1
|
Kaushik K, Chapman G, Prakasam R, Batool F, Saleh M, Determan J, Huettner JE, Kroll KL. Requirements for the neurodevelopmental disorder-associated gene ZNF292 in human cortical interneuron development and function. Cell Rep 2025; 44:115597. [PMID: 40257863 DOI: 10.1016/j.celrep.2025.115597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/27/2024] [Accepted: 03/31/2025] [Indexed: 04/23/2025] Open
Abstract
Pathogenic mutation of the zinc-finger transcription factor ZNF292 is a recently defined contributor to human neurodevelopmental disorders (NDDs). However, the gene's roles in cortical development and regulatory networks under its control were previously undefined. Here, human stem cell models of ZNF292 deficiency, resembling pathogenic haploinsufficiency, are used to derive cortical inhibitory neuron progenitors and neurons. ZNF292-deficient progenitors undergo precocious differentiation but subsequently exhibit compromised interneuron maturation and function. In progenitors, genome-wide occupancy and transcriptomic analyses identify direct target genes controlling neuronal differentiation and synapse formation that are upregulated upon ZNF292 deficiency. By contrast, deficiency in interneurons compromises ZNF292 genome-wide association with and causes downregulation of direct target genes promoting interneuron maturation and function, including other NDD genes. ZNF292-deficient interneurons also exhibit altered channel activities, elevated GABA responsiveness, and hallmarks of neuronal hyperactivity. Together, the results of this work define neurodevelopmental requirements for ZNF292, some of which may contribute to pathogenic ZNF292 mutation-related NDDs.
Collapse
Affiliation(s)
- Komal Kaushik
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gareth Chapman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramachandran Prakasam
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Faiza Batool
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maamoon Saleh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julianna Determan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James E Huettner
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Chaturvedi SM, Sarafinovska S, Selmanovic D, McCullough KB, Swift RG, Maloney SE, Dougherty JD. Chromosomal and gonadal sex have differing effects on social motivation in mice. Biol Sex Differ 2025; 16:13. [PMID: 39966983 PMCID: PMC11837725 DOI: 10.1186/s13293-025-00690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Sex differences in brain development are thought to lead to sex variation in social behavior. Sex differences are fundamentally driven by both gonadal hormones and sex chromosomes, yet little is known about the independent effects of each on social behavior. Further, mouse models of the genetic liability for the neurodevelopmental disorder MYT1L Syndrome have shown sex-specific deficits in social motivation. In this study, we aimed to determine if gonadal hormones or sex chromosomes primarily mediate the sex differences seen in mouse social behavior, both at baseline and in the context of Myt1l haploinsufficiency. METHODS Four-core genotypes (FCG) mice, which uncouple gonadal and chromosomal sex, were crossed with MYT1L heterozygous mice to create eight different groups with unique combinations of sex factors and MYT1L genotype. A total of 131 mice from all eight groups were assayed for activity and social behavior via the open field and social operant paradigms. Measures of social seeking and orienting were analyzed for main effects of chromosome, gonads, and their interactions with Myt1l mutation. RESULTS The FCGxMYT1L cross revealed independent effects of both gonadal and chromosomal sex on activity and social behavior. Specifically, the presence of ovarian hormones led to greater overall activity, social seeking, and social orienting regardless of MYT1L genotype. In contrast, sex chromosomes affected social behavior mainly in the MYT1L heterozygous group, with XX MYT1L mutant mice demonstrating elevated levels of social orienting and seeking compared to XY MYT1L mutant mice. CONCLUSIONS Gonadal and chromosomal sex have independent mechanisms of driving greater social motivation in females. Additionally, genes on the sex chromosomes may interact with neurodevelopmental risk genes to influence sex variation in atypical social behavior.
Collapse
Affiliation(s)
- Sneha M Chaturvedi
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Simona Sarafinovska
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Din Selmanovic
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Katherine B McCullough
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Raylynn G Swift
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, 63130, USA.
| |
Collapse
|
3
|
Zhao X, Sun Q, Shou Y, Chen W, Wang M, Qu W, Huang X, Li Y, Wang C, Gu Y, Ji C, Shu Q, Li X. A human forebrain organoid model reveals the essential function of GTF2IRD1-TTR-ERK axis for the neurodevelopmental deficits of Williams syndrome. eLife 2024; 13:RP98081. [PMID: 39671308 PMCID: PMC11643624 DOI: 10.7554/elife.98081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024] Open
Abstract
Williams syndrome (WS; OMIM#194050) is a rare disorder, which is caused by the microdeletion of one copy of 25-27 genes, and WS patients display diverse neuronal deficits. Although remarkable progresses have been achieved, the mechanisms for these distinct deficits are still largely unknown. Here, we have shown that neural progenitor cells (NPCs) in WS forebrain organoids display abnormal proliferation and differentiation capabilities, and synapse formation. Genes with altered expression are related to neuronal development and neurogenesis. Single cell RNA-seq (scRNA-seq) data analysis revealed 13 clusters in healthy control and WS organoids. WS organoids show an aberrant generation of excitatory neurons. Mechanistically, the expression of transthyretin (TTR) are remarkably decreased in WS forebrain organoids. We have found that GTF2IRD1 encoded by one WS associated gene GTF2IRD1 binds to TTR promoter regions and regulates the expression of TTR. In addition, exogenous TTR can activate ERK signaling and rescue neurogenic deficits of WS forebrain organoids. Gtf2ird1-deficient mice display similar neurodevelopmental deficits as observed in WS organoids. Collectively, our study reveals critical function of GTF2IRD1 in regulating neurodevelopment of WS forebrain organoids and mice through regulating TTR-ERK pathway.
Collapse
Affiliation(s)
- Xingsen Zhao
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
- The Institute of Translational Medicine, School of Medicine, Zhejiang UniversityHangzhouChina
- Binjiang Institute of Zhejiang UniversityHangzhouChina
| | - Qihang Sun
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
- The Institute of Translational Medicine, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Yikai Shou
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Weijun Chen
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Mengxuan Wang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
- The Institute of Translational Medicine, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Wenzheng Qu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Xiaoli Huang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Ying Li
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Chao Wang
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yan Gu
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Chai Ji
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Qiang Shu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
- The Institute of Translational Medicine, School of Medicine, Zhejiang UniversityHangzhouChina
- Binjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|
4
|
Chaturvedi SM, Sarafinovska S, Selmanovic D, McCullough KB, Swift RG, Maloney SE, Dougherty JD. Chromosomal and gonadal sex have differing effects on social motivation in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620727. [PMID: 39554131 PMCID: PMC11565840 DOI: 10.1101/2024.10.28.620727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background Sex differences in brain development are thought to lead to sex variation in social behavior. Sex differences are fundamentally driven by both gonadal (i.e., hormonal) and chromosomal sex, yet little is known about the independent effects of each on social behavior. Further, mouse models of the genetic liability for the neurodevelopmental disorder MYT1L Syndrome have shown sex specific deficits in social motivation. In this study, we aimed to determine if hormonal or chromosomal sex primarily mediate the sex differences seen in mouse social behavior, both at baseline and in the context of Myt1l haploinsufficiency. Methods Four-core genotype (FCG) mice, which uncouple gonadal and chromosomal sex, were crossed with MYT1L heterozygous mice to create eight different groups with unique combinations of sex factors and MYT1L genotype. A total of 131 mice from all eight groups were assayed for activity and social behavior via the open field and social operant paradigms. Measures of social seeking and orienting were analyzed for main effects of chromosome, gonads, and their interactions with Myt1l mutation. Results The FCGxMYT1L cross revealed independent effects of both gonadal and chromosomal sex on activity and social behavior. Specifically, the presence of ovaries, and by extension the presence of ovarian hormones, increased overall activity, social seeking, and social orienting regardless of genotype. In contrast, sex chromosomes affected social behavior mainly in the MYT1L heterozygous group, with XX sex karyotype when combined with MYT1L genotype contributing to increased social orienting and seeking. Conclusions Gonadal and chromosomal sex have independent mechanisms of driving increased social motivation in females. Additionally, sex chromosomes may interact with neurodevelopmental mutations to influence sex variation in atypical social behavior.
Collapse
Affiliation(s)
- Sneha M. Chaturvedi
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Simona Sarafinovska
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Din Selmanovic
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine B. McCullough
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Raylynn G. Swift
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan E. Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Joseph D. Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63130, USA
| |
Collapse
|
5
|
Patel S, Ganbold K, Cho CH, Siddiqui J, Yildiz R, Sparman N, Sadeh S, Nguyen CM, Wang J, Whitelegge JP, Fried SK, Waki H, Villanueva CJ, Seldin MM, Sakaguchi S, Ellmeier W, Tontonoz P, Rajbhandari P. Transcription factor PATZ1 promotes adipogenesis by controlling promoter regulatory loci of adipogenic factors. Nat Commun 2024; 15:8533. [PMID: 39358382 PMCID: PMC11447024 DOI: 10.1038/s41467-024-52917-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
White adipose tissue (WAT) is essential for lipid storage and systemic energy homeostasis. Understanding adipocyte formation and stability is key to developing therapies for obesity and metabolic disorders. Through a high-throughput cDNA screen, we identified PATZ1, a POZ/BTB and AT-Hook Containing Zinc Finger 1 protein, as an important adipogenic transcription factor. PATZ1 is expressed in human and mouse adipocyte precursor cells (APCs) and adipocytes. In cellular models, PATZ1 promotes adipogenesis via protein-protein interactions and DNA binding. PATZ1 ablation in mouse adipocytes and APCs leads to a reduced APC pool, decreased fat mass, and hypertrophied adipocytes. ChIP-Seq and RNA-seq analyses show that PATZ1 supports adipogenesis by interacting with transcriptional machinery at the promoter regions of key early adipogenic factors. Mass-spec results show that PATZ1 associates with GTF2I, with GTF2I modulating PATZ1's function during differentiation. These findings underscore PATZ1's regulatory role in adipocyte differentiation and adiposity, offering insights into adipose tissue development.
Collapse
Affiliation(s)
- Sanil Patel
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Khatanzul Ganbold
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chung Hwan Cho
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Juwairriyyah Siddiqui
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ramazan Yildiz
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Njeri Sparman
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shani Sadeh
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Christy M Nguyen
- Department of Biological Chemistry, University of California, Irvine, CA, 92697, USA
| | - Jiexin Wang
- Department of Pathology and Laboratory Medicine and Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute, University of California, Los Angeles, CA, 90095, USA
| | - Susan K Fried
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hironori Waki
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Claudio J Villanueva
- Molecular, Cellular, and Integrative Physiology Program, and Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, Irvine, CA, 92697, USA
| | - Shinya Sakaguchi
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Wilfried Ellmeier
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine and Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Disease Mechanism and Therapeutics Program, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
6
|
Dong R, Han Y, Lv P, Jiang L, Wang Z, Peng L, Liu S, Ma Z, Xia T, Zhang B, Gu X. Long-term isoflurane anesthesia induces cognitive deficits via AQP4 depolarization mediated blunted glymphatic inflammatory proteins clearance. J Cereb Blood Flow Metab 2024; 44:1450-1466. [PMID: 38443763 PMCID: PMC11342724 DOI: 10.1177/0271678x241237073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/16/2023] [Accepted: 11/10/2023] [Indexed: 03/07/2024]
Abstract
Perioperative neurocognitive disorders (PND) refer to cognitive deterioration that occurs after surgery or anesthesia. Prolonged isoflurane exposure has potential neurotoxicity and induces PND, but the mechanism is unclear. The glymphatic system clears harmful metabolic waste from the brain. This study sought to unveil the functions of glymphatic system in PND and explore the underlying molecular mechanisms. The PND mice model was established by long term isoflurane anesthesia. The glymphatic function was assessed by multiple in vitro and in vivo methods. An adeno-associated virus was used to overexpress AQP4 and TGN-020 was used to inhibit its function. This research revealed that the glymphatic system was impaired in PND mice and the blunted glymphatic transport was closely associated with the accumulation of inflammatory proteins in the hippocampus. Increasing AQP4 polarization could enhance glymphatic transport and suppresses neuroinflammation, thereby improve cognitive function in the PND model mice. However, a marked impaired glymphatic inflammatory proteins clearance and the more severe cognitive dysfunction were observed when decreasing AQP4 polarization. Therefore, long-term isoflurane anesthesia causes blunted glymphatic system by inducing AQP4 depolarization, enhanced the AQP4 polarization can alleviate the glymphatic system malfunction and reduce the neuroinflammatory response, which may be a potential treatment strategy for PND.
Collapse
Affiliation(s)
- Rui Dong
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Yuqiang Han
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Linhao Jiang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zimo Wang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Liangyu Peng
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shuai Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianjiao Xia
- Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
7
|
McCullough KB, Titus A, Reardon K, Conyers S, Dougherty JD, Ge X, Garbow JR, Dickson P, Yuede CM, Maloney SE. Characterization of early markers of disease in the mouse model of mucopolysaccharidosis IIIB. J Neurodev Disord 2024; 16:16. [PMID: 38632525 PMCID: PMC11022360 DOI: 10.1186/s11689-024-09534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Mucopolysaccharidosis (MPS) IIIB, also known as Sanfilippo Syndrome B, is a devastating childhood disease. Unfortunately, there are currently no available treatments for MPS IIIB patients. Yet, animal models of lysosomal storage diseases have been valuable tools in identifying promising avenues of treatment. Enzyme replacement therapy, gene therapy, and bone marrow transplant have all shown efficacy in the MPS IIIB model systems. A ubiquitous finding across rodent models of lysosomal storage diseases is that the best treatment outcomes resulted from intervention prior to symptom onset. Therefore, the aim of the current study was to identify early markers of disease in the MPS IIIB mouse model as well as examine clinically-relevant behavioral domains not yet explored in this model. METHODS Using the MPS IIIB mouse model, we explored early developmental trajectories of communication and gait, and later social behavior, fear-related startle and conditioning, and visual capabilities. In addition, we examined brain structure and function via magnetic resonance imaging and diffusion tensor imaging. RESULTS We observed reduced maternal isolation-induced ultrasonic vocalizations in MPS IIIB mice relative to controls, as well as disruption in a number of the spectrotemporal features. MPS IIIB also exhibited disrupted thermoregulation during the first two postnatal weeks without any differences in body weight. The developmental trajectories of gait were largely normal. In early adulthood, we observed intact visual acuity and sociability yet a more submissive phenotype, increased aggressive behavior, and decreased social sniffing relative to controls. MPS IIIB mice showed greater inhibition of startle in response to a pretone with a decrease in overall startle response and reduced cued fear memory. MPS IIIB also weighed significantly more than controls throughout adulthood and showed larger whole brain volumes and normalized regional volumes with intact tissue integrity as measured with magnetic resonance and diffusion tensor imaging, respectively. CONCLUSIONS Together, these results indicate disease markers are present as early as the first two weeks postnatal in this model. Further, this model recapitulates social, sensory and fear-related clinical features. Our study using a mouse model of MPS IIIB provides essential baseline information that will be useful in future evaluations of potential treatments.
Collapse
Affiliation(s)
- Katherine B McCullough
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amanda Titus
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kate Reardon
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sara Conyers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joel R Garbow
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Patricia Dickson
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Carla M Yuede
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
8
|
Wei SM, Gregory MD, Nash T, de Abreu e Gouvêa A, Mervis CB, Cole KM, Garvey MH, Kippenhan JS, Eisenberg DP, Kolachana B, Schmidt PJ, Berman KF. Altered pubertal timing in 7q11.23 copy number variations and associated genetic mechanisms. iScience 2024; 27:109113. [PMID: 38375233 PMCID: PMC10875153 DOI: 10.1016/j.isci.2024.109113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Pubertal timing, including age at menarche (AAM), is a heritable trait linked to lifetime health outcomes. Here, we investigate genetic mechanisms underlying AAM by combining genome-wide association study (GWAS) data with investigations of two rare genetic conditions clinically associated with altered AAM: Williams syndrome (WS), a 7q11.23 hemideletion characterized by early puberty; and duplication of the same genes (7q11.23 Duplication syndrome [Dup7]) characterized by delayed puberty. First, we confirm that AAM-derived polygenic scores in typically developing children (TD) explain a modest amount of variance in AAM (R2 = 0.09; p = 0.04). Next, we demonstrate that 7q11.23 copy number impacts AAM (WS < TD < Dup7; p = 1.2x10-8, η2 = 0.45) and pituitary volume (WS < TD < Dup7; p = 3x10-5, ηp2 = 0.2) with greater effect sizes. Finally, we relate an AAM-GWAS signal in 7q11.23 to altered expression in postmortem brains of STAG3L2 (p = 1.7x10-17), a gene we also find differentially expressed with 7q11.23 copy number (p = 0.03). Collectively, these data explicate the role of 7q11.23 in pubertal onset, with STAG3L2 and pituitary development as potential mediators.
Collapse
Affiliation(s)
- Shau-Ming Wei
- Behavioral Endocrinology Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Michael D. Gregory
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Tiffany Nash
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Andrea de Abreu e Gouvêa
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Carolyn B. Mervis
- Neurodevelopmental Sciences Laboratory, Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, USA
| | - Katherine M. Cole
- Behavioral Endocrinology Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Madeline H. Garvey
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - J. Shane Kippenhan
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Daniel P. Eisenberg
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Bhaskar Kolachana
- Human Brain Collection Core, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Peter J. Schmidt
- Behavioral Endocrinology Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Karen F. Berman
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Nir Sade A, Levy G, Schokoroy Trangle S, Elad Sfadia G, Bar E, Ophir O, Fischer I, Rokach M, Atzmon A, Parnas H, Rosenberg T, Marco A, Elroy Stein O, Barak B. Neuronal Gtf2i deletion alters mitochondrial and autophagic properties. Commun Biol 2023; 6:1269. [PMID: 38097729 PMCID: PMC10721858 DOI: 10.1038/s42003-023-05612-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Gtf2i encodes the general transcription factor II-I (TFII-I), with peak expression during pre-natal and early post-natal brain development stages. Because these stages are critical for proper brain development, we studied at the single-cell level the consequences of Gtf2i's deletion from excitatory neurons, specifically on mitochondria. Here we show that Gtf2i's deletion resulted in abnormal morphology, disrupted mRNA related to mitochondrial fission and fusion, and altered autophagy/mitophagy protein expression. These changes align with elevated reactive oxygen species levels, illuminating Gtf2i's importance in neurons mitochondrial function. Similar mitochondrial issues were demonstrated by Gtf2i heterozygous model, mirroring the human condition in Williams syndrome (WS), and by hemizygous neuronal Gtf2i deletion model, indicating Gtf2i's dosage-sensitive role in mitochondrial regulation. Clinically relevant, we observed altered transcript levels related to mitochondria, hypoxia, and autophagy in frontal cortex tissue from WS individuals. Our study reveals mitochondrial and autophagy-related deficits shedding light on WS and other Gtf2i-related disorders.
Collapse
Affiliation(s)
- Ariel Nir Sade
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Levy
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Galit Elad Sfadia
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Omer Ophir
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - May Rokach
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Andrea Atzmon
- The Shmunis School of Biomedicine & Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hadar Parnas
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Rosenberg
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Orna Elroy Stein
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Shmunis School of Biomedicine & Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Nygaard KR, Maloney SE, Swift RG, McCullough KB, Wagner RE, Fass SB, Garbett K, Mirnics K, Veenstra‐VanderWeele J, Dougherty JD. Extensive characterization of a Williams syndrome murine model shows Gtf2ird1-mediated rescue of select sensorimotor tasks, but no effect on enhanced social behavior. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12853. [PMID: 37370259 PMCID: PMC10393419 DOI: 10.1111/gbb.12853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Williams syndrome is a rare neurodevelopmental disorder exhibiting cognitive and behavioral abnormalities, including increased social motivation, risk of anxiety and specific phobias along with perturbed motor function. Williams syndrome is caused by a microdeletion of 26-28 genes on chromosome 7, including GTF2IRD1, which encodes a transcription factor suggested to play a role in the behavioral profile of Williams syndrome. Duplications of the full region also lead to frequent autism diagnosis, social phobias and language delay. Thus, genes in the region appear to regulate social motivation in a dose-sensitive manner. A "complete deletion" mouse, heterozygously eliminating the syntenic Williams syndrome region, has been deeply characterized for cardiac phenotypes, but direct measures of social motivation have not been assessed. Furthermore, the role of Gtf2ird1 in these behaviors has not been addressed in a relevant genetic context. Here, we have generated a mouse overexpressing Gtf2ird1, which can be used both to model duplication of this gene alone and to rescue Gtf2ird1 expression in the complete deletion mice. Using a comprehensive behavioral pipeline and direct measures of social motivation, we provide evidence that the Williams syndrome critical region regulates social motivation along with motor and anxiety phenotypes, but that Gtf2ird1 complementation is not sufficient to rescue most of these traits, and duplication does not decrease social motivation. However, Gtf2ird1 complementation does rescue light-aversive behavior and performance on select sensorimotor tasks, perhaps indicating a role for this gene in sensory processing or integration.
Collapse
Affiliation(s)
- Kayla R. Nygaard
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Susan E. Maloney
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- Intellectual & Developmental Disabilities Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Raylynn G. Swift
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Katherine B. McCullough
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Rachael E. Wagner
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Stuart B. Fass
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | | | - Karoly Mirnics
- Psychiatry, Biochemistry & Molecular Biology, Pharmacology & Experimental Neuroscience, Munroe‐Meyer Institute for Genetics and RehabilitationUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jeremy Veenstra‐VanderWeele
- Departments of Psychiatry and PediatricsColumbia University, New York State Psychiatric Institute, and Center for Autism and the Developing Brain, New York‐Presbyterian HospitalNew York CityNew YorkUSA
| | - Joseph D. Dougherty
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- Intellectual & Developmental Disabilities Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
11
|
Cummings CT, Starr LJ. Biallelic GTF2IRD1 variants in brothers with profound neurodevelopmental disorder: A possible novel disorder involving a critical gene for Williams syndrome. Am J Med Genet A 2023; 191:332-337. [PMID: 36308390 PMCID: PMC10091947 DOI: 10.1002/ajmg.a.63021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 01/13/2023]
Abstract
GTF2IRD1, a gene on chromosome 7 which encodes a transcription factor, is of significant clinical interest due to its heterozygous loss as part of the classical deletion associated with Williams-Beuren syndrome (WBS). However, biallelic variants in GTF2IRD1 alone as part of an autosomal recessive disease have not been previously reported. Here, we present two full brothers with variants in trans of GTF2IRD1 at c.1231C > T (p.Arg411Trp) and c.2632C > G (p.Leu878Val). A detailed clinical phenotype is described, which includes severe neurodevelopmental disability, facial dysmorphology, and pectus excavatum. Importantly, out of eight full siblings, only these two brothers harboring both variants in trans present with the profound described phenotype. We present the possibility that these brothers represent the identification of a new syndrome characterized by biallelic variants in GTF2IRD1, which may also have important implications for the molecular etiology of WBS.
Collapse
Affiliation(s)
- Christopher Thomas Cummings
- Department of Pediatrics, Children's Hospital and Medical Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Lois Janelle Starr
- Department of Pediatrics, Children's Hospital and Medical Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
12
|
Nygaard KR, Maloney SE, Swift RG, McCullough KB, Wagner RE, Fass SB, Garbett K, Mirnics K, Veenstra-VanderWeele J, Dougherty JD. Extensive characterization of a Williams Syndrome murine model shows Gtf2ird1 -mediated rescue of select sensorimotor tasks, but no effect on enhanced social behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.523029. [PMID: 36711815 PMCID: PMC9882309 DOI: 10.1101/2023.01.18.523029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Williams Syndrome is a rare neurodevelopmental disorder exhibiting cognitive and behavioral abnormalities, including increased social motivation, risk of anxiety and specific phobias along with perturbed motor function. Williams Syndrome is caused by a microdeletion of 26-28 genes on chromosome 7, including GTF2IRD1 , which encodes a transcription factor suggested to play a role in the behavioral profile of Williams Syndrome. Duplications of the full region also lead to frequent autism diagnosis, social phobias, and language delay. Thus, genes in the region appear to regulate social motivation in a dose-sensitive manner. A 'Complete Deletion' mouse, heterozygously eliminating the syntenic Williams Syndrome region, has been deeply characterized for cardiac phenotypes, but direct measures of social motivation have not been assessed. Furthermore, the role of Gtf2ird1 in these behaviors has not been addressed in a relevant genetic context. Here, we have generated a mouse overexpressing Gtf2ird1 , which can be used both to model duplication of this gene alone and to rescue Gtf2ird1 expression in the Complete Deletion mice. Using a comprehensive behavioral pipeline and direct measures of social motivation, we provide evidence that the Williams Syndrome Critical Region regulates social motivation along with motor and anxiety phenotypes, but that Gtf2ird1 complementation is not sufficient to rescue most of these traits, and duplication does not decrease social motivation. However, Gtf2ird1 complementation does rescue light-aversive behavior and performance on select sensorimotor tasks, perhaps indicating a role for this gene in sensory processing or integration.
Collapse
Affiliation(s)
- Kayla R. Nygaard
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan E. Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual & Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Raylynn G. Swift
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine B. McCullough
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachael E. Wagner
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stuart B. Fass
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Karoly Mirnics
- Psychiatry, Biochemistry & Molecular Biology, Pharmacology & Experimental Neuroscience, Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center Omaha, NE 68198-5450
| | - Jeremy Veenstra-VanderWeele
- Departments of Psychiatry and Pediatrics, Columbia University; New York State Psychiatric Institute; and Center for Autism and the Developing Brain, New York-Presbyterian Hospital
| | - Joseph D. Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
13
|
Davenport CM, Teubner BJW, Han SB, Patton MH, Eom TY, Garic D, Lansdell BJ, Shirinifard A, Chang TC, Klein J, Pruett-Miller SM, Blundon JA, Zakharenko SS. Innate frequency-discrimination hyperacuity in Williams-Beuren syndrome mice. Cell 2022; 185:3877-3895.e21. [PMID: 36152627 PMCID: PMC9588278 DOI: 10.1016/j.cell.2022.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/14/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023]
Abstract
Williams-Beuren syndrome (WBS) is a rare disorder caused by hemizygous microdeletion of ∼27 contiguous genes. Despite neurodevelopmental and cognitive deficits, individuals with WBS have spared or enhanced musical and auditory abilities, potentially offering an insight into the genetic basis of auditory perception. Here, we report that the mouse models of WBS have innately enhanced frequency-discrimination acuity and improved frequency coding in the auditory cortex (ACx). Chemogenetic rescue showed frequency-discrimination hyperacuity is caused by hyperexcitable interneurons in the ACx. Haploinsufficiency of one WBS gene, Gtf2ird1, replicated WBS phenotypes by downregulating the neuropeptide receptor VIPR1. VIPR1 is reduced in the ACx of individuals with WBS and in the cerebral organoids derived from human induced pluripotent stem cells with the WBS microdeletion. Vipr1 deletion or overexpression in ACx interneurons mimicked or reversed, respectively, the cellular and behavioral phenotypes of WBS mice. Thus, the Gtf2ird1-Vipr1 mechanism in ACx interneurons may underlie the superior auditory acuity in WBS.
Collapse
Affiliation(s)
- Christopher M Davenport
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brett J W Teubner
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Seung Baek Han
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mary H Patton
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dusan Garic
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Benjamin J Lansdell
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jonathon Klein
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jay A Blundon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
14
|
Weston KP, Gao X, Zhao J, Kim KS, Maloney SE, Gotoff J, Parikh S, Leu YC, Wu KP, Shinawi M, Steimel JP, Harrison JS, Yi JJ. Identification of disease-linked hyperactivating mutations in UBE3A through large-scale functional variant analysis. Nat Commun 2021; 12:6809. [PMID: 34815418 PMCID: PMC8635412 DOI: 10.1038/s41467-021-27156-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/01/2021] [Indexed: 12/03/2022] Open
Abstract
The mechanisms that underlie the extensive phenotypic diversity in genetic disorders are poorly understood. Here, we develop a large-scale assay to characterize the functional valence (gain or loss-of-function) of missense variants identified in UBE3A, the gene whose loss-of-function causes the neurodevelopmental disorder Angelman syndrome. We identify numerous gain-of-function variants including a hyperactivating Q588E mutation that strikingly increases UBE3A activity above wild-type UBE3A levels. Mice carrying the Q588E mutation exhibit aberrant early-life motor and communication deficits, and individuals possessing hyperactivating UBE3A variants exhibit affected phenotypes that are distinguishable from Angelman syndrome. Additional structure-function analysis reveals that Q588 forms a regulatory site in UBE3A that is conserved among HECT domain ubiquitin ligases and perturbed in various neurodevelopmental disorders. Together, our study indicates that excessive UBE3A activity increases the risk for neurodevelopmental pathology and suggests that functional variant analysis can help delineate mechanistic subtypes in monogenic disorders. UBE3A gene dysregulation is associated with neurodevelopmental disorders, but predicting the function of UBE3A variants remains difficult. The authors use a high-throughput assay to categorize variants by functional activity, and show that UBE3A hyperactivity increases the risk of neurodevelopmental disease.
Collapse
Affiliation(s)
- Kellan P Weston
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiaoyi Gao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jinghan Zhao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kwang-Soo Kim
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jill Gotoff
- Department of Pediatrics, Geisinger Medical Center, Danville, PA, 17822, USA
| | - Sumit Parikh
- Department of Neurogenetics, Neurosciences Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Yen-Chen Leu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joshua P Steimel
- Deparment of Mechanical Engineering, University of the Pacific, Stockton, CA, 95211, USA
| | - Joseph S Harrison
- Department of Chemistry, University of the Pacific, Stockton, CA, 95211, USA
| | - Jason J Yi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Osborne LR, Mervis CB. 7q11.23 deletion and duplication. Curr Opin Genet Dev 2021; 68:41-48. [DOI: 10.1016/j.gde.2021.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 01/24/2023]
|
16
|
Rahn RM, Weichselbaum CT, Gutmann DH, Dougherty JD, Maloney SE. Shared developmental gait disruptions across two mouse models of neurodevelopmental disorders. J Neurodev Disord 2021; 13:10. [PMID: 33743598 PMCID: PMC7980331 DOI: 10.1186/s11689-021-09359-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Motor deficits such as abnormal gait are an underappreciated yet characteristic phenotype of many neurodevelopmental disorders (NDDs), including Williams Syndrome (WS) and Neurofibromatosis Type 1 (NF1). Compared to cognitive phenotypes, gait phenotypes are readily and comparably assessed in both humans and model organisms and are controlled by well-defined CNS circuits. Discovery of a common gait phenotype between NDDs might suggest shared cellular and molecular deficits and highlight simple outcome variables to potentially quantify longitudinal treatment efficacy in NDDs. METHODS We characterized gait using the DigiGait assay in two different murine NDD models: the complete deletion (CD) mouse, which models hemizygous loss of the complete WS locus, and the Nf1+/R681X mouse, which models a NF1 patient-derived heterozygous germline NF1 mutation. Longitudinal data were collected across four developmental time points (postnatal days 21-30) and one early adulthood time point. RESULTS Compared to wildtype littermate controls, both models displayed markedly similar spatial, temporal, and postural gait abnormalities during development. Developing CD mice also displayed significant decreases in variability metrics. Multiple gait abnormalities observed across development in the Nf1+/R681X mice persisted into early adulthood, including increased stride length and decreased stride frequency, while developmental abnormalities in the CD model largely resolved by adulthood. CONCLUSIONS These findings suggest that the subcomponents of gait affected in NDDs show overlap between disorders as well as some disorder-specific features, which may change over the course of development. Our incorporation of spatial, temporal, and postural gait measures also provides a template for gait characterization in other NDD models and a platform to examining circuits or longitudinal therapeutics.
Collapse
Affiliation(s)
- Rachel M Rahn
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Radiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA
| | - Claire T Weichselbaum
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA
| | - David H Gutmann
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA. .,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.
| |
Collapse
|
17
|
Dai L, Weiss RB, Dunn DM, Ramirez A, Paul S, Korenberg JR. Core transcriptional networks in Williams syndrome: IGF1-PI3K-AKT-mTOR, MAPK and actin signaling at the synapse echo autism. Hum Mol Genet 2021; 30:411-429. [PMID: 33564861 DOI: 10.1093/hmg/ddab041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Gene networks for disorders of social behavior provide the mechanisms critical for identifying therapeutic targets and biomarkers. Large behavioral phenotypic effects of small human deletions make the positive sociality of Williams syndrome (WS) ideal for determining transcriptional networks for social dysfunction currently based on DNA variations for disorders such as autistic spectrum disorder (ASD) and schizophrenia (SCHZ). Consensus on WS networks has been elusive due to the need for larger cohort size, sensitive genome-wide detection and analytic tools. We report a core set of WS network perturbations in a cohort of 58 individuals (34 with typical, 6 atypical deletions and 18 controls). Genome-wide exon-level expression arrays robustly detected changes in differentially expressed gene (DEG) transcripts from WS deleted genes that ranked in the top 11 of 12 122 transcripts, validated by quantitative reverse transcription PCR, RNASeq and western blots. WS DEG's were strictly dosed in the full but not the atypical deletions that revealed a breakpoint position effect on non-deleted CLIP2, a caveat for current phenotypic mapping based on copy number variants. Network analyses tested the top WS DEG's role in the dendritic spine, employing GeneMANIA to harmonize WS DEGs with comparable query gene-sets. The results indicate perturbed actin cytoskeletal signaling analogous to the excitatory dendritic spines. Independent protein-protein interaction analyses of top WS DEGs generated a 100-node graph annotated topologically revealing three interacting pathways, MAPK, IGF1-PI3K-AKT-mTOR/insulin and actin signaling at the synapse. The results indicate striking similarity of WS transcriptional networks to genome-wide association study-based ASD and SCHZ risk suggesting common network dysfunction for these disorders of divergent sociality.
Collapse
Affiliation(s)
- Li Dai
- Center for Integrated Neuroscience and Human Behavior, Brain Institute, Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert B Weiss
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Diane M Dunn
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Anna Ramirez
- Center for Integrated Neuroscience and Human Behavior, Brain Institute, Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Julie R Korenberg
- Center for Integrated Neuroscience and Human Behavior, Brain Institute, Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA.,Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|