 33769449 DOI: 10.1042/bst20200769] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 01/10/2023]
Abstract
O-linked-β-N-acetylglucosamine (O-GlcNAc) is a post-translational modification (PTM) that is actively added to and removed from thousands of intracellular proteins. As a PTM, O-GlcNAcylation tunes the functions of a protein in various ways, such as enzymatic activity, transcriptional activity, subcellular localization, intermolecular interactions, and degradation. Its regulatory roles often interplay with the phosphorylation of the same protein. Governed by 'the Central Dogma', the flow of genetic information is central to all cellular activities. Many proteins regulating this flow are O-GlcNAc modified, and their functions are tuned by the cycling sugar. Herein, we review the regulatory roles of O-GlcNAcylation on the epigenome, in DNA replication and repair, in transcription and in RNA processing, in protein translation and in protein turnover.
Collapse
|
20
|
Xu D, Shao F, Bian X, Meng Y, Liang T, Lu Z. The Evolving Landscape of Noncanonical Functions of Metabolic Enzymes in Cancer and Other Pathologies. Cell Metab 2021; 33:33-50. [PMID: 33406403 DOI: 10.1016/j.cmet.2020.12.015] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Key pathological, including oncogenic, signaling pathways regulate the canonical functions of metabolic enzymes that serve the cellular metabolic needs. Importantly, these signaling pathways also confer a large number of metabolic enzymes to have noncanonical or nonmetabolic functions that are referred to as "moonlighting" functions. In this review, we highlight how aberrantly regulated metabolic enzymes with such activities play critical roles in the governing of a wide spectrum of instrumental cellular activities, including gene expression, cell-cycle progression, DNA repair, cell proliferation, survival, apoptosis, and tumor microenvironment remodeling, thereby promoting the pathologic progression of disease, including cancer.
Collapse
Affiliation(s)
- Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Fei Shao
- The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, Shandong 266003, China
| | - Xueli Bian
- The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, Shandong 266003, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Zhejiang University Cancer Center, Hangzhou 310029, China.
| |
Collapse
|
21
|
O-GlcNAc modified-TIP60/KAT5 is required for PCK1 deficiency-induced HCC metastasis. Oncogene 2021; 40:6707-6719. [PMID: 34650217 PMCID: PMC8677624 DOI: 10.1038/s41388-021-02058-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 02/04/2023]
Abstract
Aberrant glucose metabolism and elevated O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) are hallmarks of hepatocellular carcinoma (HCC). Loss of phosphoenolpyruvate carboxykinase 1 (PCK1), the major rate-limiting enzyme of hepatic gluconeogenesis, increases hexosamine biosynthetic pathway (HBP)-mediated protein O-GlcNAcylation in hepatoma cell and promotes cell growth and proliferation. However, whether PCK1 deficiency and hyper O-GlcNAcylation can induce HCC metastasis is largely unknown. Here, gain- and loss-of-function studies demonstrate that PCK1 suppresses HCC metastasis in vitro and in vivo. Specifically, lysine acetyltransferase 5 (KAT5), belonging to the MYST family of histone acetyltransferases (HAT), is highly modified by O-GlcNAcylation in PCK1 knockout hepatoma cells. Mechanistically, PCK1 depletion suppressed KAT5 ubiquitination by increasing its O-GlcNAcylation, thereby stabilizing KAT5. KAT5 O-GlcNAcylation epigenetically activates TWIST1 expression via histone H4 acetylation, and enhances MMP9 and MMP14 expression via c-Myc acetylation, thus promoting epithelial-mesenchymal transition (EMT) in HCC. In addition, targeting HBP-mediated O-GlcNAcylation of KAT5 inhibits lung metastasis of HCC in hepatospecific Pck1-deletion mice. Collectively, our findings demonstrate that PCK1 depletion increases O-GlcNAcylation of KAT5, epigenetically induces TWIST1 expression and promotes HCC metastasis, and link metabolic enzyme, post-translational modification (PTM) with epigenetic regulation.
Collapse
|
22
|
Anderson G. Tumour Microenvironment: Roles of the Aryl Hydrocarbon Receptor, O-GlcNAcylation, Acetyl-CoA and Melatonergic Pathway in Regulating Dynamic Metabolic Interactions across Cell Types-Tumour Microenvironment and Metabolism. Int J Mol Sci 2020; 22:E141. [PMID: 33375613 PMCID: PMC7795031 DOI: 10.3390/ijms22010141] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
This article reviews the dynamic interactions of the tumour microenvironment, highlighting the roles of acetyl-CoA and melatonergic pathway regulation in determining the interactions between oxidative phosphorylation (OXPHOS) and glycolysis across the array of cells forming the tumour microenvironment. Many of the factors associated with tumour progression and immune resistance, such as yin yang (YY)1 and glycogen synthase kinase (GSK)3β, regulate acetyl-CoA and the melatonergic pathway, thereby having significant impacts on the dynamic interactions of the different types of cells present in the tumour microenvironment. The association of the aryl hydrocarbon receptor (AhR) with immune suppression in the tumour microenvironment may be mediated by the AhR-induced cytochrome P450 (CYP)1b1-driven 'backward' conversion of melatonin to its immediate precursor N-acetylserotonin (NAS). NAS within tumours and released from tumour microenvironment cells activates the brain-derived neurotrophic factor (BDNF) receptor, TrkB, thereby increasing the survival and proliferation of cancer stem-like cells. Acetyl-CoA is a crucial co-substrate for initiation of the melatonergic pathway, as well as co-ordinating the interactions of OXPHOS and glycolysis in all cells of the tumour microenvironment. This provides a model of the tumour microenvironment that emphasises the roles of acetyl-CoA and the melatonergic pathway in shaping the dynamic intercellular metabolic interactions of the various cells within the tumour microenvironment. The potentiation of YY1 and GSK3β by O-GlcNAcylation will drive changes in metabolism in tumours and tumour microenvironment cells in association with their regulation of the melatonergic pathway. The emphasis on metabolic interactions across cell types in the tumour microenvironment provides novel future research and treatment directions.
Collapse
Affiliation(s)
- George Anderson
- Clinical Research Communications (CRC) Scotland & London, Eccleston Square, London SW1V 6UT, UK
| |
Collapse
|
23
|
Wu D, Jin J, Qiu Z, Liu D, Luo H. Functional Analysis of O-GlcNAcylation in Cancer Metastasis. Front Oncol 2020; 10:585288. [PMID: 33194731 PMCID: PMC7653022 DOI: 10.3389/fonc.2020.585288] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
One common and reversible type of post-translational modification (PTM) is the addition of O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation), and its dynamic balance is controlled by O-GlcNAc transferase (OGT) and glycoside hydrolase O-GlcNAcase (OGA) through the addition or removal of O-GlcNAc groups. A large amount of research data confirms that proteins regulated by O-GlcNAcylation play a pivotal role in cells. In particularly, imbalanced levels of OGT and O-GlcNAcylation have been found in various types of cancers. Recently, increasing evidence shows that imbalanced O-GlcNAcylation directly or indirectly impacts the process of cancer metastasis. This review summarizes the current understanding of the influence of O-GlcNAc-proteins on the regulation of cancer metastasis. It will provide a theoretical basis to further elucidate of the molecular mechanisms underlying cancer emergence and progression.
Collapse
Affiliation(s)
- Donglu Wu
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jingji Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
24
|
Li G, Tian Y, Zhu WG. The Roles of Histone Deacetylases and Their Inhibitors in Cancer Therapy. Front Cell Dev Biol 2020; 8:576946. [PMID: 33117804 PMCID: PMC7552186 DOI: 10.3389/fcell.2020.576946] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Genetic mutations and abnormal gene regulation are key mechanisms underlying tumorigenesis. Nucleosomes, which consist of DNA wrapped around histone cores, represent the basic units of chromatin. The fifth amino group (Nε) of histone lysine residues is a common site for post-translational modifications (PTMs), and of these, acetylation is the second most common. Histone acetylation is modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), and is involved in the regulation of gene expression. Over the past two decades, numerous studies characterizing HDACs and HDAC inhibitors (HDACi) have provided novel and exciting insights concerning their underlying biological mechanisms and potential anti-cancer treatments. In this review, we detail the diverse structures of HDACs and their underlying biological functions, including transcriptional regulation, metabolism, angiogenesis, DNA damage response, cell cycle, apoptosis, protein degradation, immunity and other several physiological processes. We also highlight potential avenues to use HDACi as novel, precision cancer treatments.
Collapse
Affiliation(s)
- Guo Li
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Yuan Tian
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
25
|
Boulard M, Rucli S, Edwards JR, Bestor TH. Methylation-directed glycosylation of chromatin factors represses retrotransposon promoters. Proc Natl Acad Sci U S A 2020; 117:14292-14298. [PMID: 32522876 PMCID: PMC7322000 DOI: 10.1073/pnas.1912074117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanisms by which methylated mammalian promoters are transcriptionally silenced even in the presence of all of the factors required for their expression have long been a major unresolved issue in the field of epigenetics. Repression requires the assembly of a methylation-dependent silencing complex that contains the TRIM28 protein (also known as KAP1 and TIF1β), a scaffolding protein without intrinsic repressive or DNA-binding properties. The identity of the key effector within this complex that represses transcription is unknown. We developed a methylation-sensitized interaction screen which revealed that TRIM28 was complexed with O-linked β-N-acetylglucosamine transferase (OGT) only in cells that had normal genomic methylation patterns. OGT is the only glycosyltransferase that modifies cytoplasmic and nuclear protein by transfer of N-acetylglucosamine (O-GlcNAc) to serine and threonine hydroxyls. Whole-genome analysis showed that O-glycosylated proteins and TRIM28 were specifically bound to promoters of active retrotransposons and to imprinting control regions, the two major regulatory sequences controlled by DNA methylation. Furthermore, genome-wide loss of DNA methylation caused a loss of O-GlcNAc from multiple transcriptional repressor proteins associated with TRIM28. A newly developed Cas9-based editing method for targeted removal of O-GlcNAc was directed against retrotransposon promoters. Local chromatin de-GlcNAcylation specifically reactivated the expression of the targeted retrotransposon family without loss of DNA methylation. These data revealed that O-linked glycosylation of chromatin factors is essential for the transcriptional repression of methylated retrotransposons.
Collapse
Affiliation(s)
- Mathieu Boulard
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), 00015 Monterotondo, Italy;
| | - Sofia Rucli
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), 00015 Monterotondo, Italy
- Joint PhD degree program, European Molecular Biology Laboratory and Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany
| | - John R Edwards
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110;
| | - Timothy H Bestor
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| |
Collapse
|
26
|
Pyo KE, Kim CR, Lee M, Kim JS, Kim KI, Baek SH. ULK1 O-GlcNAcylation Is Crucial for Activating VPS34 via ATG14L during Autophagy Initiation. Cell Rep 2019; 25:2878-2890.e4. [PMID: 30517873 DOI: 10.1016/j.celrep.2018.11.042] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/04/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022] Open
Abstract
Unc-51-like-kinase 1 (ULK1) is a target of both the mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK), whose role is to facilitate the initiation of autophagy in response to starvation. Upon glucose starvation, dissociation of mTOR from ULK1 and phosphorylation by AMPK leads to the activation of ULK1 activity. Here, we provide evidence that ULK1 is the attachment of O-linked N-acetylglucosamine (O-GlcNAcylated) on the threonine 754 site by O-linked N-acetylglucosamine transferase (OGT) upon glucose starvation. ULK1 O-GlcNAcylation occurs after dephosphorylation of adjacent mTOR-dependent phosphorylation on the serine 757 site by protein phosphatase 1 (PP1) and phosphorylation by AMPK. ULK1 O-GlcNAcylation is crucial for binding and phosphorylation of ATG14L, allowing the activation of lipid kinase VPS34 and leading to the production of phosphatidylinositol-(3)-phosphate (PI(3)P), which is required for phagophore formation and initiation of autophagy. Our findings provide insights into the crosstalk between dephosphorylation and O-GlcNAcylation during autophagy and specify a molecular framework for potential therapeutic intervention in autophagy-related diseases.
Collapse
Affiliation(s)
- Ki Eun Pyo
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Chang Rok Kim
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Minkyoung Lee
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, South Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
27
|
O-GlcNAcylated c-Jun antagonizes ferroptosis via inhibiting GSH synthesis in liver cancer. Cell Signal 2019; 63:109384. [PMID: 31394193 DOI: 10.1016/j.cellsig.2019.109384] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/23/2019] [Accepted: 08/03/2019] [Indexed: 12/19/2022]
Abstract
Ferroptosis is a metabolism-related cell death. Stimulating ferroptosis in liver cancer cells is a strategy to treat liver cancer. However, how to eradicate liver cancer cells through ferroptosis and the obstacles to inducing ferroptosis in liver cancer remain unclear. Here, we observed that erastin suppressed the malignant phenotypes of liver cancer cells by inhibiting O-GlcNAcylation of c-Jun and further inhibited protein expression, transcription activity and nuclear accumulation of c-Jun. Overexpression of c-Jun-WT with simultaneous PuGNAc treatment conversely inhibited erastin-induced ferroptosis, whereas overexpression of c-Jun-WT alone or overexpression of c-Jun-S73A (a non-O-GlcNAcylated form of c-Jun) with PuGNAc treatment did not exert a similar effect. GSH downregulation induced by erastin was restored by overexpression of c-Jun-WT with simultaneous PuGNAc treatment. In addition, overexpression of c-Jun-WT, but not its S73A mutant, induced PSAT1 and CBS transcription via directly binding to their promoter regions, suggesting that GSH synthesis is regulated by O-GlcNAcylated c-Jun. A positive correlation between c-Jun O-GlcNAcylation and GSH was observed in clinical samples. Collectively, O-GlcNAcylated c-Jun represents an obstructive factor to ferroptosis, and targeting O-GlcNAcylated c-Jun might be helpful for treating liver cancer.
Collapse
|
28
|
Xu YXZ, Bassi G, Mishra S. Prohibitin: a prime candidate for a pleiotropic effector that mediates sex differences in obesity, insulin resistance, and metabolic dysregulation. Biol Sex Differ 2019; 10:25. [PMID: 31118075 PMCID: PMC6530082 DOI: 10.1186/s13293-019-0239-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/09/2019] [Indexed: 11/25/2022] Open
Abstract
Adipocytes and macrophages, the two major constituents of adipose tissue, exhibit sex differences and work in synergy in adipose tissue physiology and pathophysiology, including obesity-linked insulin resistance and metabolic dysregulation. Sex steroid hormones play a major role in sex differences in adipose tissue biology. However, our knowledge of the molecules that mediate these effects in adipose tissue remains limited. Consequently, it remains unclear whether these effector molecules in different adipose and immune cell types are distinct or if there are also pleiotropic effectors. Recently, a protein named prohibitin (PHB) with cell compartment- and tissue-specific functions has been found to play a role in sex differences in adipose and immune functions. Transgenic (Tg) mouse models overexpressing PHB (PHB-Tg) and a phospho-mutant PHB (mPHB-Tg) from the fatty acid binding protein-4 (Fabp-4) gene promoter display sex-neutral obesity; however, obesity-related insulin resistance and metabolic dysregulation are male-specific. Intriguingly, with aging, the male PHB-Tg mice developed hepatic steatosis and subsequently liver tumors whereas the male mPHB-Tg mice developed lymph node tumors and splenomegaly. Unlike the male transgenic mice, the female PHB-Tg and mPHB-Tg mice remain protected from obesity-related metabolic dysregulation and tumor development. In conclusion, the sex-dimorphic metabolic and immune phenotypes of PHB-Tg and mPHB-Tg mice have revealed PHB as a pleiotropic effector of sex differences in adipose and immune functions. In this mini-review, we will discuss the pleiotropic attributes of PHB and potential mechanisms that may have contributed to the sex-dimorphic metabolic phenotypes in PHB-Tg and mPHB-Tg mice, which warrant future research. We propose that PHB is a prime candidate for a pleiotropic mediator of sex differences in adipose and immune functions in both physiology and pathophysiology, including obesity, insulin resistance, and metabolic dysregulation.
Collapse
Affiliation(s)
- Yang Xin Zi Xu
- Department of Physiology and Pathophysiology, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm. 843 JBRC/715 McDermot Avenue, Winnipeg, MB, R3E 3P4, Canada
| | - Geetika Bassi
- Department of Physiology and Pathophysiology, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm. 843 JBRC/715 McDermot Avenue, Winnipeg, MB, R3E 3P4, Canada
| | - Suresh Mishra
- Department of Physiology and Pathophysiology, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm. 843 JBRC/715 McDermot Avenue, Winnipeg, MB, R3E 3P4, Canada. .,Department of Internal Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
29
|
O-GlcNAcylation on Rab3A attenuates its effects on mitochondrial oxidative phosphorylation and metastasis in hepatocellular carcinoma. Cell Death Dis 2018; 9:970. [PMID: 30237463 PMCID: PMC6148238 DOI: 10.1038/s41419-018-0961-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/07/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022]
Abstract
Rab3A is a small Ras-like GTPase critical for membrane traffic. Although the functions of Rab3A have been reported in several cancers, the roles of Rab3A in hepatocellular carcinoma (HCC) have never been determined. To investigate the potential roles of Rab3A in HCC progression, we first determined Rab3A levels in HCC tissues and observed upregulated mRNA and protein levels of Rab3A in most tumor tissues. However, in vitro data showed that decreasing Rab3A in most HCC cell lines conferred no significant effects and overexpressing Rab3A in PLC/PRF/5 cells even inhibited migration and invasion. Meanwhile, the upregulation of Rab3A in HCC patients did not correlate with metastasis or overall survival of HCC patients. These contradict data suggested that Rab3A might act as metastatic suppressor and its effects might be attenuated in most HCC cells. Further experiments revealed that O-GlcNAcylation on Rab3A was key for attenuating Rab3A-mediated effects by regulating its GTP-binding activity, and verified the effects of Rab3A and its aberrant O-GlcNAcylation on HCC metastasis in vitro and in vivo. We also found that Rab3A and its O-GlcNAcylation had opposite roles in mitochondria oxidative phosphorylation (mtOXPHOS), and their functions on HCC metastasis were partially depended on their effects on metabolic reprogramming.
Collapse
|
30
|
Zhao L, Shah JA, Cai Y, Jin J. ' O-GlcNAc Code' Mediated Biological Functions of Downstream Proteins. Molecules 2018; 23:molecules23081967. [PMID: 30082668 PMCID: PMC6222556 DOI: 10.3390/molecules23081967] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 07/31/2018] [Accepted: 08/04/2018] [Indexed: 12/18/2022] Open
Abstract
As one of the post-translational modifications, O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) often occurs on serine (Ser) and threonine (Thr) residues of specific substrate cellular proteins via the addition of O-GlcNAc group by O-GlcNAc transferase (OGT). Maintenance of normal intracellular levels of O-GlcNAcylation is controlled by OGT and glycoside hydrolase O-GlcNAcase (OGA). Unbalanced O-GlcNAcylation levels have been involved in many diseases, including diabetes, cancer, and neurodegenerative disease. Recent research data reveal that O-GlcNAcylation at histones or non-histone proteins may provide recognition platforms for subsequent protein recruitment and further initiate intracellular biological processes. Here, we review the current understanding of the 'O-GlcNAc code' mediated intracellular biological functions of downstream proteins.
Collapse
Affiliation(s)
- Linhong Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Junaid Ali Shah
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun 130012, China.
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, Jilin University, Changchun 130012, China.
| | - Jingji Jin
- School of Life Sciences, Jilin University, Changchun 130012, China.
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, Jilin University, Changchun 130012, China.
| |
Collapse
|
31
|
O-GlcNAc in cancer: An Oncometabolism-fueled vicious cycle. J Bioenerg Biomembr 2018; 50:155-173. [PMID: 29594839 DOI: 10.1007/s10863-018-9751-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
Cancer cells exhibit unregulated growth, altered metabolism, enhanced metastatic potential and altered cell surface glycans. Fueled by oncometabolism and elevated uptake of glucose and glutamine, the hexosamine biosynthetic pathway (HBP) sustains glycosylation in the endomembrane system. In addition, the elevated pools of UDP-GlcNAc drives the O-GlcNAc modification of key targets in the cytoplasm, nucleus and mitochondrion. These targets include transcription factors, kinases, key cytoplasmic enzymes of intermediary metabolism, and electron transport chain complexes. O-GlcNAcylation can thereby alter epigenetics, transcription, signaling, proteostasis, and bioenergetics, key 'hallmarks of cancer'. In this review, we summarize accumulating evidence that many cancer hallmarks are linked to dysregulation of O-GlcNAc cycling on cancer-relevant targets. We argue that onconutrient and oncometabolite-fueled elevation increases HBP flux and triggers O-GlcNAcylation of key regulatory enzymes in glycolysis, Kreb's cycle, pentose-phosphate pathway, and the HBP itself. The resulting rerouting of glucose metabolites leads to elevated O-GlcNAcylation of oncogenes and tumor suppressors further escalating elevation in HBP flux creating a 'vicious cycle'. Downstream, elevated O-GlcNAcylation alters DNA repair and cellular stress pathways which influence oncogenesis. The elevated steady-state levels of O-GlcNAcylated targets found in many cancers may also provide these cells with a selective advantage for sustained growth, enhanced metastatic potential, and immune evasion in the tumor microenvironment.
Collapse
|
32
|
Liu Y, Lu Z, Shi Y, Sun F. AMOT is required for YAP function in high glucose induced liver malignancy. Biochem Biophys Res Commun 2018; 495:1555-1561. [DOI: 10.1016/j.bbrc.2017.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/02/2017] [Indexed: 12/25/2022]
|
33
|
Potential coordination role between O-GlcNAcylation and epigenetics. Protein Cell 2017; 8:713-723. [PMID: 28488246 PMCID: PMC5636747 DOI: 10.1007/s13238-017-0416-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/20/2017] [Indexed: 11/25/2022] Open
Abstract
Dynamic changes of the post-translational O-GlcNAc modification (O-GlcNAcylation) are controlled by O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) and the glycoside hydrolase O-GlcNAcase (OGA) in cells. O-GlcNAcylation often occurs on serine (Ser) and threonine (Thr) residues of the specific substrate proteins via the addition of O-GlcNAc group by OGT. It has been known that O-GlcNAcylation is not only involved in many fundamental cellular processes, but also plays an important role in cancer development through various mechanisms. Recently, accumulating data reveal that O-GlcNAcylation at histones or non-histone proteins can lead to the start of the subsequent biological processes, suggesting that O-GlcNAcylation as ‘protein code’ or ‘histone code’ may provide recognition platforms or executive instructions for subsequent recruitment of proteins to carry out the specific functions. In this review, we summarize the interaction of O-GlcNAcylation and epigenetic changes, introduce recent research findings that link crosstalk between O-GlcNAcylation and epigenetic changes, and speculate on the potential coordination role of O-GlcNAcylation with epigenetic changes in intracellular biological processes.
Collapse
|
34
|
O-GlcNAcylation and chromatin remodeling in mammals: an up-to-date overview. Biochem Soc Trans 2017; 45:323-338. [PMID: 28408473 DOI: 10.1042/bst20160388] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/30/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
Abstract
Post-translational modifications of histones and the dynamic DNA methylation cycle are finely regulated by a myriad of chromatin-binding factors and chromatin-modifying enzymes. Epigenetic modifications ensure local changes in the architecture of chromatin, thus controlling in fine the accessibility of the machinery of transcription, replication or DNA repair to the chromatin. Over the past decade, the nutrient-sensor enzyme O-GlcNAc transferase (OGT) has emerged as a modulator of chromatin remodeling. In mammals, OGT acts either directly through dynamic and reversible O-GlcNAcylation of histones and chromatin effectors, or in an indirect manner through its recruitment into chromatin-bound multiprotein complexes. In particular, there is an increasing amount of evidence of a cross-talk between OGT and the DNA dioxygenase ten-eleven translocation proteins that catalyze active DNA demethylation. Conversely, the stability of OGT itself can be controlled by the histone lysine-specific demethylase 2 (LSD2). Finally, a few studies have explored the role of O-GlcNAcase (OGA) in chromatin remodeling. In this review, we summarize the recent findings on the link between OGT, OGA and chromatin regulators in mammalian cellular models, and discuss their relevance in physiological and pathological conditions.
Collapse
|
35
|
Wahid B, Ali A, Rafique S, Idrees M. New Insights into the Epigenetics of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1609575. [PMID: 28401148 PMCID: PMC5376429 DOI: 10.1155/2017/1609575] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
Hepatocellular Carcinoma (HCC) is one of the most predominant malignancies with high fatality rate. This deadly cancer is rising at an alarming rate because it is quite resistant to radio- and chemotherapy. Different epigenetic mechanisms such as histone modifications, DNA methylation, chromatin remodeling, and expression of noncoding RNAs drive the cell proliferation, invasion, metastasis, initiation, progression, and development of HCC. These epigenetic alterations because of potential reversibility open way towards the development of biomarkers and therapeutics. The contribution of these epigenetic changes to HCC development has not been thoroughly explored yet. Further research on HCC epigenetics is necessary to better understand novel molecular-targeted HCC treatment and prevention. This review highlights latest research progress and current updates regarding epigenetics of HCC, biomarker discovery, and future preventive and therapeutic strategies to combat the increasing risk of HCC.
Collapse
Affiliation(s)
- Braira Wahid
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Amjad Ali
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Shazia Rafique
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
- Hazara University, Mansehra, Pakistan
| |
Collapse
|
36
|
Yao B, Xu Y, Wang J, Qiao Y, Zhang Y, Zhang X, Chen Y, Wu Q, Zhao Y, Zhu G, Sun F, Li Z, Yuan H. Reciprocal regulation between O-GlcNAcylation and tribbles pseudokinase 2 (TRIB2) maintains transformative phenotypes in liver cancer cells. Cell Signal 2016; 28:1703-12. [DOI: 10.1016/j.cellsig.2016.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/17/2016] [Accepted: 08/07/2016] [Indexed: 02/07/2023]
|
37
|
Lee A, Miller D, Henry R, Paruchuri VDP, O'Meally RN, Boronina T, Cole RN, Zachara NE. Combined Antibody/Lectin Enrichment Identifies Extensive Changes in the O-GlcNAc Sub-proteome upon Oxidative Stress. J Proteome Res 2016; 15:4318-4336. [PMID: 27669760 DOI: 10.1021/acs.jproteome.6b00369] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
O-Linked N-acetyl-β-d-glucosamine (O-GlcNAc) is a dynamic post-translational modification that modifies and regulates over 3000 nuclear, cytoplasmic, and mitochondrial proteins. Upon exposure to stress and injury, cells and tissues increase the O-GlcNAc modification, or O-GlcNAcylation, of numerous proteins promoting the cellular stress response and thus survival. The aim of this study was to identify proteins that are differentially O-GlcNAcylated upon acute oxidative stress (H2O2) to provide insight into the mechanisms by which O-GlcNAc promotes survival. We achieved this goal by employing Stable Isotope Labeling of Amino Acids in Cell Culture (SILAC) and a novel "G5-lectibody" immunoprecipitation strategy that combines four O-GlcNAc-specific antibodies (CTD110.6, RL2, HGAC39, and HGAC85) and the lectin WGA. Using the G5-lectibody column in combination with basic reversed phase chromatography and C18 RPLC-MS/MS, 990 proteins were identified and quantified. Hundreds of proteins that were identified demonstrated increased (>250) or decreased (>110) association with the G5-lectibody column upon oxidative stress, of which we validated the O-GlcNAcylation status of 24 proteins. Analysis of proteins with altered glycosylation suggests that stress-induced changes in O-GlcNAcylation cluster into pathways known to regulate the cell's response to injury and include protein folding, transcriptional regulation, epigenetics, and proteins involved in RNA biogenesis. Together, these data suggest that stress-induced O-GlcNAcylation regulates numerous and diverse cellular pathways to promote cell and tissue survival.
Collapse
Affiliation(s)
- Albert Lee
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Devin Miller
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Roger Henry
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Venkata D P Paruchuri
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Robert N O'Meally
- Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205-2185, United States
| | - Tatiana Boronina
- Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205-2185, United States
| | - Robert N Cole
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States.,Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205-2185, United States
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| |
Collapse
|