1
|
Carstens JL, Lovisa S. Epithelial-to-mesenchymal transition drives cancer genomic instability. J Exp Clin Cancer Res 2025; 44:135. [PMID: 40301945 PMCID: PMC12042499 DOI: 10.1186/s13046-025-03402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 05/01/2025] Open
Abstract
Epithelial-to-Mesenchymal Transition (EMT) is a form of embryonic cell plasticity reactivated in adult cells during injury and cancer. A recent study by Perelli et al. demonstrates that EMT confers an evolutionary advantage to tumors by inducing chromosomal instability, structural genomic rearrangements and chromothripsis, thus favoring the emergence of high-fitness malignant clones.
Collapse
Affiliation(s)
- Julienne L Carstens
- Department of Medicine, Division of Hematology & Oncology, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Immunology Institute, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Sara Lovisa
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy.
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy.
| |
Collapse
|
2
|
Bangarh R, Saini RV, Saini AK, Singh T, Joshi H, Ramniwas S, Shahwan M, Tuli HS. Dynamics of epithelial-mesenchymal plasticity driving cancer drug resistance. CANCER PATHOGENESIS AND THERAPY 2025; 3:120-128. [PMID: 40182126 PMCID: PMC11963173 DOI: 10.1016/j.cpt.2024.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 04/05/2025]
Abstract
Epithelial-mesenchymal transition (EMT) promotes several cancers by increasing tumor cell motility, disrupting epithelial cell phenotypes, apical-basal polarity, and intracellular connections, and enhancing tumor resistance to immunotherapy and chemotherapy. Mesenchymal-epithelial transition (MET), the opposite of EMT, causes tumor metastasis. EMT drives primary tumor cells, whereas MET inhibits them. Importantly, the complex network of EMT includes cell-cell interactions in the tumor microenvironment. Transcription factors, post-translational regulation, cytokine-mediated signaling, and microRNAs control EMT. In this review, we discussed how molecular mechanisms, signaling networks, and epithelial/mesenchymal states affect cancer treatment resistance and the tumor microenvironment. Research on immunotherapy and chemotherapy problems associated with EMT suggests that targeting EMT might be a potential cancer treatment resistance strategy.
Collapse
Affiliation(s)
- Rashmi Bangarh
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India
| | - Reena V. Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India
| | - Adesh K. Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi 110007, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali 140413, India
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India
| |
Collapse
|
3
|
Papaccio F, Cabeza-Segura M, García-Micó B, Gimeno-Valiente F, Zúñiga-Trejos S, Gambardella V, Gutiérrez-Bravo MF, Martinez-Ciarpaglini C, Rentero-Garrido P, Fleitas T, Roselló S, Carbonell-Asins JA, Huerta M, Moro-Valdezate D, Roda D, Tarazona N, Sánchez Del Pino MM, Cervantes A, Castillo J. Decoding chromosomal instability insights in CRC by integrating omics and patient-derived organoids. J Exp Clin Cancer Res 2025; 44:77. [PMID: 40022181 PMCID: PMC11869439 DOI: 10.1186/s13046-025-03308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Chromosomal instability (CIN) is involved in about 70% of colorectal cancers (CRCs) and is associated with poor prognosis and drug resistance. From a clinical perspective, a better knowledge of these tumour's biology will help to guide therapeutic strategies more effectively. METHODS We used high-density chromosomal microarray analysis to evaluate CIN level of patient-derived organoids (PDOs) and their original mCRC tissues. We integrated the RNA-seq and mass spectrometry-based proteomics data from PDOs in a functional interaction network to identify the significantly dysregulated processes in CIN. This was followed by a proteome-wGII Pearson correlation analysis and an in silico validation of main findings using functional genomic databases and patient-tissues datasets to prioritize the high-confidence CIN features. RESULTS By applying the weighted Genome Instability Index (wGII) to identify CIN, we classified PDOs and demonstrated a good correlation with tissues. Multi-omics analysis showed that our organoids recapitulated genomic, transcriptomic and proteomic CIN features of independent tissues cohorts. Thanks to proteotranscriptomics, we uncovered significant associations between mitochondrial metabolism and epithelial-mesenchymal transition in CIN CRC PDOs. Correlating PDOs wGII with protein abundance, we identified a subset of proteins significantly correlated with CIN. Co-localisation analysis in PDOs strengthened the putative role of IPO7 and YAP, and, through in silico analysis, we found that some of the targets give significant dependencies in cell lines with CIN compatible status. CONCLUSIONS We first demonstrated that PDO models are a faithful reflection of CIN tissues at the genetic and phenotypic level. Our new findings prioritize a subset of genes and molecular processes putatively required to cope with the burden on cellular fitness imposed by CIN and associated with disease aggressiveness.
Collapse
Affiliation(s)
- Federica Papaccio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081, Baronissi, Italy.
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain.
| | - Manuel Cabeza-Segura
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
| | - Blanca García-Micó
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Francisco Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London, UK
| | - Sheila Zúñiga-Trejos
- Bioinformatic Unit, INCLIVA Biomedical Research Institute, Avda. Menéndez y Pelayo 3, 46010, Valencia, Spain
| | - Valentina Gambardella
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Fernanda Gutiérrez-Bravo
- Experimental and Applied Biomedicine Research Group, Health Sciences Faculty, Universidad Particular Internacional SEK (UISEK), Quito, 170302, Ecuador
| | - Carolina Martinez-Ciarpaglini
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Department of Pathology, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
| | - Pilar Rentero-Garrido
- Precision Medicine Unit, INCLIVA Biomedical Research Institute, Avda. Menéndez y Pelayo 4, 46010, Valencia, Spain
| | - Tania Fleitas
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Susana Roselló
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | | | - Marisol Huerta
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
| | - David Moro-Valdezate
- Department of General Surgery, INCLIVA Biomedical Research Institute, Hospital Clínico Universitario de Valencia, University of Valencia, Valencia, Spain
| | - Desamparados Roda
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Noelia Tarazona
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Manuel M Sánchez Del Pino
- Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, 46100, Burjassot, Spain.
- Department of Biochemistry and Molecular Biology, University of Valencia, 46100, Burjassot, Spain.
| | - Andrés Cervantes
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain.
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Josefa Castillo
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain.
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Department of Biochemistry and Molecular Biology, University of Valencia, 46100, Burjassot, Spain.
| |
Collapse
|
4
|
Flashner S, Azizkhan-Clifford J. Emerging Roles for Transcription Factors During Mitosis. Cells 2025; 14:263. [PMID: 39996736 PMCID: PMC11853531 DOI: 10.3390/cells14040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
The genome is dynamically reorganized, partitioned, and divided during mitosis. Despite their role in organizing interphase chromatin, transcription factors were largely believed to be mitotic spectators evicted from chromatin during mitosis, only able to reestablish their position on DNA upon entry into G1. However, a panoply of evidence now contradicts this early belief. Numerous transcription factors are now known to remain active during mitosis to achieve diverse purposes, including chromosome condensation, regulation of the centromere/kinetochore function, and control of centrosome homeostasis. Inactivation of transcription factors during mitosis results in chromosome segregation errors, key features of cancer. Moreover, active transcription and the production of centromere-derived transcripts during mitosis are also known to play key roles in maintaining chromosomal stability. Finally, many transcription factors are associated with chromosomal instability through poorly defined mechanisms. Herein, we will review the emerging roles of transcription factors and transcription during mitosis with a focus on their role in promoting the faithful segregation of sister chromatids.
Collapse
Affiliation(s)
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
5
|
Li W, Lan J, Zhou C, Yang R, Wang J, He J, Xiao B, Ou Q, Fang Y, Fan W, Lin J, Pan Z, Peng J, Wu X. Chromosomal instability is associated with prognosis and efficacy of bevacizumab after resection of colorectal cancer liver metastasis. Ann Med 2024; 56:2396559. [PMID: 39247989 PMCID: PMC11385633 DOI: 10.1080/07853890.2024.2396559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 09/10/2024] Open
Abstract
INTRODUCTION Individualized treatment of colorectal cancer liver metastases (CRLM) remains challenging due to differences in the severity of metastatic disease and tumour biology. Exploring specific prognostic risk subgroups is urgently needed. The current study aimed to investigate the prognostic value of chromosomal instability (CIN) in patients with initially resectable CRLM and the predictive value of CIN for the efficacy of bevacizumab. METHODS Ninety-one consecutive patients with initially resectable CRLM who underwent curative liver resection from 2006 to 2018 at Sun Yat-sen University Cancer Center were selected for analysis. CIN was evaluated by automated digital imaging systems. Immunohistochemistry (IHC) was performed to detect interleukin-6 (IL-6), vascular endothelial growth factor A (VEGFA) and CD31 expression in paraffin-embedded specimens. Recurrence-free survival (RFS) and overall survival (OS) were analysed using the Kaplan-Meier method and Cox regression models. RESULTS Patients with high chromosomal instability (CIN-H) had a worse 3-year RFS rate (HR, 1.953; 95% CI, 1.001-3.810; p = 0.049) and a worse 3-year OS rate (HR, 2.449; 95% CI, 1.150-5.213; p = 0.016) than those with low chromosomal instability (CIN-L). CIN-H was identified as an independent prognostic factor for RFS (HR, 2.569; 95% CI, 1.078-6.121; p = 0.033) and OS (HR, 3.852; 95% CI, 1.173-12.645; p = 0.026) in the multivariate analysis. The protein levels of IL-6, VEGFA and CD31 were upregulated in patients in the CIN-H group compared to those in the CIN-L group in both primary tumour and liver metastases tissues. Among them, 22 patients with recurrent tumours were treated with first-line bevacizumab treatment and based on the clinical response assessment, disease control rates were adversely associated with chromosomal instability (p = 0.043). CONCLUSIONS Our study showed that high chromosomal instability is a negative prognostic factor for patients with initially resectable CRLM after liver resection. CIN may have positive correlations with angiogenesis through expression of IL-6-VEGFA axis and be used as a potential predictor of efficacy of bevacizumab.
Collapse
Affiliation(s)
- Weihao Li
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jin Lan
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chi Zhou
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Rong Yang
- Department of Intensive Care Unit, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiayu Wang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P. R. China
| | - Jiahua He
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Binyi Xiao
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qingjian Ou
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yujing Fang
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wenhua Fan
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Junzhong Lin
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhizhong Pan
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jianhong Peng
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiaojun Wu
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
6
|
Pun R, Kumari N, Monieb RH, Wagh S, North BJ. BubR1 and SIRT2: Insights into aneuploidy, aging, and cancer. Semin Cancer Biol 2024; 106-107:201-216. [PMID: 39490401 PMCID: PMC11625622 DOI: 10.1016/j.semcancer.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Aging is a significant risk factor for cancer which is due, in part, to heightened genomic instability. Mitotic surveillance proteins such as BubR1 play a pivotal role in ensuring accurate chromosomal segregation and preventing aneuploidy. BubR1 levels have been shown to naturally decline with age and its loss is associated with various age-related pathologies. Sirtuins, a class of NAD+-dependent deacylases, are implicated in cancer and genomic instability. Among them, SIRT2 acts as an upstream regulator of BubR1, offering a critical pathway that can potentially mitigate age-related diseases, including cancer. In this review, we explore BubR1 as a key regulator of cellular processes crucial for aging-related phenotypes. We delve into the intricate mechanisms through which BubR1 influences genomic stability and cellular senescence. Moreover, we highlight the role of NAD+ and SIRT2 in modulating BubR1 expression and function, emphasizing its potential as a therapeutic target. The interaction between BubR1 and SIRT2 not only serves as a fundamental regulatory pathway in cellular homeostasis but also represents a promising avenue for developing targeted therapies against age-related diseases, particularly cancer.
Collapse
Affiliation(s)
- Renju Pun
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Niti Kumari
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Rodaina Hazem Monieb
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Sachin Wagh
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Brian J North
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
7
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
8
|
Cao Y. Lack of basic rationale in epithelial-mesenchymal transition and its related concepts. Cell Biosci 2024; 14:104. [PMID: 39164745 PMCID: PMC11334496 DOI: 10.1186/s13578-024-01282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is defined as a cellular process during which epithelial cells acquire mesenchymal phenotypes and behavior following the downregulation of epithelial features. EMT and its reversed process, the mesenchymal-epithelial transition (MET), and the special form of EMT, the endothelial-mesenchymal transition (EndMT), have been considered as mainstream concepts and general rules driving developmental and pathological processes, particularly cancer. However, discrepancies and disputes over EMT and EMT research have also grown over time. EMT is defined as transition between two cellular states, but it is unanimously agreed by EMT researchers that (1) neither the epithelial and mesenchymal states nor their regulatory networks have been clearly defined, (2) no EMT markers or factors can represent universally epithelial and mesenchymal states, and thus (3) EMT cannot be assessed on the basis of one or a few EMT markers. In contrast to definition and proposed roles of EMT, loss of epithelial feature does not cause mesenchymal phenotype, and EMT does not contribute to embryonic mesenchyme and neural crest formation, the key developmental events from which the EMT concept was derived. EMT and MET, represented by change in cell shapes or adhesiveness, or symbolized by EMT factors, are biased interpretation of the overall change in cellular property and regulatory networks during development and cancer progression. Moreover, EMT and MET are consequences rather than driving factors of developmental and pathological processes. The true meaning of EMT in some developmental and pathological processes, such as fibrosis, needs re-evaluation. EMT is believed to endow malignant features, such as migration, stemness, etc., to cancer cells. However, the core property of cancer (tumorigenic) cells is neural stemness, and the core EMT factors are components of the regulatory networks of neural stemness. Thus, EMT in cancer progression is misattribution of the roles of neural stemness to the unknown mesenchymal state. Similarly, neural crest EMT is misattribution of intrinsic property of neural crest cells to the unknown mesenchymal state. Lack of basic rationale in EMT and related concepts urges re-evaluation of their significance as general rules for understanding developmental and pathological processes, and re-evaluation of their significance in scientific research.
Collapse
Affiliation(s)
- Ying Cao
- The MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing, 210061, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen, China.
| |
Collapse
|
9
|
Keuper K, Bartek J, Maya-Mendoza A. The nexus of nuclear envelope dynamics, circular economy and cancer cell pathophysiology. Eur J Cell Biol 2024; 103:151394. [PMID: 38340500 DOI: 10.1016/j.ejcb.2024.151394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The nuclear envelope (NE) is a critical component in maintaining the function and structure of the eukaryotic nucleus. The NE and lamina are disassembled during each cell cycle to enable an open mitosis. Nuclear architecture construction and deconstruction is a prime example of a circular economy, as it fulfills a highly efficient recycling program bound to continuous assessment of the quality and functionality of the building blocks. Alterations in the nuclear dynamics and lamina structure have emerged as important contributors to both oncogenic transformation and cancer progression. However, the knowledge of the NE breakdown and reassembly is still limited to a fraction of participating proteins and complexes. As cancer cells contain highly diverse nuclei in terms of DNA content, but also in terms of nuclear number, size, and shape, it is of great interest to understand the intricate relationship between these nuclear features in cancer cell pathophysiology. In this review, we provide insights into how those NE dynamics are regulated, and how lamina destabilization processes may alter the NE circular economy. Moreover, we expand the knowledge of the lamina-associated domain region by using strategic algorithms, including Artificial Intelligence, to infer protein associations, assess their function and location, and predict cancer-type specificity with implications for the future of cancer diagnosis, prognosis and treatment. Using this approach we identified NUP98 and MECP2 as potential proteins that exhibit upregulation in Acute Myeloid Leukemia (LAML) patients with implications for early diagnosis.
Collapse
Affiliation(s)
- Kristina Keuper
- DNA Replication and Cancer Group, Danish Cancer Institute, Copenhagen, Denmark; Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SciLifeLab, Stockholm, Sweden
| | | |
Collapse
|
10
|
Wang Y, Li C, Jiang T, Yin Y, Wang Y, Zhao H, Yu L. A comprehensive exploration of twist1 to identify a biomarker for tumor immunity and prognosis in pan-cancer. Medicine (Baltimore) 2024; 103:e37790. [PMID: 38608058 PMCID: PMC11018223 DOI: 10.1097/md.0000000000037790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
Twist1 has been identified as a critical gene in tumor, but current study of this gene remains limitative. This study aims to investigate its roles and potential mechanisms across pan-cancer. The study used various databases and computational techniques to analyze twist's RNA expression, clinical data, gene mutations, tumor stemness, tumor microenvironment, immune regulation. Furthermore, the experimental method of fluorescence staining was carried out to identify twist1 expression in various tumor masses. After analyzing the protein-protein interaction of TWIST, enrichment analysis and predictive potential drugs were performed, and molecular docking was conducted to validate. We found that twist1 expression was significantly higher in various types of cancer and associated with tumor stage, grade, and poor prognosis in multiple cancers. Differential expression of twist1 was linked to gene mutation, RNA modifications, and tumor stemness. Additionally, twist1 expression was positively associated with tumor immunoregulation and immune checkpoint. Salinomycin, klugline, isocephaelince, manassantin B, and pimonidazole are predictive potential drugs targeting TWIST1. This study revealed that twist1 plays an important role in tumor, and might be a curial marker in tumor diagnose and prognosis. The study also highlighted twist1 as a promising therapeutic target for cancer treatment and provided a foundation for future research.
Collapse
Affiliation(s)
- Yue Wang
- Department of Otolaryngology–Head and Neck Surgery, The first affiliated hospital of Ningbo University, Ningbo, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Chunhao Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Tianjiao Jiang
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Yiqiang Yin
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Pathology, Jinan Fourth People’s Hospital, Jinan, China
| | - Yaowen Wang
- Department of Otolaryngology–Head and Neck Surgery, The first affiliated hospital of Ningbo University, Ningbo, China
| | - Hui Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Linyi People’s Hospital, Linyi, China
| | - Liang Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| |
Collapse
|
11
|
Mahdi-Esferizi R, Shiasi Z, Heidari R, Najafi A, Mahmoudi I, Elahian F, Tahmasebian S. Single-cell transcriptional signature-based drug repurposing and in vitro evaluation in colorectal cancer. BMC Cancer 2024; 24:371. [PMID: 38528462 DOI: 10.1186/s12885-024-12142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/18/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The need for intelligent and effective treatment of diseases and the increase in drug design costs have raised drug repurposing as one of the effective strategies in biomedicine. There are various computational methods for drug repurposing, one of which is using transcription signatures, especially single-cell RNA sequencing (scRNA-seq) data, which show us a clear and comprehensive view of the inside of the cell to compare the state of disease and health. METHODS In this study, we used 91,103 scRNA-seq samples from 29 patients with colorectal cancer (GSE144735 and GSE132465). First, differential gene expression (DGE) analysis was done using the ASAP website. Then we reached a list of drugs that can reverse the gene signature pattern from cancer to normal using the iLINCS website. Further, by searching various databases and articles, we found 12 drugs that have FDA approval, and so far, no one has reported them as a drug in the treatment of any cancer. Then, to evaluate the cytotoxicity and performance of these drugs, the MTT assay and real-time PCR were performed on two colorectal cancer cell lines (HT29 and HCT116). RESULTS According to our approach, 12 drugs were suggested for the treatment of colorectal cancer. Four drugs were selected for biological evaluation. The results of the cytotoxicity analysis of these drugs are as follows: tezacaftor (IC10 = 19 µM for HCT-116 and IC10 = 2 µM for HT-29), fenticonazole (IC10 = 17 µM for HCT-116 and IC10 = 7 µM for HT-29), bempedoic acid (IC10 = 78 µM for HCT-116 and IC10 = 65 µM for HT-29), and famciclovir (IC10 = 422 µM for HCT-116 and IC10 = 959 µM for HT-29). CONCLUSIONS Cost, time, and effectiveness are the main challenges in finding new drugs for diseases. Computational approaches such as transcriptional signature-based drug repurposing methods open new horizons to solve these challenges. In this study, tezacaftor, fenticonazole, and bempedoic acid can be introduced as promising drug candidates for the treatment of colorectal cancer. These drugs were evaluated in silico and in vitro, but it is necessary to evaluate them in vivo.
Collapse
Affiliation(s)
- Roohallah Mahdi-Esferizi
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Shiasi
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Issa Mahmoudi
- Information Technology Department, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahram Tahmasebian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
12
|
Housini M, Dariya B, Ahmed N, Stevens A, Fiadjoe H, Nagaraju GP, Basha R. Colorectal cancer: Genetic alterations, novel biomarkers, current therapeutic strategies and clinical trials. Gene 2024; 892:147857. [PMID: 37783294 DOI: 10.1016/j.gene.2023.147857] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly detected cancer with a serious global health issue. The rates for incidence and mortality for CRC are alarming, especially since the prognosis is abysmal when the CRC is diagnosed at an advanced or metastatic stage. Both type of (modifiable/ non-modifiable) types of risk factors are established for CRC. Despite the advances in recent technology and sophisticated research, the survival rate is still meager due to delays in diagnosis. Therefore, there is urgently required to identify critical biomarkers aiming at early diagnosis and improving effective therapeutic strategies. Additionally, a complete understanding of the dysregulated pathways like PI3K/Akt, Notch, and Wnt associated with CRC progression and metastasis is very beneficial in designing a therapeutic regimen. This review article focused on the dysregulated signaling pathways, genetics and epigenetics alterations, and crucial biomarkers of CRC. This review also provided the list of clinical trials targeting signaling cascades and therapies involving small molecules. This review discusses up-to-date information on novel diagnostic and therapeutic strategies alongside specific clinical trials.
Collapse
Affiliation(s)
- Mohammad Housini
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Begum Dariya
- Center for Drug Design, University of Minnesota, Minneapolis, MN 5545, United States
| | - Nadia Ahmed
- Department of Diagnostic Radiology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Alyssa Stevens
- Missouri Southern State University, Joplin, MO 64801, United States
| | - Hope Fiadjoe
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Ganji Purnachandra Nagaraju
- Division of Hematology & Oncology, The University of Alabama at Birmingham, Birmingham, AL 35233, United States.
| | - Riyaz Basha
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, United States; Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
13
|
Wang H, Liang Y, Zhao L, Deng J, Li Y, Zhao H, Zhang X, Zou F. miR-653-3p promotes genomic instability of colorectal cancer cells via targeting SIRT1/TWIST1 signaling pathway. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166821. [PMID: 37516255 DOI: 10.1016/j.bbadis.2023.166821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
Development of colorectal cancer (CRC) accompanied with genomic instability. Genomic instability was promoted by microRNAs (miRNAs) inhibiting key genes in DNA damage repair and spindle assembly processes. Whether miR-653-3p affects genomic instability is unknown. The aim of this study is to explore the effect of miR-653-3p on genomic instability in CRC cells. Based on RT-qPCR analysis, miR-653-3p was highly expressed in CRC cells. Through single-cell electrophoresis assay and chromosome karyotype analysis, we determined ectopic expression of miR-653-3p induced increased DNA damage but inhibited apoptosis by promoting chromosomal instability. Mechanistically, luciferase assay identified the direct interaction of miR-653-3p with the 3' UTR of SIRT1, and western blot analysis indicated miR-653-3p inhibited SIRT1 and then promoted STAT3 phosphorylation and TWIST1 expression. The results of karyotype analysis showed that the upregulation of SIRT1 and the downregulation of TWIST1 caused by the downregulation of miR-653-3p suppressed chromosomal instability. Additionally, our evidence showed that miR-653-3p promoted CRC cell proliferation, migration, and 5-FU resistance, and miR-653-3p induced the development of CRC in the xenograft mice model. Altogether, our evidence suggests that miR-653-3p regulates SIRT1/TWIST1 signaling pathway and plays an important role in promoting genomic instability, proliferation, migration, and chemoresistance of CRC cells, which may serve as a promising therapeutic target for CRC therapy.
Collapse
Affiliation(s)
- Huani Wang
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yutong Liang
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Lili Zhao
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jiaqiang Deng
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yan Li
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hong Zhao
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiao Zhang
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Fangdong Zou
- College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
14
|
Schuhwerk H, Brabletz T. Mutual regulation of TGFβ-induced oncogenic EMT, cell cycle progression and the DDR. Semin Cancer Biol 2023; 97:86-103. [PMID: 38029866 DOI: 10.1016/j.semcancer.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
TGFβ signaling and the DNA damage response (DDR) are two cellular toolboxes with a strong impact on cancer biology. While TGFβ as a pleiotropic cytokine affects essentially all hallmarks of cancer, the multifunctional DDR mostly orchestrates cell cycle progression, DNA repair, chromatin remodeling and cell death. One oncogenic effect of TGFβ is the partial activation of epithelial-to-mesenchymal transition (EMT), conferring invasiveness, cellular plasticity and resistance to various noxae. Several reports show that both individual networks as well as their interface affect chemo-/radiotherapies. However, the underlying mechanisms remain poorly resolved. EMT often correlates with TGFβ-induced slowing of proliferation, yet numerous studies demonstrate that particularly the co-activated EMT transcription factors counteract anti-proliferative signaling in a partially non-redundant manner. Collectively, evidence piled up over decades underscore a multifaceted, reciprocal inter-connection of TGFβ signaling / EMT with the DDR / cell cycle progression, which we will discuss here. Altogether, we conclude that full cell cycle arrest is barely compatible with the propagation of oncogenic EMT traits and further propose that 'EMT-linked DDR plasticity' is a crucial, yet intricate facet of malignancy, decisively affecting metastasis formation and therapy resistance.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
15
|
Zheng S, Guerrero-Haughton E, Foijer F. Chromosomal Instability-Driven Cancer Progression: Interplay with the Tumour Microenvironment and Therapeutic Strategies. Cells 2023; 12:2712. [PMID: 38067140 PMCID: PMC10706135 DOI: 10.3390/cells12232712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Chromosomal instability (CIN) is a prevalent characteristic of solid tumours and haematological malignancies. CIN results in an increased frequency of chromosome mis-segregation events, thus yielding numerical and structural copy number alterations, a state also known as aneuploidy. CIN is associated with increased chances of tumour recurrence, metastasis, and acquisition of resistance to therapeutic interventions, and this is a dismal prognosis. In this review, we delve into the interplay between CIN and cancer, with a focus on its impact on the tumour microenvironment-a driving force behind metastasis. We discuss the potential therapeutic avenues that have resulted from these insights and underscore their crucial role in shaping innovative strategies for cancer treatment.
Collapse
Affiliation(s)
- Siqi Zheng
- European Research Institute for the Biology of Ageing (ERIBA), University Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Erika Guerrero-Haughton
- European Research Institute for the Biology of Ageing (ERIBA), University Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
- Department of Research in Sexual and Reproductive Health, Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama
- Sistema Nacional de Investigación, SENACYT, Panama City 0816-02593, Panama
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
16
|
Hughes CHK, Smith OE, Meinsohn MC, Brunelle M, Gévry N, Murphy BD. Steroidogenic factor 1 (SF-1; Nr5a1) regulates the formation of the ovarian reserve. Proc Natl Acad Sci U S A 2023; 120:e2220849120. [PMID: 37494420 PMCID: PMC10410717 DOI: 10.1073/pnas.2220849120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/12/2023] [Indexed: 07/28/2023] Open
Abstract
The ovarian follicle reserve, formed pre- or perinatally, comprises all oocytes for lifetime reproduction. Depletion of this reserve results in infertility. Steroidogenic factor 1 (SF-1; Nr5a1) and liver receptor homolog 1 (LRH-1; Nr5a2) are two orphan nuclear receptors that regulate adult endocrine function, but their role in follicle formation is unknown. We developed models of conditional depletion of SF-1 or LRH-1 from prenatal ovaries. Depletion of SF-1, but not LRH-1, resulted in dramatically smaller ovaries and fewer primordial follicles. This was mediated by increased oocyte death, resulting from increased ovarian inflammation and increased Notch signaling. Major dysregulated genes were Iroquois homeobox 3 and 5 and their downstream targets involved in the establishment of the ovarian laminin matrix and oocyte-granulosa cell gap junctions. Disruptions of these pathways resulted in follicles with impaired basement membrane formation and compromised oocyte-granulosa communication networks, believed to render them more prone to atresia. This study identifies SF-1 as a key regulator of the formation of the ovarian reserve.
Collapse
Affiliation(s)
- Camilla H. K. Hughes
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QCJ2S 2M2, Canada
| | - Olivia E. Smith
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QCJ2S 2M2, Canada
| | - Marie-Charlotte Meinsohn
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA02114
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Mylène Brunelle
- Département de biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 0A5, Canada
| | - Nicolas Gévry
- Département de biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 0A5, Canada
| | - Bruce D. Murphy
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QCJ2S 2M2, Canada
| |
Collapse
|
17
|
Lee S, Kang E, Lee U, Cho S. Role of pelitinib in the regulation of migration and invasion of hepatocellular carcinoma cells via inhibition of Twist1. BMC Cancer 2023; 23:703. [PMID: 37495969 PMCID: PMC10373356 DOI: 10.1186/s12885-023-11217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Overexpression of Twist1, one of the epithelial-mesenchymal transition-transcription factors (EMT-TFs), is associated with hepatocellular carcinoma (HCC) metastasis. Pelitinib is known to be an irreversible epidermal growth factor receptor tyrosine kinase inhibitor that is used in clinical trials for colorectal and lung cancers, but the role of pelitinib in cancer metastasis has not been studied. This study aimed to investigate the anti-migration and anti-invasion activities of pelitinib in HCC cell lines. METHODS Using three HCC cell lines (Huh7, Hep3B, and SNU449 cells), the effects of pelitinib on cell cytotoxicity, invasion, and migration were determined by cell viability, wound healing, transwell invasion, and spheroid invasion assays. The activities of MMP-2 and -9 were examined through gelatin zymography. Through immunoblotting analyses, the expression levels of EMT-TFs (Snail1, Twist1, and ZEB1) and EMT-related signaling pathways such as mitogen-activated protein kinases (MAPKs) and Akt signaling pathways were measured. The activity and expression levels of target genes were analyzed by reporter assay, RT-PCR, quantitative RT-PCR, and immunoblotting analysis. Statistical analysis was performed using one-way ANOVA with Dunnett's Multiple comparison tests in Prism 3.0 to assess differences between experimental conditions. RESULTS In this study, pelitinib treatment significantly inhibited wound closure in various HCC cell lines, including Huh7, Hep3B, and SNU449. Additionally, pelitinib was found to inhibit multicellular cancer spheroid invasion and metalloprotease activities in Huh7 cells. Further investigation revealed that pelitinib treatment inhibited the migration and invasion of Huh7 cells by inducing Twist1 degradation through the inhibition of MAPK and Akt signaling pathways. We also confirmed that the inhibition of cell motility by Twist1 siRNA was similar to that observed in pelitinib-treated group. Furthermore, pelitinib treatment regulated the expression of target genes associated with EMT, as demonstrated by the upregulation of E-cadherin and downregulation of N-cadherin. CONCLUSION Based on our novel finding of pelitinib from the perspective of EMT, pelitinib has the ability to inhibit EMT activity of HCC cells via inhibition of Twist1, and this may be the potential mechanism of pelitinib on the suppression of migration and invasion of HCC cells. Therefore, pelitinib could be developed as a potential anti-cancer drug for HCC.
Collapse
Affiliation(s)
- Sewoong Lee
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eunjeong Kang
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Unju Lee
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
18
|
Bai H, Xia S, Zhu L, Dong Y, Liu C, Li N, Liu H, Xiao J. Altered polymerase theta expression promotes chromosomal instability in salivary adenoid cystic carcinoma. J Cell Mol Med 2022; 26:3931-3949. [PMID: 35726713 PMCID: PMC9279586 DOI: 10.1111/jcmm.17429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022] Open
Abstract
Genomic instability (GIN) plays a key role in cancer progression. The disorders of polymerase theta (POLQ) were reported to contribute to GIN and progression in many cancers. Here, we found that POLQ over‐expression was related to salivary adenoid cystic carcinoma (SACC) progression and poor prognosis. Then, we investigated the role and mechanism of POLQ in the GIN in SACC. GIN was assessed by chromosome staining with DAPI and Giemsa, as well as qRT‐PCR of the mitosis‐related gene expression. Meanwhile, PCR‐SSCP was used to evaluate microsatellite instability. Modulation of POLQ expression increased chromosomal instability and enhanced the sensitivity to etoposide without impacting microsatellite stability. Mechanistically, POLQ regulated genome stability by promoting the expression of the error‐prone alt‐NHEJ‐related protein PARP1, and down‐regulating c‐NHEJ‐ and HR‐related proteins KU70 and RAD51. In vitro CCK, Transwell assays and in vivo murine xenograft models indicated that the PARP inhibitor olaparib suppressed SACC growth in the case of etoposide‐induced DNA damage. Bioinformatic analysis identified CEBPB as a potential POLQ‐regulating transcription factor. In summary, our research provides new insights into the mechanisms of SACC chromosomal instability and identifies new potential targets for SACC treatment.
Collapse
Affiliation(s)
- Han Bai
- College of Stomatology, Dalian Medical University, Dalian, China
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lei Zhu
- College of Stomatology, Dalian Medical University, Dalian, China
| | - Yan Dong
- College of Stomatology, Dalian Medical University, Dalian, China
| | - Chao Liu
- College of Stomatology, Dalian Medical University, Dalian, China
| | - Nan Li
- College of Stomatology, Dalian Medical University, Dalian, China.,Liaoning Province Key Laboratory of Organism Microecology and Disease Control, Dalian, China
| | - Han Liu
- College of Stomatology, Dalian Medical University, Dalian, China.,Liaoning Province Key Laboratory of Organism Microecology and Disease Control, Dalian, China
| | - Jing Xiao
- College of Stomatology, Dalian Medical University, Dalian, China.,Liaoning Province Key Laboratory of Organism Microecology and Disease Control, Dalian, China
| |
Collapse
|
19
|
Patil S, Jahagirdar S, Khot M, Sengupta K. Studying the Role of Chromosomal Instability (CIN) in GI Cancers Using Patient-derived Organoids. J Mol Biol 2021; 434:167256. [PMID: 34547328 DOI: 10.1016/j.jmb.2021.167256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/28/2021] [Accepted: 09/13/2021] [Indexed: 01/10/2023]
Abstract
Chromosomal instability (CIN) is associated with the initiation and progression of gastrointestinal (GI) tract cancers. Cancers of the GI tract are typically characterized by altered chromosome numbers. While the dynamics of CIN have been extensively characterized in 2D monolayer cell cultures derived from GI tumors, the tumor microenvironment and 3D tumor architecture also contribute to the progression of CIN, which is not captured in 2D cell culture systems. To overcome these limitations, self-organizing cellular structures that retain organ-specific 3D architecture, namely organoids, have been derived from various tissues of the GI tract. Organoids derived from normal tissue and patient tumors serve as a useful paradigm to study the crosstalk between tumor cells in the context of a tissue microenvironment and its impact on chromosomal stability. Such a paradigm, therefore, has a considerable advantage over 2D cell culture systems in drug screening and personalized medicine. Here, we review the importance of patient-derived tumor organoids (PDTOs) as a model to study CIN in cancers of the GI tract.
Collapse
Affiliation(s)
- Shalaka Patil
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Pune 411008, India. https://twitter.com/@ShalakaPatil11
| | - Sanika Jahagirdar
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Pune 411008, India. https://twitter.com/@SanikaJag
| | - Maithilee Khot
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Pune 411008, India. https://twitter.com/@MaithileeKhot
| | - Kundan Sengupta
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Pune 411008, India.
| |
Collapse
|
20
|
Yang Y, Feng M, Bai L, Liao W, Zhou K, Zhang M, Wu Q, Wen F, Lei W, Zhang P, Zhang N, Huang J, Li Q. Comprehensive analysis of EMT-related genes and lncRNAs in the prognosis, immunity, and drug treatment of colorectal cancer. J Transl Med 2021; 19:391. [PMID: 34526059 PMCID: PMC8444417 DOI: 10.1186/s12967-021-03065-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND EMT is an important biological process in the mechanism of tumor invasion and metastasis. However, there are still many unknowns about the specific mechanism of EMT in tumor. At present, a comprehensive analysis of EMT-related genes in colorectal cancer (CRC) is still lacking. METHODS All the data were downloaded from public databases including TCGA database (488 tumor samples and 52 normal samples) as the training set and the GEO database (GSE40967 including 566 tumor samples and 19 normal samples, GSE12945 including 62 tumor samples, GSE17536 including 177 tumor samples, GSE17537 including 55 tumor samples) as the validation sets. One hundred and sixty-six EMT-related genes (EMT-RDGs) were selected from the Molecular Signatures Database. Bioinformatics methods were used to analyze the correlation between EMT-RDGs and CRC prognosis, metastasis, drug efficacy, and immunity. RESULTS We finally obtained nine prognostic-related EMT-RDGs (FGF8, NOG, PHLDB2, SIX2, SNAI1, TBX5, TIAM1, TWIST1, TCF15) through differential expression analysis, Unicox and Lasso regression analysis, and then constructed a risk prognosis model. There were significant differences in clinical characteristics, 22 immune cells, and immune functions between the high-risk and low-risk groups and the different states of the nine prognostic-related EMT-RDGs. The methylation level and mutation status of nine prognostic-related EMT-RDGs all affect their regulation of EMT. The Cox proportional hazards regression model was also constructed by the methylation sites of nine prognostic-related EMT-RDGs. In addition, the expression of FGF8, PHLDB2, SIX2, and SNAIL was higher and the expression level of NOG and TWIST1 was lower in the non-metastasis CRC group. Nine prognostic-related EMT-RDGs also affected the drug treatment response of CRC. CONCLUSIONS Targeting these nine prognostic-related EMT-RDGs can regulate CRC metastasis and immune, which is beneficial for the prognosis of CRC patients, improve drug sensitivity in CRC patients.
Collapse
Affiliation(s)
- Yang Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China.,West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China
| | - Mingyang Feng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China.,West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China
| | - LiangLiang Bai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China.,West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China
| | - Weiting Liao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China.,West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China.,West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China
| | - Mengxi Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China.,West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China
| | - Qiuji Wu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China.,West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China
| | - Feng Wen
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China.,West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China
| | - Wanting Lei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China.,West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China
| | - Pengfei Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China.,West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China
| | - Nan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China.,West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China
| | - Jiaxing Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China.,West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China. .,West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang, Chengdu, Sichuan, China.
| |
Collapse
|
21
|
Brabletz S, Schuhwerk H, Brabletz T, Stemmler MP. Dynamic EMT: a multi-tool for tumor progression. EMBO J 2021; 40:e108647. [PMID: 34459003 PMCID: PMC8441439 DOI: 10.15252/embj.2021108647] [Citation(s) in RCA: 424] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
The process of epithelial-mesenchymal transition (EMT) is fundamental for embryonic morphogenesis. Cells undergoing it lose epithelial characteristics and integrity, acquire mesenchymal features, and become motile. In cancer, this program is hijacked to confer essential changes in morphology and motility that fuel invasion. In addition, EMT is increasingly understood to orchestrate a large variety of complementary cancer features, such as tumor cell stemness, tumorigenicity, resistance to therapy and adaptation to changes in the microenvironment. In this review, we summarize recent findings related to these various classical and non-classical functions, and introduce EMT as a true tumorigenic multi-tool, involved in many aspects of cancer. We suggest that therapeutic targeting of the EMT process will-if acknowledging these complexities-be a possibility to concurrently interfere with tumor progression on many levels.
Collapse
Affiliation(s)
- Simone Brabletz
- Department of Experimental Medicine 1Nikolaus‐Fiebiger Center for Molecular MedicineFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| | - Harald Schuhwerk
- Department of Experimental Medicine 1Nikolaus‐Fiebiger Center for Molecular MedicineFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| | - Thomas Brabletz
- Department of Experimental Medicine 1Nikolaus‐Fiebiger Center for Molecular MedicineFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| | - Marc P. Stemmler
- Department of Experimental Medicine 1Nikolaus‐Fiebiger Center for Molecular MedicineFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
22
|
De Las Rivas J, Brozovic A, Izraely S, Casas-Pais A, Witz IP, Figueroa A. Cancer drug resistance induced by EMT: novel therapeutic strategies. Arch Toxicol 2021; 95:2279-2297. [PMID: 34003341 PMCID: PMC8241801 DOI: 10.1007/s00204-021-03063-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Over the last decade, important clinical benefits have been achieved in cancer patients by using drug-targeting strategies. Nevertheless, drug resistance is still a major problem in most cancer therapies. Epithelial-mesenchymal plasticity (EMP) and tumour microenvironment have been described as limiting factors for effective treatment in many cancer types. Moreover, epithelial-to-mesenchymal transition (EMT) has also been associated with therapy resistance in many different preclinical models, although limited evidence has been obtained from clinical studies and clinical samples. In this review, we particularly deepen into the mechanisms of which intermediate epithelial/mesenchymal (E/M) states and its interconnection to microenvironment influence therapy resistance. We also describe how the use of bioinformatics and pharmacogenomics will help to figure out the biological impact of the EMT on drug resistance and to develop novel pharmacological approaches in the future.
Collapse
Affiliation(s)
- Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Salamanca, Spain
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Sivan Izraely
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Alba Casas-Pais
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Spain.,Universidade da Coruña (UDC), Coruña, Spain
| | - Isaac P Witz
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Angélica Figueroa
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Spain. .,Universidade da Coruña (UDC), Coruña, Spain.
| |
Collapse
|
23
|
Rivera-Rivera Y, Marina M, Jusino S, Lee M, Velázquez JV, Chardón-Colón C, Vargas G, Padmanabhan J, Chellappan SP, Saavedra HI. The Nek2 centrosome-mitotic kinase contributes to the mesenchymal state, cell invasion, and migration of triple-negative breast cancer cells. Sci Rep 2021; 11:9016. [PMID: 33907253 PMCID: PMC8079711 DOI: 10.1038/s41598-021-88512-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Nek2 (NIMA-related kinase 2) is a serine/threonine-protein kinase that localizes to centrosomes and kinetochores, controlling centrosome separation, chromosome attachments to kinetochores, and the spindle assembly checkpoint. These processes prevent centrosome amplification (CA), mitotic dysfunction, and chromosome instability (CIN). Our group and others have suggested that Nek2 maintains high levels of CA/CIN, tumor growth, and drug resistance. We identified that Nek2 overexpression correlates with poor survival of breast cancer. However, the mechanisms driving these phenotypes are unknown. We now report that overexpression of Nek2 in MCF10A cells drives CA/CIN and aneuploidy. Besides, enhanced levels of Nek2 results in larger 3D acinar structures, but could not initiate tumors in a p53+/+ or a p53-/- xenograft model. Nek2 overexpression induced the epithelial-to-mesenchymal transition (EMT) while its downregulation reduced the expression of the mesenchymal marker vimentin. Furthermore, either siRNA-mediated downregulation or INH6's chemical inhibition of Nek2 in MDA-MB-231 and Hs578t cells showed important EMT changes and decreased invasion and migration. We also showed that Slug and Zeb1 are involved in Nek2 mediated EMT, invasion, and migration. Besides its role in CA/CIN, Nek2 contributes to breast cancer progression through a novel EMT mediated mechanism.
Collapse
Affiliation(s)
- Yainyrette Rivera-Rivera
- Division of Pharmacology and Cancer Biology, Department of Basic Sciences, Ponce Health Sciences University/Ponce Research Institute, PO Box 7004, Ponce, 00716-2348, Puerto Rico
| | - Mihaela Marina
- MediTech Media, Two Ravinia Drive, Suite 605, Atlanta, GA, 30346, USA
| | - Shirley Jusino
- Division of Pharmacology and Cancer Biology, Department of Basic Sciences, Ponce Health Sciences University/Ponce Research Institute, PO Box 7004, Ponce, 00716-2348, Puerto Rico
| | - Miyoung Lee
- Department of Pediatrics, Aflac Cancer and Blood Disorder Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jaleisha Vélez Velázquez
- Department of Biology, University of Puerto Rico-Ponce, 2151 Santiago de los Caballeros Avenue, Ponce, 00716, Puerto Rico
| | - Camille Chardón-Colón
- Division of Pharmacology and Cancer Biology, Department of Basic Sciences, Ponce Health Sciences University/Ponce Research Institute, PO Box 7004, Ponce, 00716-2348, Puerto Rico
| | - Geraldine Vargas
- Division of Pharmacology and Cancer Biology, Department of Basic Sciences, Ponce Health Sciences University/Ponce Research Institute, PO Box 7004, Ponce, 00716-2348, Puerto Rico
| | - Jaya Padmanabhan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Srikumar P Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Harold I Saavedra
- Division of Pharmacology and Cancer Biology, Department of Basic Sciences, Ponce Health Sciences University/Ponce Research Institute, PO Box 7004, Ponce, 00716-2348, Puerto Rico.
| |
Collapse
|