1
|
Zhang C, Wang Y, Yu Y, Pang Y, Xiao X, Hao L. Overexpression of ST8Sia1 inhibits tumor progression by TGF-β1 signaling in rectal adenocarcinoma and promotes the tumoricidal effects of CD8 + T cells by granzyme B and perforin. Ann Med 2025; 57:2439539. [PMID: 39656552 PMCID: PMC11633436 DOI: 10.1080/07853890.2024.2439539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/23/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Rectal adenocarcinoma (READ) involves the dysregulated expression of alpha 2,8-Sialyltransferase1 (ST8Sia1) although its role during READ's progression is unclear. METHODS The mRNA level of ST8Sia1 was analyzed based on The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Tumor Immune Estimation Resource (TIMER) 2.0. Furthermore, the prognostic and significance of ST8Sia1 in READ was assessed through Kaplan-Meier curve, univariate, multivariate Cox regression, and receiver operating characteristic (ROC) methods. The role of ST8Sia1 in the READ immune microenvironment was explored using ESTIMATE analysis and TIMER databases. Furthermore, the expression of ST8Sia1 in tissues was analyzed using real-time quantitative polymerase chain reaction (RT-qPCR), western blotting (WB), and immunohistochemistry (IHC). Perforin and Granzyme B secretion by CD8+ T cells, as well as tumor cell apoptosis, were detected after co-culturing CD8+ T cells with READ tumor cells and ST8Sia1-overexpression (ST8Sia1-OE) tumor cells. Furthermore, we examined the interaction between ST8Sia1 and TGF-β1 in READ cells. RESULTS ST8Sia1 exhibited excellent diagnostic capability for READ, with positive correlations to immune response and negative correlations to tumor purity. Increased levels of perforin and Granzyme B from CD8+ T cells were observed in vitro, enhancing tumor cell apoptosis. ST8Sia1 interacts with TGF-β1, mediating its inhibitory effects on READ development. CONCLUSIONS ST8Sia1 is a potential diagnostic biomarker and therapeutic target for READ, enhancing CD8+ T cell function and possibly improving patient outcomes through cellular immunotherapy.
Collapse
Affiliation(s)
- Chang Zhang
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province, China
| | - Yeli Wang
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province, China
| | - Yao Yu
- Department of General Pediatric Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province, China
| | - Yanchao Pang
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province, China
| | - Xiao Xiao
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province, China
| | - Leilei Hao
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province, China
| |
Collapse
|
2
|
Schildhauer P, Selke P, Staege MS, Harder A, Scheller C, Strauss C, Horstkorte R, Scheer M, Leisz S. Glycation Interferes with the Expression of Sialyltransferases and Leads to Increased Polysialylation in Glioblastoma Cells. Cells 2023; 12:2758. [PMID: 38067186 PMCID: PMC10706364 DOI: 10.3390/cells12232758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor that often utilizes aerobic glycolysis for energy production (Warburg effect), resulting in increased methylglyoxal (MGO) production. MGO, a reactive dicarbonyl compound, causes protein alterations and cellular dysfunction via glycation. In this study, we investigated the effect of glycation on sialylation, a common post-translational modification implicated in cancer. Our experiments using glioma cell lines, human astrocytes (hA), and primary glioma samples revealed different gene expressions of sialyltransferases among cells, highlighting the complexity of the system. Glycation has a differential effect on sialyltransferase expression, upregulating ST8SIA4 in the LN229 and U251 cell lines and decreasing the expression in normal hA. Subsequently, polysialylation increased in the LN229 and U251 cell lines and decreased in hA. This increase in polysialylation could lead to a more aggressive phenotype due to its involvement in cancer hallmark processes such as immune evasion, resistance to apoptosis, and enhancing invasion. Our findings provide insights into the mechanisms underlying GBM aggressiveness and suggest that targeting glycation and sialylation could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Paola Schildhauer
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (P.S.); (M.S.)
| | - Philipp Selke
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Martin S. Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Anja Harder
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- CURE-NF Research Group, Medical Faculty, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Christian Scheller
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (P.S.); (M.S.)
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (P.S.); (M.S.)
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Maximilian Scheer
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (P.S.); (M.S.)
| | - Sandra Leisz
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (P.S.); (M.S.)
| |
Collapse
|
3
|
Liu R, Cao X, Liang Y, Li X, Jin Q, Li Y, Du H, Zao X, Ye Y. Downregulation of ST6GAL1 Promotes Liver Inflammation and Predicts Adverse Prognosis in Hepatocellular Carcinoma. J Inflamm Res 2022; 15:5801-5814. [PMID: 36238765 PMCID: PMC9553312 DOI: 10.2147/jir.s385491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/15/2022] [Indexed: 01/24/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most malignant tumors worldwide. The ST6 β-galactoside α-2, 6-sialyltransferase 1 (ST6GAL1) has been found aberrantly expressed in a variety of cancers including HCC, but its function and mechanism in regulating liver inflammation remain to be investigated. This study aimed to explore the role of ST6GAL1 in HCC. The data of ST6GAL1 expression, prognosis, and clinical parameters were collected and further analyzed from the public databases including The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA), and Gene Expression Omnibus (GEO). The HCC rat model was constructed by intraperitoneal injection of diethylnitrosamine. The mRNA and protein expression levels of ST6GAL1 in rat liver tissues were detected by real-time quantitative polymerase chain reaction, capillary electrophoresis, and Western blot. Results The ST6GAL1 mRNA and protein expression levels were both lower in HCC tissues compared with normal liver tissues in the public databases and HCC rat model. The survival analysis showed that upregulation of ST6GAL1 was an independent prognostic factor for good prognosis in HCC patients. The ST6GAL1 mRNA expression showed a negative correlation with ST6GAL1 methylation levels. Enrichment analysis showed that ST6GAL1 expression was most associated with metabolic, cancer, estrogen, axon guidance, cAMP, and PI3K-AKT signaling pathways. The ST6GAL1 mRNA expression negatively correlated with liver inflammation status and proportion of NK CD56bright, NK CD56dim, pDC, and CD8+ T cells in liver. Conclusion Compared with normal tissues, ST6GAL1 was lower expressed in HCC tumor tissues, and the downregulation of ST6GAL1 was associated with a poor prognosis in HCC patients. ST6GAL1 could further affect the infiltration of immune cells to exert anti-inflammation function in liver. Our study indicated that ST6GAL1 could be a potential biomarker and therapeutic target to assess the prognosis and regulate the immune cells infiltration level of HCC.
Collapse
Affiliation(s)
- Ruijia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China,Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China,Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yijun Liang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China,Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xiaobin Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qian Jin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Ying Li
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Hongbo Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China,Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yong’an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China,Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China,Correspondence: Yong’an Ye; Xiaobin Zao, Email ;
| |
Collapse
|
4
|
GC S, Bellis SL, Hjelmeland AB. ST6Gal1: Oncogenic signaling pathways and targets. Front Mol Biosci 2022; 9:962908. [PMID: 36106023 PMCID: PMC9465715 DOI: 10.3389/fmolb.2022.962908] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
The Golgi-sialyltransferase ST6Gal1 (βgalactosidase α2,6 sialyltransferase 1), adds the negatively charged sugar, sialic acid, to the terminal galactose of N-glycosylated proteins. Upregulation of ST6Gal1 is observed in many malignancies, and a large body of research has determined that ST6Gal1-mediated α2,6 sialylation impacts cancer hallmarks. ST6Gal1 affects oncogenic behaviors including sustained proliferation, enhanced self-renewal, epithelial-to-mesenchymal transition, invasion, and chemoresistance. However, there are relatively few ST6GaL1 related signaling pathways that are well-established to mediate these biologies: greater delineation of specific targets and signaling mechanisms that are orchestrated by ST6Gal1 is needed. The aim of this review is to provide a summary of our current understanding of select oncogenic signaling pathways and targets affected by ST6Gal1.
Collapse
Affiliation(s)
| | | | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Hypermethylation-Mediated Silencing of CIDEA, MAL and PCDH17 Tumour Suppressor Genes in Canine DLBCL: From Multi-Omics Analyses to Mechanistic Studies. Int J Mol Sci 2022; 23:ijms23074021. [PMID: 35409379 PMCID: PMC9000013 DOI: 10.3390/ijms23074021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
Gene expression is controlled by epigenetic deregulation, a hallmark of cancer. The DNA methylome of canine diffuse large B-cell lymphoma (cDLBCL), the most frequent malignancy of B-lymphocytes in dog, has recently been investigated, suggesting that aberrant hypermethylation of CpG loci is associated with gene silencing. Here, we used a multi-omics approach (DNA methylome, transcriptome and copy number variations) combined with functional in vitro assays, to identify putative tumour suppressor genes subjected to DNA methylation in cDLBCL. Using four cDLBCL primary cell cultures and CLBL-1 cells, we found that CiDEA, MAL and PCDH17, which were significantly suppressed in DLBCL samples, were hypermethylated and also responsive (at the DNA, mRNA and protein level) to pharmacological unmasking with hypomethylating drugs and histone deacetylase inhibitors. The regulatory mechanism underneath the methylation-dependent inhibition of those target genes expression was then investigated through luciferase and in vitro methylation assays. In the most responsive CpG-rich regions, an in silico analysis allowed the prediction of putative transcription factor binding sites influenced by DNA methylation. Interestingly, regulatory elements for AP2, MZF1, NF-kB, PAX5 and SP1 were commonly identified in all three genes. This study provides a foundation for characterisation and experimental validation of novel epigenetically-dysregulated pathways in cDLBCL.
Collapse
|
6
|
Zhao M, Li X, Chen Y, Wang S. MD2 Is a Potential Biomarker Associated with Immune Cell Infiltration in Gliomas. Front Oncol 2022; 12:854598. [PMID: 35372062 PMCID: PMC8968038 DOI: 10.3389/fonc.2022.854598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Glioma is the most common primary malignant tumor in the central nervous system. Myeloid differentiation protein 2 (MD2) acts as a coreceptor of toll-like receptor 4 (TLR4) to mediate innate immune response. However, the actual roles of MD2 in the regulation of progression and immune cell infiltration in gliomas remain largely unclear. This study aims to explore whether MD2 could be an independent prognostic factor through the mediation of immune cell infiltration in gliomas. METHODS The mRNA expression and DNA methylation differential analyses of MD2 were performed using CGGA, TCGA and Rembrandt databases and survival analyses were performed using Kaplan-Meier plotter. Univariate and multivariate Cox regression was applied to analyze the prognostic value of MD2 and nomograms were constructed to evaluate the clinical value of MD2. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized to analyze MD2-related signal pathways. Furthermore, correlations between MD2 and immune cell infiltration were calculated by TIMER and CIBERSOPT. The correlation between MD2 expression and the infiltrations of macrophages and neutrophils was experimentally verified by the knockdown of MD2 expression using small interfering RNA (siRNA) in glioma cells. RESULTS We found that MD2 was overexpressed and associated with a poor prognosis in gliomas. Meanwhile, higher expression of MD2 could be a result of lower DNA methylation of MD2 gene in gliomas. In addition, univariate and multivariate Cox regression analysis indicated that MD2 could be an independent prognostic factor for gliomas. Further functional enrichment analysis revealed that the functions of MD2 were closely related to immune responses. Moreover, the expression level of MD2 was strongly correlated with the infiltration and polarization of pro-tumor phenotype of tumor-associated macrophages and tumor-associated neutrophils in gliomas. CONCLUSIONS These findings have provided strong evidence that MD2 could be served as a valuable immune-related biomarker to diagnose and predict the progression of gliomas.
Collapse
Affiliation(s)
| | | | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Shuzhen Wang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Zhao M, Li X, Chen Y, Wang S. MD2 Is a Potential Biomarker Associated with Immune Cell Infiltration in Gliomas. Front Oncol 2022; 12:854598. [PMID: 35372062 PMCID: PMC8968038 DOI: 10.3389/fonc.2022.854598,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/23/2022] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Glioma is the most common primary malignant tumor in the central nervous system. Myeloid differentiation protein 2 (MD2) acts as a coreceptor of toll-like receptor 4 (TLR4) to mediate innate immune response. However, the actual roles of MD2 in the regulation of progression and immune cell infiltration in gliomas remain largely unclear. This study aims to explore whether MD2 could be an independent prognostic factor through the mediation of immune cell infiltration in gliomas. METHODS The mRNA expression and DNA methylation differential analyses of MD2 were performed using CGGA, TCGA and Rembrandt databases and survival analyses were performed using Kaplan-Meier plotter. Univariate and multivariate Cox regression was applied to analyze the prognostic value of MD2 and nomograms were constructed to evaluate the clinical value of MD2. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized to analyze MD2-related signal pathways. Furthermore, correlations between MD2 and immune cell infiltration were calculated by TIMER and CIBERSOPT. The correlation between MD2 expression and the infiltrations of macrophages and neutrophils was experimentally verified by the knockdown of MD2 expression using small interfering RNA (siRNA) in glioma cells. RESULTS We found that MD2 was overexpressed and associated with a poor prognosis in gliomas. Meanwhile, higher expression of MD2 could be a result of lower DNA methylation of MD2 gene in gliomas. In addition, univariate and multivariate Cox regression analysis indicated that MD2 could be an independent prognostic factor for gliomas. Further functional enrichment analysis revealed that the functions of MD2 were closely related to immune responses. Moreover, the expression level of MD2 was strongly correlated with the infiltration and polarization of pro-tumor phenotype of tumor-associated macrophages and tumor-associated neutrophils in gliomas. CONCLUSIONS These findings have provided strong evidence that MD2 could be served as a valuable immune-related biomarker to diagnose and predict the progression of gliomas.
Collapse
Affiliation(s)
| | | | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Shuzhen Wang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
Aberrant Sialylation in Cancer: Biomarker and Potential Target for Therapeutic Intervention? Cancers (Basel) 2021; 13:cancers13092014. [PMID: 33921986 PMCID: PMC8122436 DOI: 10.3390/cancers13092014] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Sialylation is a post-translational modification that consists in the addition of sialic acid to growing glycan chains on glycoproteins and glycolipids. Aberrant sialylation is an established hallmark of several types of cancer, including breast, ovarian, pancreatic, prostate, colorectal and lung cancers, melanoma and hepatocellular carcinoma. Hypersialylation can be the effect of increased activity of sialyltransferases and results in an excess of negatively charged sialic acid on the surface of cancer cells. Sialic acid accumulation contributes to tumor progression by several paths, including stimulation of tumor invasion and migration, and enhancing immune evasion and tumor cell survival. In this review we explore the mechanisms by which sialyltransferases promote cancer progression. In addition, we provide insights into the possible use of sialyltransferases as biomarkers for cancer and summarize findings on the development of sialyltransferase inhibitors as potential anti-cancer treatments. Abstract Sialylation is an integral part of cellular function, governing many biological processes including cellular recognition, adhesion, molecular trafficking, signal transduction and endocytosis. Sialylation is controlled by the levels and the activities of sialyltransferases on glycoproteins and lipids. Altered gene expression of these enzymes in cancer yields to cancer-specific alterations of glycoprotein sialylation. Mounting evidence indicate that hypersialylation is closely associated with cancer progression and metastatic spread, and can be of prognostic significance in human cancer. Aberrant sialylation is not only a result of cancer, but also a driver of malignant phenotype, directly impacting key processes such as tumor cell dissociation and invasion, cell-cell and cell-matrix interactions, angiogenesis, resistance to apoptosis, and evasion of immune destruction. In this review we provide insights on the impact of sialylation in tumor progression, and outline the possible application of sialyltransferases as cancer biomarkers. We also summarize the most promising findings on the development of sialyltransferase inhibitors as potential anti-cancer treatments.
Collapse
|
9
|
Wang T, Sun Y, Xiong Z, Wu J, Ding X, Guo X, Shao Y. Association of ST6GAL1 and CYP19A1 polymorphisms in the 3'-UTR with astrocytoma risk and prognosis in a Chinese Han population. BMC Cancer 2021; 21:391. [PMID: 33836687 PMCID: PMC8034180 DOI: 10.1186/s12885-021-08110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/28/2021] [Indexed: 11/16/2022] Open
Abstract
Background Astrocytoma is a common type of central nervous system tumor. In this study, we investigated the correlation between ST6GAL1 and CYP19A1 polymorphisms and the risk and prognosis of astrocytoma. Methods A total of 365 astrocytoma patients and 379 healthy controls were genotyped using the Agena MassARRAY system. The correlation between ST6GAL1 and CYP19A1 variants and astrocytoma risk was calculated using logistic regression. The survival rate of patients with astrocytoma was analyzed to evaluate prognosis. Results We found that the ST6GAL1-rs2239611 significantly decreased the risk of astrocytoma in the codominant model (p = 0.044) and dominant model (p = 0.049). In stratified analyses, CYP19A1-rs2255192 might be associated with a higher risk of astrocytoma among the low-grade subgroup under recessive (p = 0.034) and additive (p = 0.030) models. However, CYP19A1-rs4646 had a risk-decreasing effect on the high-grade subgroup in the codominant model (p = 0.044). The results of Cox regression analysis showed that the CYP19A1-rs2239611 and -rs1042757 polymorphisms were significantly correlated with the prognosis of astrocytoma. Conclusion Our results suggest that ST6GAL1 and CYP19A1 genes may be a potential biomarker of genetic susceptibility and prognosis to astrocytoma in the Chinese Han population. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08110-1.
Collapse
Affiliation(s)
- Tuo Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Zichao Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Jiamin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Xiaoying Ding
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoye Guo
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuan Shao
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 YanTa West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
10
|
Cuello HA, Ferreira GM, Gulino CA, Toledo AG, Segatori VI, Gabri MR. Terminally sialylated and fucosylated complex N-glycans are involved in the malignant behavior of high-grade glioma. Oncotarget 2020; 11:4822-4835. [PMID: 33447350 PMCID: PMC7779250 DOI: 10.18632/oncotarget.27850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022] Open
Abstract
Gliomas are the most common intracranial primary tumors, for which very few therapeutic options are available. The most malignant subtype is the glioblastoma, a disease associated with a 5-year survival rate lower than 5%. Given that research in glycobiology continues highlighting the role of glycans in tumor cell biology, it offers an interesting niche for the search of new therapeutic targets. In this study, we characterized aberrant glycosylation and its impact on cell biology over a broad panel of high- and low-grade glioma cell lines. Results show high expression of terminal Lewis glycans, mainly SLex, and overexpression of sialyl- and fucosyltransferases involved in their biosynthesis in high-grade glioma cell lines. Moreover, we report an association of complex multi-antennary N-glycans presenting β1,6-GlcNAc branches with the high-grade glioma cells, which also overexpressed the gene responsible for these assemblies, MGAT5. In addition, downmodulation of N-glycosylation by treatment with the inhibitors Tunicamycin/Swainsonine or MGAT5 silencing decreased SLex expression, adhesion and migration in high-grade glioma cells. In contrast, no significant changes in these cell capacities were observed in low-grade glioma after treatment with the N-glycosylation inhibitors. Furthermore, inhibition of histone deacetylases by Trichostatin A provoked an increase in the expression of SLex and its biosynthetic related glycosyltransferases in low-grade glioma cells. Our results describe that aggressive glioma cells show high expression of Lewis glycans anchored to complex multi-antennary N-glycans. This glycophenotype plays a key role in malignant cell behavior and is regulated by histone acetylation dependent mechanisms.
Collapse
Affiliation(s)
- Hector A Cuello
- Center for Molecular and Translational Oncology, Quilmes National University, Bernal, Buenos Aires Province, Argentina
| | - Gretel M Ferreira
- Center for Molecular and Translational Oncology, Quilmes National University, Bernal, Buenos Aires Province, Argentina
| | - Cynthia A Gulino
- Center for Molecular and Translational Oncology, Quilmes National University, Bernal, Buenos Aires Province, Argentina
| | - Alejandro Gomez Toledo
- Infection Medicine (BMC), Faculty of Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Valeria I Segatori
- Center for Molecular and Translational Oncology, Quilmes National University, Bernal, Buenos Aires Province, Argentina
| | - Mariano R Gabri
- Center for Molecular and Translational Oncology, Quilmes National University, Bernal, Buenos Aires Province, Argentina
| |
Collapse
|
11
|
Dorsett KA, Marciel MP, Hwang J, Ankenbauer KE, Bhalerao N, Bellis SL. Regulation of ST6GAL1 sialyltransferase expression in cancer cells. Glycobiology 2020; 31:530-539. [PMID: 33320246 DOI: 10.1093/glycob/cwaa110] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/07/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
The ST6GAL1 sialyltransferase, which adds α2-6 linked sialic acids to N-glycosylated proteins, is overexpressed in a wide range of human malignancies. Recent studies have established the importance of ST6GAL1 in promoting tumor cell behaviors such as invasion, resistance to cell stress and chemoresistance. Furthermore, ST6GAL1 activity has been implicated in imparting cancer stem cell characteristics. However, despite the burgeoning interest in the role of ST6GAL1 in the phenotypic features of tumor cells, insufficient attention has been paid to the molecular mechanisms responsible for ST6GAL1 upregulation during neoplastic transformation. Evidence suggests that these mechanisms are multifactorial, encompassing genetic, epigenetic, transcriptional and posttranslational regulation. The purpose of this review is to summarize current knowledge regarding the molecular events that drive enriched ST6GAL1 expression in cancer cells.
Collapse
Affiliation(s)
- Kaitlyn A Dorsett
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael P Marciel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katherine E Ankenbauer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nikita Bhalerao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
Wei B, Wang R, Wang L, Du C. Prognostic factor identification by analysis of the gene expression and DNA methylation data in glioma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2020; 17:3909-3924. [PMID: 32987560 DOI: 10.3934/mbe.2020217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Objective: This study was aimed to identify prognostic factors in glioma by analysis of the gene expression and DNA methylation data. Methods: The RNAseq and DNA methylation data associated with glioma were downloaded from GEO and TCGA databases to analyze the differentially expressed genes (DEGs) and methylated genes between tumor and normal tissues. Function and pathway analyses, co-expression network and survival analysis were performed based on these DEGs. The intersection genes of DEGs and differentially methylated genes were obtained followed by function analysis. Results: Total 2190 DEGs were identified between tumor and normal tissues, which were significantly enriched in neuron differentiation associated functions, as well as ribosome pathway. There were 6186 methylation sites (2834 up-regulated and 3352 down-regulated) with significant differences in tumor vs. normal. In the constructed co-expression network, DPP6, MAPK10 and RPL3 were hub genes. Survival analysis of 20 DEGs obtained 18 prognostic genes, among which 9 were differentially methylated, such as LHFPL tetraspan subfamily member 3 (LHFPL3), cadherin 20 (CDH20), complexin 2 (CPLX2), and tenascin R (TNR). The intersection of DEGs and differentially methylated genes (632 genes) were significantly enriched in functions of neuron differentiation. Conclusion: DPP6, MAPK10 and RPL3 may play important roles in tumorigenesis of glioma. Additionally, methylation of LHFPL3, CDH20, CPLX2, and TNR may serve as prognostic factors of glioma.
Collapse
Affiliation(s)
- Bo Wei
- Department of Neurosurgery, The Third Hospital of Jilin University, Changchun 130033, China
| | - Rui Wang
- Departments of Radiology, The Third Hospital of Jilin University, Changchun 130033, China
| | - Le Wang
- Departments of Ophthalmology, The Third Hospital of Jilin University, Changchun 130033, China
| | - Chao Du
- Department of Neurosurgery, The Third Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
13
|
Bauer TJ, Gombocz E, Wehland M, Bauer J, Infanger M, Grimm D. Insight in Adhesion Protein Sialylation and Microgravity Dependent Cell Adhesion-An Omics Network Approach. Int J Mol Sci 2020; 21:ijms21051749. [PMID: 32143440 PMCID: PMC7084616 DOI: 10.3390/ijms21051749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022] Open
Abstract
The adhesion behavior of human tissue cells changes in vitro, when gravity forces affecting these cells are modified. To understand the mechanisms underlying these changes, proteins involved in cell-cell or cell-extracellular matrix adhesion, their expression, accumulation, localization, and posttranslational modification (PTM) regarding changes during exposure to microgravity were investigated. As the sialylation of adhesion proteins is influencing cell adhesion on Earth in vitro and in vivo, we analyzed the sialylation of cell adhesion molecules detected by omics studies on cells, which change their adhesion behavior when exposed to microgravity. Using a knowledge graph created from experimental omics data and semantic searches across several reference databases, we studied the sialylation of adhesion proteins glycosylated at their extracellular domains with regards to its sensitivity to microgravity. This way, experimental omics data networked with the current knowledge about the binding of sialic acids to cell adhesion proteins, its regulation, and interactions in between those proteins provided insights into the mechanisms behind our experimental findings, suggesting that balancing the sialylation against the de-sialylation of the terminal ends of the adhesion proteins' glycans influences their binding activity. This sheds light on the transition from two- to three-dimensional growth observed in microgravity, mirroring cell migration and cancer metastasis in vivo.
Collapse
Affiliation(s)
- Thomas J. Bauer
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany; (T.J.B.); (M.W.); (M.I.); (D.G.)
| | - Erich Gombocz
- Melissa Informatics, 2550 Ninth Street, Suite 114, Berkeley, CA 94710, USA;
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany; (T.J.B.); (M.W.); (M.I.); (D.G.)
| | - Johann Bauer
- Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
- Correspondence: ; Tel.: +49-89-85783803
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany; (T.J.B.); (M.W.); (M.I.); (D.G.)
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany; (T.J.B.); (M.W.); (M.I.); (D.G.)
- Department of Biomedicine, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Pfälzer Platz, 39106 Magdeburg, Germany
| |
Collapse
|
14
|
Shi Y, Xu L, Feng Q, Li A, Jia J, Xu Y, Yang D, Zhang Y, Zhang X, Zhao H, Wang J, He Y, Zheng H. Allele-specific methylation contributed by CpG-SNP is associated with regulation of ALOX5AP gene expression in ischemic stroke. Neurol Sci 2018; 39:1717-1724. [PMID: 30003372 DOI: 10.1007/s10072-018-3489-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023]
Abstract
Previous studies have shown that CpG-SNPs might have influence on gene function via allele-specific DNA methylation (ASM). However, association study between DNA methylation and the promoter CpG-SNPs in ALOX5AP gene with IS has not been reported. The present study aims to explore the relationship among CpG-SNPs, methylation levels, and messenger RNA (mRNA) expression levels of ALOX5AP gene. Firstly, we made a two-stage association study to identify a potential associated CpG-SNP (rs4073259) by SNaPshot genotyping approach (P = 0.015, OR = 0.672, 95% CI 0.487-0.927; P = 0.035, OR = 0.809, 95% CI 0.664-0.985, respectively). In addition, the methylation levels of 17 CpG sites located in the promoter of ALOX5AP were tested by MethylTarget sequencing. The methylation level of GG genotype carriers is significantly higher than those with the AG and AA genotypes (P < 0.05). And the GG genotype carriers with higher DNA methylation levels have a decreased mRNA expression levels of ALOX5AP (P < 0.05). Finally, we found that the G allele with higher methylation level has got a lower transcription activity than the A allele by luciferase assay (P = 0.000).The study provided evidence that IS-associated CpG-SNP rs4073259 may affect the expression level of ALOX5AP through allele-specific methylation and consequently the phenotype of the disease.
Collapse
Affiliation(s)
- Yunshu Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Liyan Xu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qingchuan Feng
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Aifan Li
- Department of Neurology, The First People's Hospital of Zhengzhou, Zhengzhou, 450004, China
| | - Jing Jia
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yan Xu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Dongzhi Yang
- School of Life Sciences of Zhengzhou University, Zhengzhou, 450001, China
| | - Yuchao Zhang
- Department of Eugenic Genetics, The First People's Hospital of Zhengzhou, Zhengzhou, 450004, China
| | - Xuran Zhang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Huiling Zhao
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Wang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ying He
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hong Zheng
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
15
|
Epigenetic Bases of Aberrant Glycosylation in Cancer. Int J Mol Sci 2017; 18:ijms18050998. [PMID: 28481247 PMCID: PMC5454911 DOI: 10.3390/ijms18050998] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
In this review, the sugar portions of glycoproteins, glycolipids, and glycosaminoglycans constitute the glycome, and the genes involved in their biosynthesis, degradation, transport and recognition are referred to as “glycogenes“. The extreme complexity of the glycome requires the regulatory layer to be provided by the epigenetic mechanisms. Almost all types of cancers present glycosylation aberrations, giving rise to phenotypic changes and to the expression of tumor markers. In this review, we discuss how cancer-associated alterations of promoter methylation, histone methylation/acetylation, and miRNAs determine glycomic changes associated with the malignant phenotype. Usually, increased promoter methylation and miRNA expression induce glycogene silencing. However, treatment with demethylating agents sometimes results in silencing, rather than in a reactivation of glycogenes, suggesting the involvement of distant methylation-dependent regulatory elements. From a therapeutic perspective aimed at the normalization of the malignant glycome, it appears that miRNA targeting of cancer-deranged glycogenes can be a more specific and promising approach than the use of drugs, which broad target methylation/acetylation. A very specific type of glycosylation, the addition of GlcNAc to serine or threonine (O-GlcNAc), is not only regulated by epigenetic mechanisms, but is an epigenetic modifier of histones and transcription factors. Thus, glycosylation is both under the control of epigenetic mechanisms and is an integral part of the epigenetic code.
Collapse
|
16
|
Kaburagi T, Kizuka Y, Kitazume S, Taniguchi N. The Inhibitory Role of α2,6-Sialylation in Adipogenesis. J Biol Chem 2016; 292:2278-2286. [PMID: 28031460 DOI: 10.1074/jbc.m116.747667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 12/17/2016] [Indexed: 12/19/2022] Open
Abstract
Adipose tissue plays critical roles in obesity and related diseases such as diabetes and cardiovascular diseases. Previous reports suggest that glycans, the most common posttranslational modifications, are involved in obesity-related diseases, but what type of glycan regulates adipogenesis during obesity remains unclear. In this study, we first quantified the mRNA levels of 167 genes (encoding 144 glycosyltransferases and 23 related enzymes) in visceral adipose tissues (VATs) from control mice and high-fat diet (HFD)-induced obese mice. We found that a gene encoding β-galactoside α2,6-sialyltransferase-1 (St6gal1), a key enzyme responsible for the biosynthesis of α2,6-linked sialic acid in N-linked glycans, was most down-regulated in VATs from obese mice. We confirmed the reduction in α2,6-sialic acid in VATs from obese mice and differentiated adipocyte model 3T3-L1 cells. Using proteomic analysis, integrin-β1 was identified as one of the target α2,6-sialylated proteins in adipose tissues, and phosphorylation of its downstream molecule focal adhesion kinase was found to be decreased after HFD feeding. St6gal1 overexpression in differentiating 3T3-L1 cells inhibited adipogenesis with increased phosphorylation of focal adhesion kinase. Furthermore, St6gal1 knockout mice exhibited increased bodyweight and VAT weight after HFD feeding. The down-regulation of St6gal1 during adipogenesis was canceled by treatment with a DNA methyltransferase inhibitor, suggesting an involvement of epigenetic DNA methylation in St6gal1 silencing. Our findings suggest that ST6GAL1 has an inhibitory role in adipogenesis through integrin-β1 activation, providing new insights into the roles and regulation mechanisms of glycans in adipocytes during obesity.
Collapse
Affiliation(s)
- Tomoko Kaburagi
- From the Department of Health Science, Faculty of Sports and Health Sciences, Daito Bunka University, Higashi-Matsuyama, Saitama 355-8681, Japan and .,the Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yasuhiko Kizuka
- the Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Shinobu Kitazume
- the Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Naoyuki Taniguchi
- the Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|